畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (1): 63-73.doi: 10.11843/j.issn.0366-6964.2025.01.006
收稿日期:
2024-03-06
出版日期:
2025-01-23
发布日期:
2025-01-18
通讯作者:
陈俊材
E-mail:cx991103823@163.com;juncaichen@swu.edu.cn
作者简介:
常萱(1999-),女,山东泗水人,硕士生,主要从事反刍动物营养研究,E-mail: cx991103823@163.com
基金资助:
CHANG Xuan(), WEI Bingni, ZHANG Xiaoli, ZHAO Zhongquan, CHEN Juncai*(
)
Received:
2024-03-06
Online:
2025-01-23
Published:
2025-01-18
Contact:
CHEN Juncai
E-mail:cx991103823@163.com;juncaichen@swu.edu.cn
摘要:
畜禽胃肠道共生真菌是指在胃肠道中长期定植的真菌,它们与细菌等微生物菌群共同维持胃肠道微生态系统的稳定。多个研究表明,畜禽胃肠道中存在着大量共生真菌,这些真菌不仅不会引起疾病,还会对宿主起到多种有益作用。不同物种的胃肠道真菌种类有所不同,整体来看,畜禽胃肠道中的真菌主要包括子囊菌门(Ascomycoa)、担子菌门(Basidiomycota)和新美鞭菌门(Neocallimastigomycota)。畜禽胃肠道内的共生真菌群落组成会受到多种因素的影响,例如日粮、年龄、品种及健康状况等。与细菌类似,目前共生真菌研究主要通过传统培养基法、高通量测序法来进行。新兴的培养组学技术能够分离鉴定出的共生真菌种类更加多样。研究表明,共生真菌作为畜禽胃肠道微生物的重要组成部分,它直接或间接地参与了多种机体生理过程,如促进畜禽摄入的营养物质的消化、参与宿主免疫调节、促进糖酵解等。本文主要针对畜禽胃肠道有益或者潜在有益共生真菌,从共生真菌的种类、鉴定方法、影响因素、益生作用及其作用机制等方面展开综述,以期为调控畜禽胃肠道健康提供新的思路和参考。
中图分类号:
常萱, 魏冰妮, 张小丽, 赵中权, 陈俊材. 畜禽胃肠道共生真菌研究进展[J]. 畜牧兽医学报, 2025, 56(1): 63-73.
CHANG Xuan, WEI Bingni, ZHANG Xiaoli, ZHAO Zhongquan, CHEN Juncai. Research Progress of Gastrointestinal Symbiotic Fungi in Livestock and Poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 63-73.
表 1
畜禽胃肠道常见共生真菌[6-9, 11-16]"
物种 Species | 品种 Variety | 日龄 Days of age | 健康状态 Health condition | 实验处理 Experimental treatment | 样品来源 Sample source | 主要优势真菌属 Main dominant symbiotic fungi at genus level | 其他优势真菌属 Other dominant symbiotic fungi at genus level | 参考文献 References |
猪 Swine | 金华猪 | 270日龄 | 健康 | 高瘦肉率 | 回肠食糜 | Naganishia | Clavaria、Rhizopus | [ |
结肠食糜 | Xeromyces | Xerochrysium、Verticllium、Wickerhamomyces、Wallemia、 | ||||||
健康 | 低瘦肉率 | 回肠食糜 | Kazachstania | Gloeotinia、Saccharomyces | ||||
结肠食糜 | Clavaria | Kazachstania、Aspergillus、Verticllium | ||||||
杂交杜洛克 | 21日龄 | 健康 | — | 结肠食糜 | Scheffersomyces、Kazachstania | Aspergillus、Dipodscus | [ | |
藏猪 | 21日龄 | 健康 | — | 粪便 | Derxomyces、Lecanicillium、Aspergillus | Simplicillium、Cutaneotrichosporon | [ | |
腹泻 | — | 粪便 | Lecanicillium | |||||
健康 | 抗生素 | 粪便 | Derxomyces、Lecanicillium | |||||
藏猪 | 365日龄 | 健康 | — | 粪便 | Russula、Nephroma | Candida、Loreleia | ||
成华猪 | 200~210日龄 | 健康 | — | 粪便 | Loreleia、Russula | Nephroma、Candida、Metschnikowia | [ | |
