

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (10): 4889-4902.doi: 10.11843/j.issn.0366-6964.2025.10.011
马荆鄂1,2(
), 万书星1,2, 雷文静1,2, 章英枝1,2, 俞梓萱1,2, 刘梓阁1,2, 许继国1,2,*(
)
收稿日期:2025-03-05
出版日期:2025-10-23
发布日期:2025-11-01
通讯作者:
许继国
E-mail:382646281@qq.com;3425614@qq.com
作者简介:马荆鄂(1987-),女,湖北荆州人,博士,主要从事家禽遗传育种与繁殖研究,E-mail: 382646281@qq.com
基金资助:
MA Jing'e1,2(
), WAN Shuxing1,2, LEI Wenjing1,2, ZHANG Yingzhi1,2, YU Zixuan1,2, LIU Zige1,2, XU Jiguo1,2,*(
)
Received:2025-03-05
Online:2025-10-23
Published:2025-11-01
Contact:
XU Jiguo
E-mail:382646281@qq.com;3425614@qq.com
摘要:
旨在挖掘康乐黄鸡16周龄体重相关功能基因及关键信号通路,以期为地方鸡种出栏体重性状的选种选育提供依据。本研究以434只康乐黄鸡为研究对象,采用“京芯1号”55K SNP芯片对康乐黄16周龄体重进行全基因组关联分析(genome-wide association study, GWAS),筛选显著关联SNP(single nucleotide polymorphism)位点。共检测到13个显著关联SNPs,分别位于3号染色体(81 641 565 bp)、4号染色体(1 860 041、33 409 710、33 716 131、33 925 946 bp)、6号染色体(23 563 123、35 324 210 bp)、11号染色体(15 294 113、15 346 007 bp)、12号染色体(2 503 065、2 504 749 bp)以及18号染色体(1 994 686、2 307 607 bp),筛选到825个候选基因。基因功能注释结果表明,运动活动过程为最显著富集的生物学过程,细胞间紧密连接、糖胺聚糖降解和新陈代谢途径等17个通路为显著性富集通路(P < 0.05)。结合前期转录组测序数据、文献综述,初步确定KCNQ5、P2RY10、ITM2A、RBPMS、PGAM1、CYP17A1、BNIP3、ATMIN、BCO1、TNNC1、GNAI2、MYH1F、MYH1A、MYH10、PIK3R5可作为康乐黄鸡16周龄体重的重要候选基因。神经活性配体-受体相互作用信号通路、新陈代谢途径信号通路、心肌细胞肾上腺素能信号传导通路和细胞间紧密连接信号通路为关键通路。本研究初步确定13个SNPs、15个关键候选基因以及4条关键通路与康乐黄鸡16周龄体重显著关联,这些结果为康乐黄鸡生长性状的分子标记辅助育种提供理论依据和技术支撑。
中图分类号:
马荆鄂, 万书星, 雷文静, 章英枝, 俞梓萱, 刘梓阁, 许继国. 基于组学数据筛选康乐黄鸡16周龄体重候选基因与关键通路[J]. 畜牧兽医学报, 2025, 56(10): 4889-4902.
MA Jing'e, WAN Shuxing, LEI Wenjing, ZHANG Yingzhi, YU Zixuan, LIU Zige, XU Jiguo. Identification of Candidate Genes and Key Pathways Associated with Body Weight at 16 Weeks of Age in Kangle Yellow Chickens Based on Omics Data[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4889-4902.
