畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (5): 1824-1833.doi: 10.11843/j.issn.0366-6964.2023.05.006
陈芳芳, 栗中华, 朱志伟, 李锦春, 刘翠艳*
收稿日期:
2022-06-01
出版日期:
2023-05-23
发布日期:
2023-05-20
通讯作者:
刘翠艳,主要从事中兽医和动物免疫学研究,E-mail:cyliu@ahau.edu.cn
作者简介:
陈芳芳(1982-),女,山东昌邑人,副教授,博士,主要从事兽医微生物与免疫学研究,E-mail:fang7828887@126.com
基金资助:
CHEN Fangfang, LI Zhonghua, ZHU Zhiwei, LI Jinchun, LIU Cuiyan*
Received:
2022-06-01
Online:
2023-05-23
Published:
2023-05-20
摘要: 恒定链(invariant chain,Ii)是重要的免疫分子。研究发现Ii不仅是MHCII类分子的伴侣分子,而且具有多种功能。本文首先概述了Ii的基本结构、主要功能、胞内组装和转运、Ii作为载体的应用。其次,归纳和总结了近几年关于Ii的最新研究进展:Ii与MHC分子互相作用的功能结构域及其在细胞的定位特征、调节T和B等免疫细胞的功能与途径、Ii与巨噬细胞迁移因子相互作用从而启动炎症反应的信号通路和相应结构域;与Ii关联的多种酶类和生物活性因子及其作用特点、与Ii相关的疾病;基于Ii结构的疫苗载体及其增强免疫的机理;以及我国在畜禽、鱼类上的研究成果。最后,展望了Ii在理论研究和畜牧兽医领域实际应用的发展趋势。本文从宏观和微观方面进行阐述,了解、认识Ii在动物免疫中的多功能作用及其机理的科学知识和最新进展,为推动相关研究提供有益借鉴和参考。
中图分类号:
陈芳芳, 栗中华, 朱志伟, 李锦春, 刘翠艳. 恒定链的多功能研究新进展[J]. 畜牧兽医学报, 2023, 54(5): 1824-1833.
CHEN Fangfang, LI Zhonghua, ZHU Zhiwei, LI Jinchun, LIU Cuiyan. Recent Advances in Multifunctional Research of Invariant Chain[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1824-1833.
[1] | JONES P P,MURPHY D B,HEWGILL D,et al.Detection of a common polypeptide chain in I-A and I-E sub-region immunoprecipitates[J]. Mol mmunol,1979,16(1):51-60. |
[2] | ZHONG D L,YU W Y,LIU Y H,et al.Molecular cloning and expression of two chicken invariant chain isoforms produced by alternative splicing[J]. Immunogenetics,2004,56(9):650-656. |
[3] | CHEN F F,LIN H B,LI J C,et al.Grass carp (Ctenopharyngodon idellus) invariant chain of the MHC class II chaperone protein associates with the class I molecule[J]. Fish Shellfish Immunol,2017,63:1-8. |
[4] | CHEN F,PAN L,DAI Y,et al.Characteristics of expression of goose invariant chain gene and comparison of its structure among different species[J]. Poult Sci,2011,90(8):1664-1670. |
[5] | CLOUTIER M,GAUTHIER C,FORTIN J S,et al.The invariant chain p35 isoform promotes formation of nonameric complexes with MHC II molecules[J]. Immunol Cell Biol,2014,92(6):553-556. |
[6] | 叶显峰,孟凡涛,刘洪明,等.鲢鱼恒定链cDNA的克隆及其分子结构分析[J].淡水渔业,2013,43(3):9-14.YE X F,MENG F T,LIU H M,et al.cDNA cloning and molecular structure analysis of Aristichthys molitrix invariant chain[J]. Freshwater Fisheries,2013,43(3):9-14.(in Chinese) |
[7] | LI M Y,LI Q H,YANG Z J,et al.Identification of cathepsin B from large yellow croaker (Pseudosciaena crocea) and its role in the processing of MHC class II-associated invariant chain[J]. Dev Comp Immunol,2014,45(2):313-320. |
[8] | LIU S J,CHEN F F,WU C,et al.Molecular characterization and tissue-specific expression of invariant chain isoform in Muscovy Duck (Cairina moschata)[J]. Genet Mol Res,2014,13(4):8971-8981. |
[9] | CHEN F F,WU C,PAN L,et al.Cross-species association of quail invariant chain with chicken and mouse MHC II molecules[J]. Dev Comp Immunol,2013,40(1):20-27. |