约克夏猪 | 140~150日龄 | 健康 | — | 粪便 | Loreleia、Russula | Candida、Metschnikowia | ||
羊 Sheep & Goat | 湖羊 | 0~3日龄 | 健康 | — | 瘤胃液 | Debaryomyces | Wallemia、Aspergillus、Microascus | [ |
3~45日龄 | 瘤胃液 | Aspergillus | Microascus、Wallemia | |||||
45~120日龄 | 瘤胃液 | Saccharomyces | Aspergillus、Wallemia | |||||
白绒山羊 | 10日龄 | 健康 | — | 瘤胃液 | Mortierela | Sporormiella、Aspergillus | [ | |
150日龄 | 粪便 | Acaulium | Aspergillus、Kernia | |||||
健康 | — | 瘤胃液 | Saccharomyces | Ascochyta、Cladosporium | ||||
粪便 | Cladosporium | Penicilium | ||||||
牛 Cattle | 杂交荷斯坦 | 7~63日龄 | 健康 | — | 瘤胃液 | SK3、Caecomyces | Orpinomyces、Piromyces、Neocallimastixs | [ |
牦牛 | 犊牛 | 腹泻 | — | 粪便 | Podospora、Sporormiella | Ascobolus、Preussia、Plenodomus、Phoma | [ | |
成年 | 腹泻 | — | 粪便 | Ustilago | ||||
健康 | — | 粪便 | Sporormiella、Ustilago | |||||
家禽 Poultry | 科宝肉鸡 | 0~42日龄 | 健康 | — | 嗉囊、十二指肠至结肠食糜 | Gibberella | Aspergillus、Candida | [ |
罗斯肉鸡 | 0~62日龄 | 健康 | — | 盲肠食糜 | Aspergillus、Penicillium | Verticillium、Sporidiobolus | [ |
1 |
FIERS W D , GAO I H , ILIEV I D . Gut mycobiota under scrutiny: fungal symbionts or environmental transients?[J]. Curr Opin Microbiol, 2019, 50, 79- 86.
doi: 10.1016/j.mib.2019.09.010 |
2 | RICHARD M L , SOKOL H . The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases[J]. Nat Rev Gastroenterol Hepatol, 2019, 16 (6): 331- 345. |
3 |
WU X Y , XIA Y Y , HE F , et al. Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities[J]. Microbiome, 2021, 9 (1): 60.
doi: 10.1186/s40168-021-01024-x |
4 | AUCHTUNG T A , FOFANOVA T Y , STEWART C J , et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi[J]. MSphere, 2018, 3 (2): e00092- 18. |
5 |
PECQUET S , GUILLAUMIN D , TANCREDE C , et al. Kinetics of saccharomyces cerevisiae elimination from the intestines of human volunteers and effect of this yeast on resistance to microbial colonization in gnotobiotic mice[J]. Appl Environ Microbiol, 1991, 57 (10): 3049- 3051.
doi: 10.1128/aem.57.10.3049-3051.1991 |
6 |
LI J Y , CHEN D W , YU B , et al. The fungal community and its interaction with the concentration of short-chain fatty acids in the faeces of Chenghua, Yorkshire and Tibetan pigs[J]. Microb Biotechnol, 2020, 13 (2): 509- 521.
