

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (10): 4963-4972.doi: 10.11843/j.issn.0366-6964.2025.10.017
李艾欣1(
), 李紫阳1, 陈文洁1, 田雨阳1, 雷初朝1, 李志钢2,*(
), 陈宁博1,*(
)
收稿日期:2025-03-06
出版日期:2025-10-23
发布日期:2025-11-01
通讯作者:
李志钢,陈宁博
E-mail:lax2561957992@163.com;long0014@163.com;ningbochen@nwafu.edu.cn
作者简介:李艾欣(2002-),女,陕西安康人,硕士生,主要从事牛遗传资源研究,E-mail: lax2561957992@163.com
基金资助:
LI Aixin1(
), LI Ziyang1, CHEN Wenjie1, TIAN Yuyang1, LEI Chuzhao1, LI Zhigang2,*(
), CHEN Ningbo1,*(
)
Received:2025-03-06
Online:2025-10-23
Published:2025-11-01
Contact:
LI Zhigang, CHEN Ningbo
E-mail:lax2561957992@163.com;long0014@163.com;ningbochen@nwafu.edu.cn
摘要:
本研究旨在以中国瘤牛群体特异性基因组为参考基因组,系统评估其在单核苷酸多态性(single nucleotide polymorphisms, SNPs)鉴定中的优势。以60头中国瘤牛的全基因组重测序数据为研究对象,分别基于欧洲普通牛参考基因组(ARS-UCD1.2)和中国瘤牛群体特异性参考基因组(雷琼牛参考基因组:ASM3988116v1)进行SNPs的鉴定和比较。针对利用ARS-UCD1.2基因组检测到的多等位SNPs,构建基因组之间的坐标映射链式文件,将其转换为ASM3988116v1基因组坐标下的双等位SNPs,并开展深度注释分析。结果表明,在分析中国瘤牛群体遗传变异时,利用ASM3988116v1群体特异性参考基因组相较于ARS-UCD1.2基因组具有显著优势:1)可以更全面地鉴定内含子和非翻译区变异,提升低频和罕见变异的检测灵敏度;2)可以降低由于参考偏倚造成的变异鉴定过程中出现的假阳性;3)实现将部分由于基因组参考偏倚过滤掉的多等位SNPs转换为双等位SNPs,这些SNPs共注释到8 352个基因,其中包含与瘤牛生长发育及环境适应性相关的重要基因,如肌肉发育(CTNNA1)、免疫(SIL1)、血液循环(VPS13A)、肌肉发育和光周期(EYA3)等。针对我国地方黄牛群体的特异性参考基因组能够提升变异检测灵敏度,降低基因组参考偏倚,并挖掘更多具有重要意义的功能位点,为群体遗传学研究和畜禽精准育种提供了高置信度的数据基础,具有重要的理论与实际意义。
中图分类号:
李艾欣, 李紫阳, 陈文洁, 田雨阳, 雷初朝, 李志钢, 陈宁博. 利用群体特异性参考基因组鉴定中国瘤牛SNPs的优势[J]. 畜牧兽医学报, 2025, 56(10): 4963-4972.
LI Aixin, LI Ziyang, CHEN Wenjie, TIAN Yuyang, LEI Chuzhao, LI Zhigang, CHEN Ningbo. Advantages of Using Population-specific Reference Genome for SNP Calling in Chinese Indicine Cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4963-4972.