表 1
SNPs位点对应基因型与16周龄体重的相关性"
| 染色体 Chromosome | 物理位置/bp Position | P值 P-value | 基因型(个体数) Genotype (Number) | 基因型频率 Genotype frequency | 16周龄体重(平均值±标准差)/g Body weight at 16 weeks (Mean±standard deviation) |
| 3 | 81 641 565 | 4.00×10-8 | CC (386) | 0.970 | 790.73±138.97a |
| TC (12) | 0.030 | 920.83±80.26b | |||
| 4 | 1 860 041 | 2.88×10-9 | CC (376) | 0.945 | 968.09±135.34a |
| TC (21) | 0.053 | 988.10±177.89a | |||
| TT (1) | 0.002 | 1 000b | |||
| 4 | 33 409 710 | 2.83×10-6 | CC (385) | 0.967 | 970.78±138.95a |
| TC (13) | 0.033 | 923.08±86.86b | |||
| 4 | 33 716 131 | 2.83×10-6 | GG (385) | 0.967 | 970.78±138.95a |
| AG (13) | 0.033 | 923.08±86.86b | |||
| 4 | 33 925 946 | 2.83×10-6 | TT (385) | 0.967 | 970.78±138.95a |
| CT (13) | 0.033 | 923.08±86.86b | |||
| 6 | 23 563 123 | 6.00×10-7 | GG(8) | 0.020 | 969.74±138.33a |
| AG (390) | 0.980 | 943.75±107.35b | |||
| 6 | 35 324 210 | 7.68×10-8 | AA (1) | 0.002 | 1 000a |
| AC (21) | 0.053 | 973.81±111.93b | |||
| CC (376) | 0.945 | 968.88±139.30ab | |||
| 11 | 15 294 113 | 3.48×10-7 | TT(386) | 0.969 | 970.73±138.45a |
| CT(12) | 0.031 | 920.83±105.00b | |||
| 11 | 15 346 007 | 3.48×10-7 | CC(386) | 0.969 | 970.73±138.45a |
| TC(12) | 0.031 | 920.83±150.00b | |||
| 12 | 2 503 065 | 1.79×10-12 | GG(2) | 0.005 | 950±50a |
| GT(10) | 0.027 | 995±145.69b | |||
| TT(358) | 0.968 | 968.65±137.86c | |||
| 12 | 2 504 749 | 1.79×10-12 | AA(358) | 0.968 | 968.65±137.86a |
| CA(10) | 0.027 | 995±145.69b | |||
| CC(2) | 0.005 | 950±50c | |||
| 18 | 1 994 686 | 1.30×10-7 | TT(387) | 0.972 | 970.80±138.14a |
| CT(11) | 0.028 | 913.64±113.00b | |||
| 18 | 2 307 607 | 5.84×10-9 | AG(8) | 0.020 | 925±129.90a |
| GG(390) | 0.980 | 970.13±137.84b |
表 2
引物信息"
| 引物名称 Primer name | SNP位置/bp Position | 方向 Direction | 引物序列(5′→3′) Primer sequence | 退火温度/℃ Temperature | 片段长度/bp Length |
| 1 | Chr3:81 641 565 | Forward | CATGCAAAGCACCGAACTCC | 60 | 233 |
| Reverse | AGAAAAGCGCTCCAGTGTCT | ||||
| 2 | Chr4:1 860 041 | Forward | CTGGGTCCCTATATCCACATACATT | 61 | 418 |
| Reverse | GCCAGCTGGACAAAAGCCTG | ||||
| 3 | Chr4:33 409 710 | Forward | TAAAGTTGAGGTGCTTGACC | 55 | 322 |
| Reverse | TGGACAGTTACACAGAACAT | ||||
| 4 | Chr4:33 716 131 | Forward | GGACATTTGCACACACCGTT | 60 | 280 |
| Reverse | TTGCTTGCTCCTGCTAGCTC | ||||
| 5 | Chr4:33 925 946 | Forward | TACGTTCAGAGTGACGTTTGTATG | 60 | 393 |
| Reverse | CTTCAAGCCAGGATGGAGCAT | ||||
| 6 | Chr6:23 563 123 | Forward | GTGAACGTGTCAGCCAACTG | 60 | 372 |
| Reverse | GCCTGAAGACAAGCGCATAG | ||||
| 7 | Chr6:35 324 210 | Forward | GTTGGCAATGGGGTGTTTGA | 59 | 280 |
| Reverse | CCTGGGTTCTGGGCTAACTT | ||||
| 8 | Chr11:15 294 113 | Forward | CATATCAGCACCCCAAGCCTC | 60 | 297 |
| Reverse | TGCAGAAAACACCTACAGCTTC | ||||
| 9 | Chr11:15 346 007 | Forward | ATCTCAGCCACAGTGGTCCT | 61 | 235 |