doi: 10.1111/1751-7915.13507 |
7 | 李景上, 章啸君, 陈胜昌, 等. 金华猪回肠、结肠真菌结构及其与体脂沉积的相关性研究[J]. 动物营养学报, 2022, 34 (1): 131- 140. |
LI J S , ZHANG X J , CHEN S C , et al. Study on fungi structure in ileum and colon of Jinhua pigs and its correlation with body fat deposition[J]. Chinese Journal of Animal Nutrition, 2022, 34 (1): 131- 140. | |
8 | LUO Y H , LI J Y , ZHOU H , et al. The nutritional significance of intestinal fungi: alteration of dietary carbohydrate composition triggers colonic fungal community shifts in a pig model[J]. Appl Environ Microbiol, 2021, 87 (10): e00038- 21. |
9 |
KONG Q H , LIU S Z , LI A Y , et al. Characterization of fungal microbial diversity in healthy and diarrheal Tibetan piglets[J]. BMC Microbiol, 2021, 21 (1): 204.
doi: 10.1186/s12866-021-02242-x |
10 |
HU J , CHEN J W , HOU Q L , et al. Core-predominant gut fungus Kazachstania slooffiae promotes intestinal epithelial glycolysis via lysine desuccinylation in pigs[J]. Microbiome, 2023, 11 (1): 31.
doi: 10.1186/s40168-023-01468-3 |
11 |
YIN X J , JI S K , DUAN C H , et al. Dynamic change of fungal community in the gastrointestinal tract of growing lambs[J]. J Integr Agric, 2022, 21 (11): 3314- 3328.
doi: 10.1016/j.jia.2022.08.092 |
12 |
娜梅拉, 李科南, 杜海东, 等. 不同日龄内蒙古白绒山羊瘤胃及粪便真菌多样性差异研究[J]. 畜牧兽医学报, 2024, 55 (8): 3526- 3540.
doi: 10.11843/j.issn.0366-6964.2024.08.025 |
NA M L , LI K N , DU H D , et al. Study on the differences of fungal diversity in rumen and feces of Inner Mongolia cashmere goats at different ages[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (8): 3526- 3540.
doi: 10.11843/j.issn.0366-6964.2024.08.025 |
|
13 |
DIAS J , MARCONDES M I , NORONHA M F , et al. Effect of pre-weaning diet on the ruminal archaeal, bacterial, and fungal communities of dairy calves[J]. Front Microbiol, 2017, 8, 1553.
doi: 10.3389/fmicb.2017.01553 |
14 |
LI K , MEHMOOD K , ZHANG H , et al. Characterization of fungus microbial diversity in healthy and diarrheal yaks in Gannan region of Tibet autonomous prefecture[J]. Acta Trop, 2018, 182, 14- 26.
doi: 10.1016/j.actatropica.2018.02.017 |
15 |
ROBINSON K , YANG Q , STEWART S , et al. Biogeography, succession, and origin of the chicken intestinal mycobiome[J]. Microbiome, 2022, 10 (1): 55.
doi: 10.1186/s40168-022-01252-9 |
16 |
BYRD J A , CALDWELL D Y , NISBET D J . The identification of fungi collected from the ceca of commercial poultry[J]. Poult Sci, 2017, 96 (7): 2360- 2365.
doi: 10.3382/ps/pew486 |
17 |
HAWKSWORTH D L , ROSSMAN A Y . Where are all the undescribed fungi?[J]. Phytopathology, 1997, 87 (9): 888- 891.
doi: 10.1094/PHYTO.1997.87.9.888 |
18 |
HAMAD I , RAOULT D , BITTAR F . Repertory of eukaryotes (eukaryome) in the human gastrointestinal tract: taxonomy and detection methods[J]. Parasite Immunol, 2016, 38 (1): 12- 36.
doi: 10.1111/pim.12284 |
19 |
SCHOCH C L , SEIFERT K A , HUHNDORF S , et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi[J]. Proc Natl Acad Sci U S A, 2012, 109 (16): 6241- 6246.
doi: 10.1073/pnas.1117018109 |
20 | SCHOCH C L , SEIFERT K A . Reply to Kiss: internal transcribed spacer (ITS) remains the best candidate as a universal DNA barcode marker for Fungi despite imperfections[J]. Proc Natl Acad Sci U S A, 2012, 109 (27): E1812. |
21 |
NILSSON R H , ANSLAN S , BAHRAM M , et al. Mycobiome diversity: high-throughput sequencing and identification of fungi[J]. Nat Rev Microbiol, 2019, 17 (2): 95- 109.