[10] | XU F Z,YE H,LIU X L.et al.The intracellular localization and association of porcine Ia-associated invariant chain with the MHC class I-related porcine neonatal Fc receptor for IgG[J]. Gene,2015,559(1):9-15. |
[11] | BASHA G,OMILUSIK K,CHAVEZ-STEENBOCK A,et al.A CD74-dependent MHC class I endolysosomal cross-presentation pathway[J]. Nat Immunol,2012,13(3):237-245. |
[12] | SUGITA M,BRENNER M B.Association of the invariant chain with major histocompatibility complex class I molecules directs trafficking to endocytic compartments[J]. J Biol Chem,1995,270(3):1443-1448. |
[13] | ROCHE P A,MARKS M S,CRESSWELL P J.Formation of a nine-subunit complex by HLA class II glycoproteins and the invariant chain[J]. Nature,1991,354(6352):392-394. |
[14] | ANDERSON M S,MILLER J.Invariant chain can function as a chaperone protein for class II major histocompatibility complex molecules[J]. Proc Natl Acad Sci U S A,1992,89(6):2282-2286. |
[15] | ELLIOTT E A,DRAKE J R,AMIGORENA S,et al.The invariant chain is required for intracellular transport and function of major histocompatibility complex class II molecules[J]. J Exp Med,1994,179(2):681-694. |
[16] | BIJLMAKERS M J,BENAROCH P,PLOEGH H L.Mapping functional regions in the lumenal domain of the class II-associated invariant chain[J]. J Exp Med,1994,180(2):623-629. |
[17] | BREMNES B,MADSEN T,GEDDE-DAH M,et al.An LI and ML motif in the cytoplasmic tail of the MHC-associated invariant chain mediate rapid internalization[J]. J Cell Sci,1994,107(7):2021-2032. |
[18] | SWIER K,MILLER J.Efficient internalization of MHC class II-invariant chain complexes is not sufficient for invariant chain proteolysis and class II antigen presentation[J]. J Immunol,1995,155(2):630-643. |
[19] | FAURE-ANDRÉ G,VARGAS P,YUSEFF M I,et al.Regulation of dendritic cell migration by CD74,the MHC class II-associated invariant chain[J]. Science,2008,322(5908):1705-1710. |
[20] | SU Y,WANG Y J,ZHOU Y,et al.Macrophage migration inhibitory factor activates inflammatory responses of astrocytes through interaction with CD74 receptor[J]. Oncotarget,2017,8(2):2719-2730. |
[21] | TEO B H D,WONG S H.MHC class II-associated invariant chain (Ii) modulates dendritic cells-derived microvesicles (DCMV)-mediated activation of microglia[J]. Biochem Biophys Res Commun,2010,400(4):673-678. |
[22] | ZHANG H L,LIU C,CHENG S,et al.Porcine CD74 is involved in the inflammatory response activated by nuclear factor kappa B during porcine circovirus type 2(PCV-2) infection[J]. Arch Virol,2013,158(11):2285-2295. |
[23] | VELÁSQUEZ L N,MILILLO M A,DELPINO M V,et al. Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1(IRF-1)[J]. J Leukoc Biol,2017,101(3):759-773. |
[24] | CHENG S P,LIU C L,CHEN M J,et al.CD74 expression and its therapeutic potential in thyroid carcinoma[J]. Endocr Relat Cancer,2015,22(2):179-190. |
[25] | ADAMS S,ALBERICIO F,ALSINA J,et al.Biological activity and therapeutic potential of homologs of an Ii peptide which regulates antigenic peptide binding to cell surface MHC class II molecules[J]. Arzneimittelforschung,1997,47(9):1069-1077. |