| Reverse | AGTATGGGGGCAGTTTGGGA | ||||
| 10 | Chr12:2 503 065 | Forward | TTTCCAGTTGTTCCAGCTGAC | 59 | 295 |
| Reverse | TGCCAACCTGAAAGGTCTTCT | ||||
| 11 | Chr12:2 504 749 | Forward | GTGCCTTGAGCTAGCATTGTG | 61 | 523 |
| Reverse | TTTCAGACATGCCGTGCGTT | ||||
| 12 | Chr18:1 994 686 | Forward | GCTCACATCATGCAGAGAAACA | 60 | 534 |
| Reverse | CCAGGCCAAGACACTGGAAG | ||||
| 13 | Chr18:2 307 607 | Forward | TGTCAAAGCCAACTCCCTCTT | 60 | 339 |
| Reverse | GACAGCGTCACTTCCCACG |
图 2
部分SNPs位点分型检测结果 A. PCR扩增结果电泳图:M. DNA标准DS2000;1. 4号引物PCR扩增产物;2. 3号引物PCR扩增产物;3. 9号引物PCR扩增产物;4. 10号引物PCR扩增产物。B. Chr3: 81 641 565 SNP位点测序峰图。C. Chr4: 33 409 710 SNP位点测序峰图。D. Chr4: 33 716 131 SNP位点测序峰图。E. Chr6: 23 563 123 SNP位点测序峰图。F. Chr11: 15 294 113 SNP位点测序峰图。G. Chr11: 15 346 007 SNP位点测序峰图。H. Chr12: 2 504 749 SNP位点测序峰图。I. Chr18: 1 994 686 SNP位点测序峰图。J. Chr18: 2 307 607 SNP位点测序峰图"
表 3
关键候选基因功能分析"
| 基因 Gene | 染色体 Chromosome | 区域/bp Position | 功能 Function |
| TMEM30A | 3 | 80 772 707~80 786 202 | TMEM30A在小鼠骨骼肌再生中有重要作用[ |
| KCNQ5 | 3 | 81 552 966~81 817 022 | 猪生长相关候选基因[ |
| P2RY10 | 4 | 1 435 115~1 442 506 | 与阳原驴体尺性状和延边牛生长性状相关[ |
| ITM2A | 4 | 1 468 932~1 477 914 | 参与德州驴骨骼肌的生长和发育[ |
| TBX22 | 4 | 1 505 219~1 510 388 | Wnt信号通路通过TBX22调节鸡胚上颌骨形态发生和生长[ |
| PHKA1 | 4 | 1 863 361~1 879 695 | 可能参与调节鸡肉早期生长[ |
| SH3D19 | 4 | 33 241 343~33 322 918 | 与斑马鱼胚胎发育、体节发生相关[ |
| RBPMS | 4 | 34 740 148~34 745 550 | 对于斑马鱼心脏发育具有重要调控作用[ |
| PGAM1 | 6 | 23 308 079~23 310 457 | 参与藏羊细胞增殖以及精子发生[ |
| BTRC | 6 | 23 789 857~23 907 913 | 与鸡生长性状相关[ |
| CYP17A1 | 6 | 24 341 475~24 343 952 | 参与鸡卵泡和睾丸的生长和发育[ |
| SLK | 6 | 25 039 625~25 086 733 | 与成人肌肉发育有关[ |
| EBF3 | 6 | 35 109 889~35 223 910 | 与鸡胚骨骼发育有关[ |
| BNIP3 | 6 | 35 758 032~35 763 615 | 与动物肌肉发育有关[ |
| ATMIN | 11 | 15 376 764~15 396 951 | 对于小鼠正常肾脏发育至关重要[ |
| BCO1 | 11 | 15 458 803~15 472 637 | 参与调节鸡成肌细胞的增殖[ |
| CDH13 | 11 | 15 966 410~16 399 105 | 调节牛早期生殖发育[ |
| KCNG4 | 11 | 16 658 646~16 675 825 | 与俄罗斯原住民卡拉柴山羊臀部高度、体长和胸围相关[ |
| TNNC1 | 12 | 975 844~981 282 | 调控鹌鹑肌肉分化和生长性能[ |
| MUSTN1 | 12 | 1 237 476~1 240 740 | 与鸡、鸭肌肉发育有关[ |
| GNAI2 | 12 | 3 602 465~3 612 992 | 为绵羊生长相关基因[ |
| MYH1F | 18 | 407 274~424 973 | 在家禽肌肉生成中起关键作用[ |
| MYH1A | 18 | 458 828~477 172 | 海扬黄鸡生长发育的候选基因[ |
| MYH10 | 18 | 1 725 821~1 818 952 | 可能参与调节鸡肉组织早期生长[ |
| PIK3R5 | 18 | 1 984 538~2 033 615 | 与绵羊体型特征相关的基因[ |
| ARHGAP44 | 18 | 2 210 621~2 231 195 | 调控猪的腰肌面积[ |
| 1 | 谢欣怡,陈俊赫,王文浩.康乐黄鸡肌肉生长抑制素基因多态性对上市日龄体重的遗传效应分析[J].畜牧与兽医,2023,55(10):6-9. |
| XIEX Y,CHENJ H,WANGW H.Polymorphism of MSTN gene in Kangle yellow chicken and its genetic effect of market weight of the bird[J].Animal Husbandry and Veterinary Medicine,2023,55(10):6-9. | |
| 2 | 谢鑫峰,钟梓奇,王子轶,等.基于全基因组关联分析研究文昌鸡初生重性状相关的候选基因[J].畜牧与兽医,2024,56(7):1-5. |