doi: 10.1038/s41579-018-0116-y |
22 |
LIMON J J , SKALSKI J H , UNDERHILL D M . Commensal fungi in health and disease[J]. Cell Host Microbe, 2017, 22 (2): 156- 165.
doi: 10.1016/j.chom.2017.07.002 |
23 | 周欣, 李盟, 马紫英, 等. 运用可培养组技术开展难培养真菌的分离和鉴定[J]. 微生物组实验手册, 2021, Bio-101, e2003703. |
ZHOU X , LI M , MA Z Y , et al. Applying culturomics approach for the isolation and identification of previously uncultured fungi[J]. Microbiome Protocols eBook, 2021, Bio-101, e2003703. | |
24 |
HAMAD I , RANQUE S , AZHAR E I , et al. Culturomics and amplicon-based metagenomic approaches for the study of fungal population in human gut microbiota[J]. Sci Rep, 2017, 7 (1): 16788.
doi: 10.1038/s41598-017-17132-4 |
25 |
LI M , RAZA M , SONG S , et al. Application of culturomics in fungal isolation from mangrove sediments[J]. Microbiome, 2023, 11 (1): 272.
doi: 10.1186/s40168-023-01708-6 |
26 |
PEREIRA A C , CUNHA M V . An effective culturomics approach to study the gut microbiota of mammals[J]. Res Microbiol, 2020, 171 (8): 290- 300.
doi: 10.1016/j.resmic.2020.09.001 |
27 |
CHEN X S , AN M , ZHANG W Q , et al. Integrated bacteria-fungi diversity analysis reveals the gut microbial changes in buffalo with mastitis[J]. Front Vet Sci, 2022, 9, 918541.
doi: 10.3389/fvets.2022.918541 |
28 |
ELOLIMY A , ROSA F , TRIPP P , et al. Bacterial and fungal adaptations in cecum and distal colon of piglets fed with dairy-based milk formula in comparison with human milk[J]. Front Microbiol, 2022, 13, 801854.
doi: 10.3389/fmicb.2022.801854 |
29 |
WANG T , LIU J H , LUO Y H , et al. Combined effects of host genetics and diet on porcine intestinal fungi and their pathogenic genes[J]. Front Microbiol, 2023, 14, 1192288.
doi: 10.3389/fmicb.2023.1192288 |
30 |
ZHANG D Y , LIU H , WANG S X , et al. Wheat bran fermented by Lactobacillus regulated the bacteria-fungi composition and reduced fecal heavy metals concentrations in growing pigs[J]. Sci Total Environ, 2023, 858, 159828.
doi: 10.1016/j.scitotenv.2022.159828 |
31 | KUMAR S , INDUGU N , VECCHIARELLI B , et al. Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows[J]. Front Microbiol, 2015, 6, 781. |
32 | 李娜, 张洁, 郭婷婷, 等. 基于内转录间隔区测序分析不同饲养方式对滩羊羔羊瘤胃真菌组成及多样性的影响[J]. 动物营养学报, 2020, 32 (2): 784- 794. |
LI N , ZHANG J , GUO T T , et al. Effects of different feeding methods on composition and diversity of rumen fungi in tan sheep based on interstitial region sequencing[J]. Chinese Journal of Animal Nutrition, 2020, 32 (2): 784- 794. | |
33 |
FLIEGEROVA K O , PODMIRSEG S M , VINZELJ J , et al. The effect of a high-grain diet on the rumen microbiome of goats with a special focus on anaerobic fungi[J]. Microorganisms, 2021, 9 (1): 157.
doi: 10.3390/microorganisms9010157 |
34 |
LI M H , MENG J X , WANG W , et al. Dynamic description of temporal changes of gut microbiota in broilers[J]. Poult Sci, 2022, 101 (9): 102037.
