| 1 |
赵曦然, 杨春, 龙雪芬. 我国畜牧业风险研究进展及未来展望[J]. 中国农业资源与区划, 2024, 45 (7): 247- 260.
|
|
ZHAO X R , YANG C , LONG X F . Research progress and future prospects of risk management in China's livestock industry[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2024, 45, 247- 260.
|
| 2 |
MULDER HA , RASHIDI H . Selection on resilience improves disease resistance and tolerance to infections[J]. J Anim Sci, 2017, 95 (8): 3346- 3358.
|
| 3 |
COLDITZ I G , HINE B C . Resilience in farm animals: biology, management, breeding and implications for animal welfare[J]. Anim Prod Sci, 2016, 56 (12): 1961- 1983.
doi: 10.1071/AN15297
|
| 4 |
BERGHOF T V , POPPE M , MULDER H A . Opportunities to improve resilience in animal breeding programs[J]. Front Genet, 2019, 9, 692.
doi: 10.3389/fgene.2018.00692
|
| 5 |
CHENG J , LIM K , PUTZ A M , et al. Genetic analysis of disease resilience of wean-to-finish pigs under a natural disease challenge model using reaction norms[J]. Genet Sel Evol, 2022, 54 (1): 11.
doi: 10.1186/s12711-022-00702-0
|
| 6 |
杨丽玉, 王立刚, 王立贤. 猪疾病恢复力育种研究进展[J]. 中国畜禽种业, 2024, 20 (1): 5- 12.
|
|
YANG L Y , WANG L G , WANG L X . Advances in resilience breeding for disease recovery in swine[J]. China Livestock and Poultry Breeding Industry, 2024, 20 (1): 5- 12.
|
| 7 |
GORSSEN W , WINTERS C , MEYERMANS R , et al. Breeding for resilience in finishing pigs can decrease tail biting, lameness and mortality[J]. Genet Sel Evol, 2024, 56 (1): 48.
doi: 10.1186/s12711-024-00919-1
|
| 8 |
GORSSEN W , WINTERS C , MEYERMANS R , et al. A promising resilience parameter for breeding: the use of weight and feed trajectories in growing pigs[J]. J Anim Sci Biotechnol, 2023, 14 (1): 101.
doi: 10.1186/s40104-023-00901-9
|
| 9 |
HARLIZIUS B , MATHUR P , KNOL E F . Breeding for resilience: new opportunities in a modern pig breeding program[J]. J Anim Sci, 2020, 98 (Supplement_1): S150- S154.
doi: 10.1093/jas/skaa141
|
| 10 |
POPPE M , MULDER H , KAMPHUIS C , et al. Between-herd variation in resilience and relations to herd performance[J]. J Dairy Sci, 2021, 104 (1): 616- 627.
doi: 10.3168/jds.2020-18525
|
| 11 |
ELGERSMA G G , DE JONG G , VAN DER LINDE R , et al. Fluctuations in milk yield are heritable and can be used as a resilience indicator to breed healthy cows[J]. J Dairy Sci, 2018, 101 (2): 1240- 1250.
doi: 10.3168/jds.2017-13270
|
| 12 |
BERGHOF T V , BOVENHUIS H , MULDER H A . Body weight deviations as indicator for resilience in layer chickens[J]. Front Genet, 2019, 10, 1216.
doi: 10.3389/fgene.2019.01216
|
| 13 |
BERGHOF T V , BEDERE N , PEETERS K , et al. The genetics of resilience and its relationships with egg production traits and antibody traits in chickens[J]. Genet Sel Evol, 2024, 56 (1): 20.
doi: 10.1186/s12711-024-00888-5
|
| 14 |
MIYUMO S A , WASIKE C B , ILATSIA E D , et al. Genetic and phenotypic correlations among feed efficiency, immune and production traits in indigenous chicken of Kenya[J]. Front Genet, 2023, 13, 1070304.
doi: 10.3389/fgene.2022.1070304
|
| 15 |
PUTZ A M , HARDING J C , DYCK M K , et al. Novel resilience phenotypes using feed intake data from a natural disease challenge model in wean-to-finish pigs[J]. Front Genet, 2019, 9, 660.
doi: 10.3389/fgene.2018.00660
|
| 16 |
NGUYEN-BA H , VAN MILGEN J , TAGHIPOOR M . A procedure to quantify the feed intake response of growing pigs to perturbations[J]. Anim, 2020, 14 (2): 253- 260.
doi: 10.1017/S1751731119001976
|
| 17 |
HOMMA C , HIROSE K , ITO T , et al. Estimation of genetic parameter for feed efficiency and resilience traits in three pig breeds[J]. Anim, 2021, 15 (11): 100384.