表 2
基因组信息"
| 类别 Type | 中国瘤牛群体特异性参考基因组 ASM3988116v1 | 普通牛参考基因组 ARS-UCD1.2 |
| GenBank编号 GenBank number | GCA_039881165.1 | GCA_002263795.2 |
| 项目编号 Project number | PRJNA810280 | PRJNA391427 |
| 基因组大小/bp Genome size | 2 651 892 370 | 2 715 853 792 |
| Contig N50值/bp Contig N50 | 44 352 259 | 25 896 116 |
| Scaffold N50值/bp Scaffold N50 | 104 224 000 | 103 308 737 |
| Scaffold数量 Number of scaffolds | 301 | 2 211 |
| 最大Scaffold长度/bp Max scaffold | 157 081 543 | 158 534 110 |
| 最小Scaffold长度/bp Min scaffold | 749 | 1 034 |
| Scaffold平均长度/bp Scaffold mean | 8 810 273 | 1 228 337 |
| 重复序列百分比/% Repetitive sequences | 46.56 | 45.73 |
| Consensus quality得分 Consensus quality score (QV)a | 36.66 | 37.11 |
| 1 | 黄钧瑶,牛雅楠,张园园.2000—2019年我国畜牧业发展研究热点及前沿分析——基于Citespace的知识图谱量化研究[J].农业科学研究,2020,41(4):49-54. |
| HUANGJ Y,NIUY N,ZHANGY Y.Analyzing development of animal husbandry research hotspot and frontier from 2000 to 2019——Research on knowledge map quantification based on Citespace[J].Journal of Agricultural Sciences,2020,41(4):49-54. | |
| 2 | 陈宁博,雷初朝.从DNA角度认识中国黄牛的起源和利用历史[J].第四纪研究,2022,42(1):92-100. |
| CHENN B,LEIC Z.The original and utilization history of Chinese cattle as by DNA analysis[J].Quaternary Sciences,2022,42(1):92-100. | |
| 3 |
CHENN,CAIY,CHENQ,et al.Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia[J].Nat Commun,2018,9(1):2337.
doi: 10.1038/s41467-018-04737-0 |
| 4 |
CHENN,XIAX,HANIFQ,et al.Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing[J].Nat Commun,2023,14(1):7803.
doi: 10.1038/s41467-023-43626-z |
| 5 | 汪洋,张咪,黄杰.人类参考基因组的过去和将来[J].分子诊断与治疗杂志,2024,16(10):1815-1818. |
| WANGY,ZHANGM,HUANGJ.The past and future of the human reference genome[J].Journal of Molecular Diagnostics and Therapy,2024,16(10):1815-1818. | |
| 6 |
SHERMANR M,SALZBERGS L.Pan-genomics in the human genome era[J].Nat Rev Genet,2020,21(4):243-254.
doi: 10.1038/s41576-020-0210-7 |
| 7 |
CHENN C,SOLOMONB,MUNT,et al.Reference flow: reducing reference bias using multiple population genomes[J].Genome Biol,2021,22(1):8.
doi: 10.1186/s13059-020-02229-3 |
| 8 |
ELSIKC G,TELLAMR L,et al.The genome sequence of taurine cattle: A window to ruminant biology and evolution[J].Science,2009,324(5926):522-528.
doi: 10.1126/science.1169588 |
| 9 | 夏小婷. 瘤牛基因组遗传变异与环境适应性研究[D]. 杨凌: 西北农林科技大学, 2023. |
| XIA X T. Genetic variation and environmental adaptation of indicine cattle genome[D]. Yangling: Northwest A&F University, 2023. (in Chinese) | |
| 10 |
ACHILLIA,OLIVIERIA,PELLECCHIAM,et al.Mitochondrial genomes of extinct aurochs survive in domestic cattle[J].Curr Biol,2008,18(4):R157-R158.
doi: 10.1016/j.cub.2008.01.019 |
| 11 |
LOUH,GAOY,XIEB,et al.Haplotype-resolved de novo assembly of a Tujia genome suggests the necessity for high-quality population-specific genome references[J].Cell Syst,2022,13(4):321-333.
doi: 10.1016/j.cels.2022.01.006 |
| 12 |
XIAX,ZHANGF,LIS,et al.Structural variation and introgression from wild populations in East Asian cattle genomes confer adaptation to local environment[J].Genome Biol,2023,24(1):211.
doi: 10.1186/s13059-023-03052-2 |
| 13 |
BOLGERA M,LOHSEM,USADELB.Trimmomatic: a flexible trimmer for Illumina sequence data[J].Bioinformatics,2014,30(15):2114-2120.
doi: 10.1093/bioinformatics/btu170 |
| 14 |
LIH,DURBINR.Fast and accurate short read alignment with Burrows-Wheeler transform[J].Bioinformatics,2009,25(14):1754-1760.