doi: 10.1016/j.psj.2022.102037 |
35 |
YANG S L , ZHANG G R , DENG M Y , et al. Exploring yak (bos grunniens) rumen bacterial and fungal communities from 5 days after birth to adulthood[J]. Res Sq, 2022,
doi: 10.21203/rs.3.rs-1232699/v1 |
36 |
AKIN D E , BORNEMAN W S . Role of rumen fungi in fiber degradation[J]. J Dairy Sci, 1990, 73 (10): 3023- 3032.
doi: 10.3168/jds.S0022-0302(90)78989-8 |
37 | 李蒋伟, 周力, 侯生珍, 等. 日粮精粗比对育肥藏羊肠道真菌多样性的影响[J]. 西南农业学报, 2021, 34 (12): 2784- 2789. |
LI J W , ZHOU L , HOU S Z , et al. Effects of dietary concentrate to roughage ratio on intestinal fungal diversity in Tibetan sheep[J]. Southwest China Journal of Agricultural Sciences, 2021, 34 (12): 2784- 2789. | |
38 | GHETAS A M , SEDEEK D M , FEDAWY H S , et al. Detection of intestinal fungi in chickens naturally infected with infectious bursal disease[J]. Adv Anim Vet Sci, 2022, 10 (3): 514- 520. |
39 |
YANG Q , LIU J , ROBINSON K J , et al. Perturbations of the ileal mycobiota by necrotic enteritis in broiler chickens[J]. J Anim Sci Biotechnol, 2021, 12 (1): 107.
doi: 10.1186/s40104-021-00628-5 |
40 |
GUTIERREZ M W , ARRIETA M C . The intestinal mycobiome as a determinant of host immune and metabolic health[J]. Curr Opin Microbiol, 2021, 62, 8- 13.
doi: 10.1016/j.mib.2021.04.004 |
41 |
CARBONETTO B , NIDELET T , GUEZENEC S , et al. Interactions between Kazachstania humilis yeast species and lactic acid bacteria in sourdough[J]. Microorganisms, 2020, 8 (2): 240.
doi: 10.3390/microorganisms8020240 |
42 |
HAGMAN A , SÄLL T , COMPAGNO C , et al. Yeast "make-accumulate-consume" life strategy evolved as a multi-step process that predates the whole genome duplication[J]. PLoS One, 2013, 8 (7): e68734.
doi: 10.1371/journal.pone.0068734 |
43 |
ZHANG Z T , GUO Q J , WANG J , et al. Postbiotics from Pichia kudriavzevii promote intestinal health performance through regulation of Limosilactobacillus reuteri in weaned piglets[J]. Food Funct, 2023, 14 (8): 3463- 3474.
doi: 10.1039/D2FO03695A |
44 |
SUMMERS K L , FOSTER FREY J , ARFKEN A M . Characterization of Kazachstania slooffiae, a proposed commensal in the porcine gut[J]. J Fungi (Basel), 2021, 7 (2): 146.
doi: 10.3390/jof7020146 |
45 |
MORAÏS S , MIZRAHI I . Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem[J]. FEMS Microbiol Rev, 2019, 43 (4): 362- 379.
doi: 10.1093/femsre/fuz007 |
46 |
DAGAR S S , KUMAR S , MUDGIL P , et al. D1/D2 domain of large-subunit ribosomal DNA for differentiation of orpinomyces spp[J]. Appl Environ Microbiol, 2011, 77 (18): 6722- 6725.
doi: 10.1128/AEM.05441-11 |
47 |
DAGAR S S , SINGH N , GOEL N , et al. Role of anaerobic fungi in wheat straw degradation and effects of plant feed additives on rumen fermentation parameters in vitro[J]. Benef Microbes, 2015, 6 (3): 353- 360.
doi: 10.3920/BM2014.0071 |
48 |
GRUNINGER R J , PUNIYA A K , CALLAGHAN T M , et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential[J]. FEMS Microbiol Ecol, 2014, 90 (1): 1- 17.
doi: 10.1111/1574-6941.12383 |
49 |
DE ALMEIDA P N M , DUARTE E R , ABRÃO F O , et al. Aerobic fungi in the rumen fluid from dairy cattle fed different sources of forage[J]. Rev Bras Zootec, 2012, 41 (11): 2336- 2342.