| XIEX F,ZHONGZ Q,WANGZ Y,et al.Genome-wide association analysis revealed candidate genes related with birthweight traits in Wenchang chicken[J].Animal Husbandry and Veterinary Medicine,2024,56(7):1-5. | |
| 3 | 彭秋玲,汪会文,王䶮,等.利用线粒体CoI基因探讨江西五个地方鸡种的遗传多样性[J].粮油与饲料科技,2022(3):9-13. |
| PENGQ L,WANGH W,WANGY,et al.Exploring the genetic diversity of five local chicken breeds in Jiangxi using mitochondrial CoI gene[J].Grain Oil And Feed Technology,2022(3):9-13. | |
| 4 | 曹原, 彭瑞妮, 郑文亚, 等. Diquat诱导的氧化应激对康乐黄鸡睾丸组织结构及睾酮合成相关基因表达的影响[C]. 西安: 中国畜牧兽医学会兽医产科学分会第八届会员代表大会暨第十五次学术研讨会, 2021. |
| CAO Y, PENG R N, ZHENG W Y, et al. Effects of Diquat-Induced oxidative stress on testicular tissue structure and testosterone synthesis-related gene expression in Kangle yellow chicken[C]. Xian: The 8th Member Representative Congress and the 15th Academic Symposium of the Veterinary Obstetrics and Gynecology Branch of the Chinese Association of Animal Science and Veterinary Medicine, 2021. (in Chinese) | |
| 5 | 孙汉,欧阳建华,潘珂,等.从万载康乐黄鸡的产蛋规律探讨地方鸡种产蛋性能的选择[J].中国畜牧杂志,2004(8):53-55. |
| SUNH,OUYANGJ H,PANK,et al.Exploring the selection of egg-laying performance of local chicken breeds from the egg-laying pattern of Wanzai Kangle yellow chicks[J].Chinese Journal of Animal Science,2004(8):53-55. | |
| 6 | 周洁蕊,马忠文,李园园,等.蚯蚓发酵液对康乐黄鸡生产性能、蛋品质及脂质指标的影响[J].中国兽医学报,2022,42(8):1697-1702. |
| ZHOUJ R,MAZ W,LIY Y,et al.Effect of fermented earthworm broth on production performance, egg quality and lipid index of Kangle yellow chicken[J].Chinese Journal of Veterinary Science,2022,42(8):1697-1702. | |
| 7 | 孙汉,欧阳建华,熊建华,等.羽速基因对万载康乐黄鸡蛋用性能的影响[J].动物科学与动物医学,2002(11):12-14. |
| SUNH,OUYANGJ H,XIONGJ H,et al.Effect of the feather speed gene on production performance in Wanzai Kangle yellow chicks[J].Swine Industry Science,2002(11):12-14. | |
| 8 | 欧阳建华,熊建华,孙汉,等.羽速基因对万载康乐黄鸡肉用性能的影响[J].江西农业大学学报(自然科学),2002(4):508-512. |
| OUYANGJ H,XIONGJ H,SUNH,et al.A study on the effect of the feather speed gene on meat traits in Wanzai Kangle yellow chicks[J].Acta Agriculturae Universitatis Jiangxiensis,2002(4):508-512. | |
| 9 | 杨梦园,宁中华.鸡重要性状GWAS分析的研究进展[J].中国家禽,2023,45(4):105-110. |
| YANGM Y,NINGZ H.Research progress on GWAS analysis of important traits in chicken[J].China Poultry,2023,45(4):105-110. | |
| 10 | 杨燕. 京海黄鸡分子标记与生长及屠宰性状关系的研究[D]. 扬州: 扬州大学, 2007. |
| YANG Y. Study on the relationship between molecular markers and growth & carcass characteristics in Jinghai yellow chicken[D]. Yangzhou: Yangzhou University, 2007. (in Chinese) | |
| 11 |
ZHANGG X,FANQ C,ZHANGT,et al.Genome-wide association study of growth traits in the Jinghai Yellow chicken[J].Genet Mol Res,2015,14(4):15331-15338.
doi: 10.4238/2015.November.30.10 |
| 12 |
WANGW H,WANGJ Y,ZHANGT,et al.Genome-wide association study of growth traits in Jinghai Yellow chicken hens using SLAF-seq technology[J].Animal genetics,2019,50(2):175-176.