doi: 10.1093/bioinformatics/btp324 |
| 15 |
MCKENNAA,HANNAM,BANKSE,et al.The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data[J].Genome Res,2010,20(9):1297-1303.
doi: 10.1101/gr.107524.110 |
| 16 |
WANGK,LIM,HAKONARSONH.ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J].Nucleic Acids Res,2010,38(16):e164.
doi: 10.1093/nar/gkq603 |
| 17 |
PURCELLS,NEALEB,TODD-BROWNK,et al.PLINK: A tool set for whole-genome association and population-based linkage analyses[J].Am J Hum Genet,2007,81(3):559-575.
doi: 10.1086/519795 |
| 18 |
HUY,XIAH,LIM,et al.Comparative analyses of copy number variations between Bos taurus and Bos indicus[J].BMC Genomics,2020,21(1):682.
doi: 10.1186/s12864-020-07097-6 |
| 19 |
NISAF U,NAQVIR Z,ARSHADF,et al.Assessment of genomic diversity and selective pressures in crossbred dairy cattle of Pakistan[J].Biochem Genet,2024,62(5):4137-4156.
doi: 10.1007/s10528-024-10809-2 |
| 20 |
LIUY,ZHAOG,LINX,et al.Genomic inbreeding and runs of homozygosity analysis of indigenous cattle populations in southern China[J].PLOS ONE,2022,17(8):e0271718.
doi: 10.1371/journal.pone.0271718 |
| 21 |
XIAX,ZHANGS,ZHANGH,et al.Assessing genomic diversity and signatures of selection in Jiaxian Red cattle using whole-genome sequencing data[J].BMC Genomics,2021,22(1):43.
doi: 10.1186/s12864-020-07340-0 |
| 22 |
TAKAYAMAJ,TADAKAS,YANOK,et al.Construction and integration of three de novo Japanese human genome assemblies toward a population-specific reference[J].Nat Commun,2021,12(1):226.
doi: 10.1038/s41467-020-20146-8 |
| 23 |
SHERMANR M,SALZBERGS L.Pan-genomics in the human genome era[J].Nat Rev Genet,2020,21(4):243-254.
doi: 10.1038/s41576-020-0210-7 |
| 24 |
DUZ,MAL,QUH,et al.Whole genome analyses of Chinese population and De Novo assembly of a northern Han genome[J].Genomics Proteomics Bioinformatics,2019,17(3):229-247.
doi: 10.1016/j.gpb.2019.07.002 |
| 25 |
OUZHULUOBU,HEY,LOUH,et al.De novo assembly of a Tibetan genome and identification of novel structural variants associated with high-altitude adaptation[J].Natl Sci Rev,2020,7(2):391-402.
doi: 10.1093/nsr/nwz160 |
| 26 |
MAH,JIANGJ,HEJ,et al.Long-read assembly of the Chinese indigenous Ningxiang pig genome and identification of genetic variations in fat metabolism among different breeds[J].Mol Ecol Resour,2022,22(4):1508-1520.
doi: 10.1111/1755-0998.13550 |
| 27 |
ZHOUR,LIS T,YAOW Y,et al.The Meishan pig genome reveals structural variation-mediated gene expression and phenotypic divergence underlying Asian pig domestication[J].Mol Ecol Resour,2021,21(6):2077-2092.
doi: 10.1111/1755-0998.13396 |
| 28 |
LOWW Y,TEARLER,LIUR,et al.Haplotype-resolved genomes provide insights into structural variation and gene content in Angus and Brahman cattle[J].Nat Commun,2020,11(1):2071.
doi: 10.1038/s41467-020-15848-y |
| 29 |
TALENTIA,POWELLJ,HEMMINKJ D,et al.A cattle graph genome incorporating global breed diversity[J].Nat Commun,2022,13(1):910.
doi: 10.1038/s41467-022-28605-0 |
| 30 |
WEIZ,ZHANGL,GAOL,et al.Chromosome-level genome assembly and annotation of the Yunling cattle with PacBio and Hi-C sequencing data[J].Sci Data,2024,11(1):233.