doi: 10.1590/S1516-35982012001100006 |
50 |
GORDON G L R , PHILLIPS M W . The role of anaerobic gut fungi in ruminants[J]. Nutr Res Rev, 1998, 11 (1): 133- 168.
doi: 10.1079/NRR19980009 |
51 | JOBLIN K N, NAYLOR G E, ODONGO N E, et al. Ruminal fungi for increasing forage intake and animal productivity[C]//Proceedings of International Symposium on Sustainable Improvement of Animal Production and Health. Vienna: IAEA, 2010: 129-136. |
52 |
DEY A , SEHGAL J P , PUNIYA A K , et al. Influence of an anaerobic fungal culture (orpinomyces sp.) administration on growth rate, ruminal fermentation and nutrient digestion in calves[J]. Asian-Australas J Anim Sci, 2004, 17 (6): 820- 824.
doi: 10.5713/ajas.2004.820 |
53 |
PAUL S S , KAMRA D N , SASTRY V R B , et al. Effect of administration of an anaerobic gut fungus isolated from wild blue bull (Boselaphus tragocamelus) to buffaloes (Bubalus bubalis) on in vivo ruminal fermentation and digestion of nutrients[J]. Anim Feed Sci Technol, 2004, 115 (1-2): 143- 157.
doi: 10.1016/j.anifeedsci.2004.01.010 |
54 | SIROHI S K , CHOUDHURY P K , DAGAR S S , et al. Isolation, characterization and fibre degradation potential of anaerobic rumen fungi from cattle[J]. Ann Microbiol, 2013, 63 (3): 1187- 1194. |
55 | DOLLHOFER V , DANDIKAS V , DORN-IN S , et al. Accelerated biogas production from lignocellulosic biomass after pre-treatment with Neocallimastix frontalis[J]. Bioresour Technol, 2018, 264, 219- 227. |
56 | KOH A Y . Murine models of candida gastrointestinal colonization and dissemination[J]. Eukaryot Cell, 2013, 12 (11): 1416- 1422. |
57 | HOEFLINGER J L , COLEMAN D A , OH S H , et al. A piglet model for studying Candida albicans colonization of the human oro-gastrointestinal tract[J]. FEMS Microbiol Lett, 2014, 357 (1): 10- 15. |
58 | TSO G H W , REALES-CALDERON J A , TAN A S M , et al. Experimental evolution of a fungal pathogen into a gut symbiont[J]. Science, 2018, 362 (6414): 589- 595. |
59 | YEUNG F. The role of commensal fungi in immune development and disease susceptibility[D]. New York: New York University, 2021. |
60 | ZHANG Z D , LI J J , ZHENG W C , et al. Peripheral lymphoid volume expansion and maintenance are controlled by gut microbiota via RALDH+ dendritic cells[J]. Immunity, 2016, 44 (2): 330- 342. |