doi: 10.1111/age.12346 |
| 13 |
ZHANGG X,DINGF X,WANGJ Y,et al.Polymorphism in exons of the myostatin gene and its relationship with body weight traits in the Bian chicken[J].Biochem Genet,2011,49(1-2):9-19.
doi: 10.1007/s10528-010-9380-x |
| 14 |
范晨宇,单艳菊,章明,等.立华麻黄鸡体重和肉品质性状全基因组关联分析[J].畜牧兽医学报,2023,54(12):4982-4992.
doi: 10.11843/j.issn.0366-6964.2023.12.010 |
|
FANGC Y,SHANY J,ZHANGM,et al.Genome-wide association study of body weight and meat quality traits in Lihua Mahuang chickens[J].Acta Veterinaria et Zootechnica Sinica,2023,54(12):4982-4992.
doi: 10.11843/j.issn.0366-6964.2023.12.010 |
|
| 15 |
ZHONGC H,LIX C,GUAND L,et al.Age-dependent genetic architectures of chicken body weight explored by multidimensional GWAS and molQTL analyses[J].J Genet Genomics,2024,51(12):1423-1434.
doi: 10.1016/j.jgg.2024.09.003 |
| 16 |
WANGJ,LIUJ,LEIQ X,et al.Elucidation of the genetic determination of body weight and size in Chinese local chicken breeds by large-scale genomic analyses[J].BMC Genomics,2024,25(1):296.
doi: 10.1186/s12864-024-10185-6 |
| 17 |
樊庆灿,王金玉,张跟喜,等.运用四种线性模型对京海黄鸡上市体重进行全基因组关联分析[J].畜牧兽医学报,2014,45(7):1053-1059.
doi: 10.11843/j.issn.0366-6964.2014.07.004 |
|
FANQ C,WANGJ Y,ZHANGG X,et al.A genome-wide association study of market weight using four statistic models in Jinghai yellow chicken[J].Acta Veterinaria et Zootechnica Sinica,2014,45(7):1053-1059.
doi: 10.11843/j.issn.0366-6964.2014.07.004 |
|
| 18 | NY/T 33-2004, 鸡饲养标准[S]. |
| NY/T 33-2004, Feeding standard of chicken[S]. (in Chinese) | |
| 19 |
PURCELLS,NEALEB,TODD-BROWNK,et al.PLINK: a tool set for whole-genome association and population-based linkage analyses[J].Am J Hum Genet,2007,81(3):559-575.
doi: 10.1086/519795 |
| 20 |
ZHOUX,STEPHENSM.Genome-wide efficient mixed-model analysis for association studies[J].Nat Genet,2012,44(7):821-824.
doi: 10.1038/ng.2310 |
| 21 |
YEJ,COULOURISG,ZARETSKAYAI,et al.Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction[J].BMC Bioinformatics,2012,13(1):134.
doi: 10.1186/1471-2105-13-134 |
| 22 | BUD,LUOH,HUOP,et al.KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis[J].Nucleic Acids Res,2021,49(1):317-325. |
| 23 |
SZKLARCZYKD,KIRSCHR,KOUTROULIM,et al.The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J].Nucleic Acids Res,2023,51(D1):D638-D646.
doi: 10.1093/nar/gkac1000 |
| 24 | MAJEEDA,MUKHTARS.Protein-protein interaction network exploration using Cytoscape[J].Methods Mol Biol,2023,2690(1):419-427. |
| 25 | 马荆鄂,曾配君,万淑敏,等.基于肝脏转录组测序筛选康乐黄鸡开产相关基因和关键通路[J].华北农学报,2025,40(3):207-214. |
| MAJ E,ZENGP J,WANS M,et al.Screening of genes and key pathways related to egg-laying in Kangle yellow chickens based on liver transcriptome sequencing[J].Acta Agriculturae Boreali-Sinica,2025,40(3):207-214. | |
| 26 | 马荆鄂,兰岚,刘梓阁,等.基于垂体转录组测序筛选康乐黄鸡开产性状相关基因和信号通路[J].广东农业科学,2025,52(4):73-87. |
| MAJ E,LANL,LIUZ G,et al.Pituitary transcriptome analysis of genes and pathways related to traits at the first egg in Kangle yellow chicken[J].Guangdong Agricultural Sciences,2025,52(4):73-87. | |
| 27 | XIONGX W,ZHOUM,ZHUX N,et al.RNA sequencing of the pituitary gland and association analyses reveal PRKG2 as a candidate gene for growth and carcass traits in Chinese Ningdu yellow chickens[J].Front Vet Sci,2022,9(1):892024. |
| 28 |
SUNK X,JIANGX Y,LIX,et al.Deletion of phosphatidylserine flippase β-subunit Tmem30a in satellite cells leads to delayed skeletal muscle regeneration[J].Zool Res,2021,42(5):650-659.