doi: 10.1038/s41597-024-03066-w |
| 31 |
AMEURA,CHEH,MARTINM,et al.De Novo assembly of two swedish genomes reveals missing segments from the human GRCh38 reference and improves variant calling of population-scale sequencing data[J].Genes,2018,9(10):486.
doi: 10.3390/genes9100486 |
| 32 |
SEOJ S,RHIEA,KIMJ,et al.De novo assembly and phasing of a Korean human genome[J].Nature,2016,538(7624):243-247.
doi: 10.1038/nature20098 |
| 33 |
SHIL,GUOY,DONGC,et al.Long-read sequencing and de novo assembly of a Chinese genome[J].Nat Commun,2016,7(1):12065.
doi: 10.1038/ncomms12065 |
| 34 |
SADKOWSKIT,JANKM,ZWIERZCHOWSKIL,et al.Gene expression profiling in skeletal muscle of Holstein-Friesian bulls with single-nucleotide polymorphism in the myostatin gene 5'-flanking region[J].J Appl Genet,2008,49(3):237-250.
doi: 10.1007/BF03195620 |
| 35 |
AMODEIL,RUGGIERIA G,POTENZAF,et al.Sil1-deficient fibroblasts generate an aberrant extra-cellular matrix leading to tendon disorganisation in Marinesco-Sjögren syndrome[J].J Transl Med,2024,22(1):787.
doi: 10.1186/s12967-024-05582-0 |
| 36 |
ROOSA,KOLLIPARAL,BUCHKREMERS,et al.Cellular signature of SIL1 depletion: Disease pathogenesis due to alterations in protein composition beyond the ER machinery[J].Mol Neurobiol,2016,53(8):5527-5541.
doi: 10.1007/s12035-015-9456-z |
| 37 |
SCHMIDTE M,SCHMIDE,MUNZERP,et al.Chorein sensitivity of cytoskeletal organization and degranulation of platelets[J].FASEB J,2013,27(7):2799-2806.
doi: 10.1096/fj.13-229286 |
| 38 |
KEATINGEW R,COLESHAWS R K,EASTONJ C,et al.Increased platelet and red cell counts, blood viscosity, and plasma cholesterol levels during heat stress, and mortality from coronary and cerebral thrombosis[J].Am J Med,1986,81(5):795-800.
doi: 10.1016/0002-9343(86)90348-7 |
| 39 |
AIH,FANGX,YANGB,et al.Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing[J].Nat Genet,2015,47(3):217-225.
doi: 10.1038/ng.3199 |
| 40 |
LIX,OHGIK A,ZHANGJ,et al.Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis[J].Nature,2003,426(6964):247-254.
doi: 10.1038/nature02083 |
| 41 |
CLARKI B N,BOYDJ,HAMILTONG,et al.D-six4 plays a key role in patterning cell identities deriving from the Drosophila mesoderm[J].Dev Biol,2006,294(1):220-231.
doi: 10.1016/j.ydbio.2006.02.044 |
| 42 |
SÖKERT,DALKEC,PUKO,et al.Pleiotropic effects in Eya3knockout mice[J].BMC Dev Biol,2008,8(1):118.
doi: 10.1186/1471-213X-8-118 |
| 43 |
DIR,FANY,HEX,et al.Epigenetic regulation of miR-25 and lnc107153 on expression of seasonal estrus key gene CHGA in sheep[J].Biology,2023,12(2):250.