61 | RAMAYO-CALDAS Y , PRENAFETA-BOLDÚ F , ZINGARETTI L M , et al. Gut eukaryotic communities in pigs: diversity, composition and host genetics contribution[J]. Anim Microbiome, 2020, 2 (1): 18. |
62 | EVERARD A , MATAMOROS S , GEURTS L , et al. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice[J]. MBio, 2014, 5 (3): e01011- 14. |
63 | MAR RODRÍGUEZ M , PÉREZ D , JAVIER CHAVES F , et al. Obesity changes the human gut mycobiome[J]. Sci Rep, 2015, 5, 14600. |
64 | BOOTS B , LILLIS L , CLIPSON N , et al. Responses of anaerobic rumen fungal diversity (phylum neocallimastigomycota) to changes in bovine diet[J]. J Appl Microbiol, 2013, 114 (3): 626- 635. |
[1] | 王贝贝, 武书庚, 张海华, 张海军, 郝二英, 邱凯. 饲粮添加大豆异黄酮对产蛋后期蛋鸡生产的影响[J]. 畜牧兽医学报, 2025, 56(1): 295-306. |
[2] | 李玮, 吴禧龙, 赵兴瑞, 许兰娇, 杨小斌, 宋小珍. 中药健脾四胃方剂对断奶湖羊生长性能、瘤胃发酵及菌群组成的影响[J]. 畜牧兽医学报, 2025, 56(1): 466-478. |
[3] | 王小松, 李冬, 李淑, 陈佳力, 刘永需, 赵红, 李福昌, 刘磊. 不同饲粮铜水平对安哥拉兔生产性能及毛囊发育的影响[J]. 畜牧兽医学报, 2024, 55(7): 3032-3039. |
[4] | 王晓旭, 陈艳青, 张家麒, 王野, 王蕊, 于翰林, 杨凯淇, 包军, 张润祥. 爪趾皮肤炎对富集笼养蛋鸡生产性能、蛋品质、行为和免疫的影响[J]. 畜牧兽医学报, 2024, 55(6): 2680-2691. |
[5] | 高欣, 孙怡朋. A型流感病毒诱导细胞炎症反应的研究进展[J]. 畜牧兽医学报, 2024, 55(2): 481-490. |
[6] | 吴江, 万发春, 刘磊, 沈维军, 兰欣怡, 王祚. 枯草芽孢杆菌制剂对肉牛生产性能、瘤胃发酵、血液生化及免疫指标的影响[J]. 畜牧兽医学报, 2024, 55(12): 5575-5589. |
[7] | 牟湘钰, 徐云若, 胡静怡, 周欣妍, 朱勇文. 家禽支链氨基酸营养需要研究进展[J]. 畜牧兽医学报, 2024, 55(1): 31-38. |
[8] | 陈芳芳, 栗中华, 朱志伟, 李锦春, 刘翠艳. 恒定链的多功能研究新进展[J]. 畜牧兽医学报, 2023, 54(5): 1824-1833. |
[9] | 闫威东, 王萍, 姜明君, 赵景鹏, 王晓鹃, 林海, 焦洪超. 植酸酶对日粮铜减量下肉鸡生产性能和Cu、Zn排泄量的影响[J]. 畜牧兽医学报, 2023, 54(4): 1535-1544. |
[10] | 宫浩阳, 吴佳鑫, 杨晓钰, 解伟纯, 王雪莹, 李佳璇, 姜艳平, 崔文, 李一经, 唐丽杰. 肠道菌群抗病毒机制研究进展[J]. 畜牧兽医学报, 2023, 54(12): 4910-4919. |
[11] | 谢欣然, 张玥, 陆明敏, 徐立新, 宋小凯, 李祥瑞, 严若峰. 捻转血矛线虫重组磷脂酰肌醇转移蛋白对山羊外周血单个核细胞模式识别受体和细胞因子转录水平的影响[J]. 畜牧兽医学报, 2023, 54(1): 252-262. |
[12] | 崔恩慧, 薛玉环, 李辞霞, 王帅, 朱晓岩, 柴学军, 赵善廷. 杜仲叶免疫调节机制的网络药理学分析及验证[J]. 畜牧兽医学报, 2023, 54(1): 403-413. |
[13] | 刘倩, 李大鹏, 张宏, 刘琴, 王学智, 李建喜, 杨孝朴, 张景艳. 黄芪多糖降低脂多糖对鸡巨噬细胞促炎细胞因子和TLRs mRNA转录水平影响的效应分析[J]. 畜牧兽医学报, 2022, 53(9): 3251-3261. |
[14] | 郭文亮, 徐元庆, 金晓, 史彬林. 热休克蛋白在冷应激引起的炎症反应和氧化应激中的调节作用[J]. 畜牧兽医学报, 2022, 53(6): 1668-1677. |
[15] | 唐修君, 樊艳凤, 贾晓旭, 葛庆联, 陆俊贤, 周倩, 陈大伟, 高玉时. 不同类型肉鸡线粒体单倍型与遗传起源研究[J]. 畜牧兽医学报, 2022, 53(11): 3748-3758. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||