doi: 10.24272/j.issn.2095-8137.2021.195 |
| 29 | SHIL Y,WANGL G,FANGL Z,et al.Integrating genome-wide association studies and population genomics analysis reveals the genetic architecture of growth and backfat traits in pigs[J].Front Genet,2022,13(1):1078696. |
| 30 | 宋双,常丝雨,赵威森,等.阳原驴P2RY10基因多态性及其与体尺性状的相关分析[J].中国畜牧杂志,2023,59(6):91-94. |
| SONGS,CHANGS Y,ZHAOW S,et al.Analysis of P2RY10 gene polymorphism and its correlation with body size traits in Yangyuan donkeys[J].Chinese Journal of Animal Science,2023,59(6):91-94. | |
| 31 | 王卓. 延边牛FABP5、FABP6、DGAT1、USP43、P2RY10和FUBP3多态性与生长性状关联分析[D]. 延吉: 延边大学, 2023. |
| WANG Z. Association analysis of polymorphisms FABP5, FABP6, DGAT1, USP43, P2RY10, and FUBP3 genes with growth traits in Yanbian cattle[D]. Yanji: Yanbian University, 2023. (in Chinese) | |
| 32 |
YUJ,YANGG,LIS P,et al.Identification of Dezhou donkey muscle development-related genes and long non-coding RNA based on differential expression analysis[J].Anim Biotechnol,2023,34(7):2313-2323.
doi: 10.1080/10495398.2022.2088549 |
| 33 |
SHIMOMURAT,KAWAKAMIM,TATSUMIK,et al.The role of the Wnt signaling pathway in upper jaw development of chick embryo[J].Acta Histochem Cytochem,2019,52(1):19-26.
doi: 10.1267/ahc.18038 |
| 34 |
XUEQ,ZHANGG X,LIT T,et al.Transcriptomic profile of leg muscle during early growth in chicken[J].PLoS One,2017,12(3):e0173824.
doi: 10.1371/journal.pone.0173824 |
| 35 | 冷平,陈欣,夏佳敏,等.斑马鱼sh3d19基因的结构和表达分析[J].成都医学院学报,2022,17(5):550-555. |
| LENGP,CHENX,XIAJ M,et al.Structure and expression analysis of sh3d19 gene in zebrafish[J].Journal of Chengdu Medical College,2022,17(5):550-555. | |
| 36 | 黄姣, 霍锦倩, 刘姣, 等. RBPMS基因在斑马鱼心脏早期发育过程中的作用初步研究[C]. 西安: 2018年中国水产学会学术年会, 2018. |
| HUANG J, HUO J Q, LIU J, et al. Preliminary study of RBPMS gene on the cardiacdevelopment of zebrafish[C]. Xian: 2018 Annual Meeting of the China Society of Fisheries, 2018. (in Chinese) | |
| 37 | ANX J,LIT T,CHENN N,et al.PGAM1 regulates the glycolytic metabolism of SCs in tibetan sheep and its influence on the development of SCs[J].Gene,2021,804(1):145897. |
| 38 |
LIC,CAOY F,RENY G,et al.The adiponectin receptor agonist, AdipoRon, promotes reproductive hormone secretion and gonadal development via the hypothalamic-pituitary-gonadal axis in chickens[J].Poult Sci,2023,102(2):102319.
doi: 10.1016/j.psj.2022.102319 |
| 39 | 冯宇. 绵羊CYP17A1基因克隆分析及其在睾丸表达的研究[D]. 长春: 吉林农业大学, 2024. |
| FENG Y. Cloning analysis of sheep CYP17A1 genes and their expression in the testes[D]. Changchun: Jilin Agricultural University, 2024. (in Chinese) | |
| 40 |
CHRISTOPHERJ S,KHALIDN A,ROSHANS,et al.Distinct roles for Ste20-like kinase SLK in muscle function and regeneration[J].Skelet Muscle,2013,3(1):16.
doi: 10.1186/2044-5040-3-16 |
| 41 |
EL-MAGDM A,ALLENS,MCGONNELLI,et al.Bmp4 regulates chick Ebf2 and Ebf3 gene expression in somite development[J].Dev Growth Differ,2013,55(8):710-722.