doi: 10.1016/j.animal.2021.100384
|
| 18 |
CHENG J , PUTZ A M , HARDING J C , et al. Genetic parameters of drinking and feeding traits of wean-to-finish pigs under a polymicrobial natural disease challenge[J]. J Anim Sci Biotechnol, 2021, 12 (1): 105.
doi: 10.1186/s40104-021-00622-x
|
| 19 |
MANCIN E , MALTECCA C , JIANG J , et al. Capturing resilience from phenotypic deviations: a case study using feed consumption and whole genome data in pigs[J]. BMC Genomics, 2024, 25 (1): 1128.
doi: 10.1186/s12864-024-11052-0
|
| 20 |
REVILLA M , GUILLAUME L , LOÏC F G , et al. Quantifying growth perturbations over the fattening period in swine via mathematical modelling[J]. Peer Commun J, 2022, 2.
|
| 21 |
CASEY D S , STERN H S , DEKKERS J C . Identification of errors and factors associated with errors in data from electronic swine feeders[J]. J Anim Sci, 2005, 83 (5): 969- 982.
doi: 10.2527/2005.835969x
|
| 22 |
ROUSSEEUW P J , LEROY A M . Robust regression and outlier detection[M]. New Jersey: John wiley & sons, 2003.
|
| 23 |
NUGROHO W H , WARDHANI N W S , FERNANDES A , et al. Robust regression analysis study for data with outliers at some significance levels[J]. Math Stat, 2020, 8 (4): 373- 381.
doi: 10.13189/ms.2020.080401
|
| 24 |
杨晓丹. 猪自动生长性能测定设备的数据质量管控研究[D]. 杭州: 浙江大学, 2018.
|
|
YANG X D. Research on data quality control of automatic growth performance measurement equipment for pigs[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
|
| 25 |
ZUMBACH B , MISZTAL I , CHEN C , et al. Use of serial pig body weights for genetic evaluation of daily gain[J]. J Anim Breed Genet, 2010, 127 (2): 93- 99.
doi: 10.1111/j.1439-0388.2009.00827.x
|
| 26 |
TRAN V H , GILBERT H , DAVID I . How to improve breeding value prediction for feed conversion ratio in the case of incomplete longitudinal body weights[J]. J Anim Sci, 2017, 95 (1): 39- 48.
|
| 27 |
ITO T , FUKAWA K , KAMIKAWA M , et al. Effects of correcting missing daily feed intake values on the genetic parameters and estimated breeding values for feeding traits in pigs[J]. Anim Sci J, 2018, 89 (1): 12- 20.
doi: 10.1111/asj.12891
|
| 28 |
ŽÁKOVÁ E , KRUPOVA Z , KRUPA E . Genetics of feed intake traits in the Czech Large White pig population[J]. Acta Fytotech Zootech, 2020, 23 (5)
doi: 10.15414/AFZ.2020.23.MI-FPAP.217-223
|
| 29 |
KAVLAK A T , UIMARI P . Inheritance of feed intake-based resilience traits and their correlation with production traits in Finnish pig breeds[J]. J Anim Sci, 2024, 102, skae037.
doi: 10.1093/jas/skae037
|
| 30 |
POPPE M , BONEKAMP G , VAN PELT M , et al. Genetic analysis of resilience indicators based on milk yield records in different lactations and at different lactation stages[J]. J Dairy Sci, 2021, 104 (2): 1967- 1981.
doi: 10.3168/jds.2020-19245
|
| 31 |
ARENTE M , GARCÍA M , ZBYN'OVSKÁ K , et al. Correlated response to selection for litter size environmental variability in rabbits' resilience[J]. Anim, 2019, 13 (10): 2348- 2355.
doi: 10.1017/S1751731119000302
|
| 32 |
MANCIN E , MALTECCA C , HUANG Y J , et al. A first characterization of the microbiota-resilience link in swine[J]. Microbiome, 2024, 12 (1): 53.
doi: 10.1186/s40168-024-01771-7
|
| 33 |
CASTO-REBOLLO C , ARGENTE M J , GARCÍA M L , et al. Effect of environmental variance-based resilience selection on the gut metabolome of rabbits[J]. Genet Sel Evol, 2023, 55 (1): 15.
doi: 10.1186/s12711-023-00791-5
|
| 34 |
LAGHOUAOUTA H , FRAILE L , SUÁREZ-MESA R , et al. A genome-wide screen for resilient responses in growing pigs[J]. Genet Sel Evol, 2022, 54 (1): 50.
doi: 10.1186/s12711-022-00739-1
|
| 35 |
LEE B. Behavioral indicators of pigs' resilience to weaning stress: Defense cascade and observing home pen behaviors[D]. East Lansing: Michigan State University, 2023.
|