doi: 10.3390/biology12020250 |
| [1] | 常铄, 孙秀柱, 任战军, 王淑辉. 家兔基因组学研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3578-3590. |
| [2] | 李晓彤, 王鹏宇, 方颖妍, 于鸿希, 张毅, 王雅春, 张元沛, 李彦芹, 姜力. 公牛精子耐冻性相关基因多态性位点的挖掘与功能验证[J]. 畜牧兽医学报, 2025, 56(4): 1981-1988. |
| [3] | 郭茂川, 何冉. 疥螨功能基因及其应用的研究进展[J]. 畜牧兽医学报, 2025, 56(2): 492-500. |
| [4] | 曹雨, 周铂涵, 许琦, 袁子翱, 苏蕊, 吕琦, 李金泉, 张燕军, 王瑞军, 王志英. 整合eQTL和GWAS数据识别潜在功能基因位点在动物遗传育种中的研究进展[J]. 畜牧兽医学报, 2025, 56(10): 4759-4773. |
| [5] | 曹晋康, 张纯, 王佳瑶, 李晓彤, 王鹏宇, 方颖妍, 张昱, 丁宁, 姜力. 中国荷斯坦公牛不同耐冻性精子的蛋白质组学分析[J]. 畜牧兽医学报, 2024, 55(3): 1052-1061. |
| [6] | 闵祥玉, 卫佳丽, 许彪, 刘汇涛, 郑军军, 王桂武. 梅花鹿鹿茸全长转录组测序及鹿茸产量相关基因的挖掘[J]. 畜牧兽医学报, 2024, 55(12): 5549-5566. |
| [7] | 赖婉仪, 陶欣月, 杨庚新, 余文莉, 李树静, Tahir Usman, 俞英. 奶牛乳房健康基因检测芯片在中国荷斯坦牛及巴基斯坦本地奶牛群中的应用研究[J]. 畜牧兽医学报, 2024, 55(10): 4489-4499. |
| [8] | 路畅, 董磊, 张万锋, 高鹏飞, 郭晓红, 蔡春波, 曹果清, 李步高. 基于全基因组重测序对晋汾白猪单核苷酸多态性位点鉴定和筛选[J]. 畜牧兽医学报, 2023, 54(7): 2761-2771. |
| [9] | 王琳, 马黎, 张博, 邓俊, 张浩, 欧阳晓芳, 严达伟, 董新星. 大型迪庆藏猪不同生长阶段背脂与腹脂脂质代谢差异基因及调控网络分析[J]. 畜牧兽医学报, 2023, 54(2): 520-533. |
| [10] | 任钰为, 王峰, 王成, 张艳, 孙瑞萍, 刘海隆, 乔传民, 邢漫萍, 黄丽丽, 曹宗喜, 晁哲. 五指山猪和杜洛克猪全基因组选择信号差异分析[J]. 畜牧兽医学报, 2022, 53(12): 4172-4182. |
| [11] | 李宏伟, 徐凌洋, 王泽昭, 蔡文涛, 朱波, 陈燕, 高雪, 张路培, 高会江, 李俊雅. 基于单倍型肉牛屠宰性状全基因组关联分析研究[J]. 畜牧兽医学报, 2022, 53(12): 4232-4243. |
| [12] | 许静漪, 徐昊祺, 胡丽蓉, 张帆, 高清, 罗汉鹏, 张海亮, 师睿, 李想, 刘林, 郭刚, 王雅春. MET基因多态性与中国荷斯坦牛繁殖和泌乳性状的关联分析[J]. 畜牧兽医学报, 2022, 53(11): 3769-3785. |
| [13] | 陶璇, 何志平, 梁艳, 杨雪梅, 雷云峰, 王言, 胡紫惠, 廖坤, 肖贤勋, 格桑, 马贵云, 吉绒丹增, 敖翔, 吕学斌, 顾以韧. 不同地方猪重要经济性状关联位点SNP芯片分型及群体遗传结构研究[J]. 畜牧兽医学报, 2022, 53(10): 3358-3367. |
| [14] | 宋兴超, 刘琳玲, 潘虹军, 赵家平, 贾赟, 杨福合, 徐超. 水貂酪氨酸酶(TYR)基因克隆、SNPs筛查及其皮肤组织mRNA差异表达分析[J]. 畜牧兽医学报, 2021, 52(1): 66-76. |
| [15] | 王琦, 朱迪, 王宇哲, 吴杰, 胡晓湘, 赵毅强. 全基因组SNP分型策略及基因组预测方法的研究进展[J]. 畜牧兽医学报, 2020, 51(2): 205-216. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||