doi: 10.1111/dgd.12077 |
| 42 |
OOSTL J,KUSTERMANNM,ARMANIA,et al.Fibroblast growth factor 21 controls mitophagy and muscle mass[J].J Cachexia Sarcopenia Muscle,2019,10(3):630-642.
doi: 10.1002/jcsm.12409 |
| 43 |
GOGGOLIDOUP,HADJIRINN F,BAKA,et al.Atmin mediates kidney morphogenesis by modulating Wnt signaling[J].Hum Mol Genet,2014,23(20):5303-5316.
doi: 10.1093/hmg/ddu246 |
| 44 |
PRAUDC,AHMADIEHS A,VOLDOIREE,et al.Beta-carotene preferentially regulates chicken myoblast proliferation withdrawal and differentiation commitment via BCO1 activity and retinoic acid production[J].Exp Cell Res,2017,358(2):140-146.
doi: 10.1016/j.yexcr.2017.06.011 |
| 45 |
COENS,KEOGHK,LONERGANP,et al.Early life nutrition affects the molecular ontogeny of testicular development in the young bull calf[J].Sci Rep,2023,13(1):6748.
doi: 10.1038/s41598-022-23743-3 |
| 46 |
EASAA A,SELIONOVAM,AIBAZOVM,et al.Identification of genomic regions and candidate genes associated with body weight and body conformation traits in Karachai goats[J].Genes (Basel),2022,13(10):1773.
doi: 10.3390/genes13101773 |
| 47 |
PARKJ W,LEEJ H,KIMS W,et al.Muscle differentiation induced up-regulation of calcium-related gene expression in quail myoblasts[J].Asian-Australas J Anim Sci,2018,31(9):1507-1515.
doi: 10.5713/ajas.18.0302 |
| 48 | GUS,HUANGQ,JIEY C,et al.Transcriptomic and epigenomic landscapes of muscle growth during the postnatal period of broilers[J].Journal of Animal Science and Biotechnology,2024,15(5):1851-1865. |
| 49 |
WANGZ X,LIANGW S,LIX X,et al.Characterization and expression of MUSTN1gene from different duck breeds[J].Anim Biotechnol,2022,33(4):723-730.
doi: 10.1080/10495398.2020.1828905 |
| 50 |
YANGP F,SHANGM Y,BAOJ J,et al.Whole-genome resequencing revealed selective signatures for growth traits in Hu and Gangba sheep[J].Genes (Basel),2024,15(5):551.
doi: 10.3390/genes15050551 |
| 51 | 杨培福. 基于全基因组重测序筛选绵羊生长性状候选基因[D]. 北京: 中国农业科学院, 2024. |
| YANG P F. Screening of sheep growth traits based on whole-genome resequencing candidate gene[D]. Beijing: Chinese Academy of Agricultural Sciences, 2024. (in Chinese) | |
| 52 |
RENP,CHENM Y,LIJ J,et al.MYH1F promotes the proliferation and differentiation of chicken skeletal muscle satellite cells into myotubes[J].Anim Biotechnol,2023,34(7):3074-3084.
doi: 10.1080/10495398.2022.2132953 |
| 53 |
YINX M,WUY L,ZHANGS S,et al.Transcriptomic profile of leg muscle during early growth and development in Haiyang yellow chicken[J].Arch Anim Breed,2021,64(2):405-416.
doi: 10.5194/aab-64-405-2021 |
| 54 |
KOMINAKISA,HAGER-THEODORIDESA L,ZOIDISE,et al.Combined GWAS and 'guilt by association'-based prioritization analysis identifies functional candidate genes for body size in sheep[J].Genet Sel Evol,2017,49(1):41.
doi: 10.1186/s12711-017-0316-3 |
| 55 |
LUANM H,RUAND L,QIUY B,et al.Genome-wide association study for loin muscle area of commercial crossbred pigs[J].Anim Biosci,2023,36(6):861-868.
doi: 10.5713/ab.22.0407 |
| 56 | 罗威,郑茗,唐盈盈,等.中国地方家鸡群体遗传与表型多样性及其保护现状[J].养禽与禽病防治,2023(8):29-35. |
| LUOW,ZHENGM,TANGY Y,et al.Genetic and phenotypic diversity and conservation status of native Chinese domestic chicken populations[J].Poultry Husbandry and Disease Control,2023(8):29-35. | |
| 57 |
CARLBORGO,KERJES,SCHVTZK,et al.A global search reveals epistatic interaction between QTL for early growth in the chicken[J].Genome Res,2003,13(3):413-421.
doi: 10.1101/gr.528003 |
| [1] | 王有栋, 曹志平, 李玉茂, 栾鹏, 李辉, 白雪. SNP芯片技术原理及其在鸡遗传育种中的应用[J]. 畜牧兽医学报, 2025, 56(9): 4165-4175. |
| [2] | 白锋, 玛尔孜娅·亚森, 阿米妮古丽·阿不来孜, 滕文, 罗春彦, 纳扎开提·艾尼万尔, 张耘韬, 纪新民, 张艳花. 吐鲁番黑羊体重和体尺性状全基因组关联分析[J]. 畜牧兽医学报, 2025, 56(9): 4315-4327. |
| [3] | 刘莎, 杨彩春, 张晓雨, 陈琼, 刘雄, 陈洪波, 周焕焕, 史良玉. 基于80K SNP芯片的梅花星猪群体遗传结构解析及全基因组连续纯合片段特征研究[J]. 畜牧兽医学报, 2025, 56(8): 3749-3760. |
| [4] | 张嘉良, 黄畅, 杨永林, 杨华, 白文林, 马月辉, 赵倩君. 基于50K液相芯片的中国绵羊群体遗传结构与羊毛性状选择信号分析[J]. 畜牧兽医学报, 2025, 56(7): 3164-3176. |
| [5] | 缪俊杰, 张日泉, 吴厚义, 游新明, 黄奕雯, 黄小英, 郭震洋, 刘建林, 肖卫华, 郭田华, 陈浩, 康冬柳. 全基因组SNPs揭示井冈黑掌鹅种质资源特性与遗传多样性特征[J]. 畜牧兽医学报, 2025, 56(7): 3199-3209. |
| [6] | 武建亮, 苏洋, 毛瑞涵, 周磊, 闫田田, 李智, 刘剑锋. 猪全基因组低密度SNP芯片的设计与效果评价[J]. 畜牧兽医学报, 2025, 56(6): 2733-2740. |
| [7] | 孙国欣, 李蕴华, 赛音, 郭文华, 赵艳红, 张满新, 刘佳森. 湖羊群体结构分析与经济性状相关选择信号检测[J]. 畜牧兽医学报, 2025, 56(5): 2168-2181. |
| [8] | 姚博元, 杨志文, 孙亚朋, 杨雅楠, 张雅茹, 王欣荣. 基于RNA-Seq对猪心组织新转录本解析及可变剪接和SNP分析[J]. 畜牧兽医学报, 2025, 56(4): 1664-1675. |
| [9] | 李聪, 苏江天, 李一丹, 王朝飞, 于杰, 雷初朝, 党瑞华. 德州驴体尺性状的全基因组关联分析[J]. 畜牧兽医学报, 2025, 56(4): 1744-1754. |
| [10] | 黄雅妮, 唐熹, 李井泉, 魏嘉诚, 吴珍芳, 李新云, 肖石军, 张志燕. 大规模群体解析猪日增重及达百千克体重日龄的潜在因果基因[J]. 畜牧兽医学报, 2025, 56(3): 1100-1109. |
| [11] | 贾万里, 王继英, 李菁璇, 王彦平, 耿立英, 张传生, 赵雪艳. 基于转录组测序技术鉴别影响莱芜猪滴水损失的关键基因[J]. 畜牧兽医学报, 2025, 56(3): 1134-1146. |
| [12] | 周泰增, 杨祎挺, 朱悦华, 钱洪喜, 刘一辉, 甘麦邻, 朱砺, 沈林園. 母猪死胎和木乃伊全基因组关联分析[J]. 畜牧兽医学报, 2025, 56(3): 1231-1241. |
| [13] | 杨晓雯, 宁文晴, 周师众, 袁雅琴, 侯雪新, 丁家波. 一种羊种布鲁氏菌复方新诺明耐药株荧光定量PCR检测方法的建立[J]. 畜牧兽医学报, 2025, 56(3): 1465-1472. |
| [14] | 郭军, 邵丹, 马猛, 卢建, 窦套存, 胡玉萍, 王星果, 王强, 李永峰, 郭伟, 童海兵, 曲亮. 东乡绿壳蛋鸡与白来航鸡资源群体开产体重、开产日龄性状遗传解析[J]. 畜牧兽医学报, 2025, 56(10): 4903-4913. |
| [15] | 李艾欣, 李紫阳, 陈文洁, 田雨阳, 雷初朝, 李志钢, 陈宁博. 利用群体特异性参考基因组鉴定中国瘤牛SNPs的优势[J]. 畜牧兽医学报, 2025, 56(10): 4963-4972. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||