[26] | CHEN F F,MENG F T,PAN L,et al.Boosting immune response with the invariant chain segments via association with non-peptide binding region of major histocompatibility complex class II molecules[J]. BMC Immunol,2012,13:55. |
[27] | SHARBI-YUNGER A,GREES M,CAFRI G,et al.A universal anti-cancer vaccine:chimeric invariant chain potentiates the inhibition of melanoma progression and the improvement of survival[J]. Int J Cancer,2019,144(4):909-921. |
[28] | STARODUBOVA E S,ISAGULIANTS M G,KUZMENKO Y V,et al.Fusion to the lysosome targeting signal of the invariant chain alters the processing and enhances the immunogenicity of HIV-1 reverse transcriptase[J]. Acta Nat,2014,6(1):61-68. |
[29] | JAHN M L,STEFFENSEN M A,CHRISTENSEN J P,et al.Analysis of adenovirus-induced immunity to infection with Listeria monocytogene s:Fading protection coincides with declining CD8 T cell numbers and phenotypic changes[J]. Vaccine,2018,36(20):2825-2832. |
[30] | XIAO N, LI K, ZHU X D, et al. CD74+ macrophages are associated with favorable prognosis and immune contexture in hepatocellular carcinoma.[J]. Cancer Immunol Immunother, 2022, 71(1):57-69. |
[31] | DIJKSTRA J M,YAMAGUCHI T.Ancient features of the MHC class II presentation pathway,and a model for the possible origin of MHC molecules[J]. Immunogenetics,2019,71(3):233-249. |
[32] | THIBODEAU J,MOULEFERA M A,BALTHAZARD R.On the structure-function of MHC class II molecules and how single amino acid polymorphisms could alter intracellular trafficking[J]. Hum Immunol,2019,80(1):15-31. |
[33] | CLOUTIER M,FORTIN J S,THIBODEAU J.The transmembrane domain and luminal C-terminal region independently support invariant chain trimerization and assembly with MHCII into nonamers[J]. BMC Immunol,2021,22(1):56. |
[34] | SHISHIDO T,KOHYAMA M,NAKAI W,et al.Invariant chain p41 mediates production of soluble MHC class II molecules[J]. Biochem Biophys Res Commun,2019,509(1):216-221. |
[35] | MARGIOTTA A,FREI D M,SENDSTAD I H,et al.Invariant chain regulates endosomal fusion and maturation through an interaction with the SNARE Vti1b[J]. J Cell Sci,2020,133(19):jcs244624. |
[36] | GRADTKE A C,MENTRUP T,LEHMANN C H K,et al.Deficiency of the intramembrane protease SPPL2a alters antimycobacterial cytokine responses of dendritic cells[J]. J Immunol,2021,206(1):164-180. |
[37] | BECKER-HERMAN S,ROZENBERG M,HILLEL-KARNIEL C,et al.CD74 is a regulator of hematopoietic stem cell maintenance[J]. PLoS Biol,2021,19(3):e3001121. |
[38] | WANG H X,ZHANG Q,ZHANG J Y,et al.CD74 regulates cellularity and maturation of medullary thymic epithelial cells partially by activating the canonical NF-κB signaling pathway[J]. FASEB J,2021,35(5):e21535. |
[39] | TOHME M,MAISONNEUVE L,ACHOUR K,et al.Correction:TLR7 trafficking and signaling in B cells is regulated by the MHCII-associated invariant chain[J]. J Cell Sci,2021,134(20):jcs259376. |
[40] | SKEENS E,PANTOURIS G,SHAH D,et al.A cysteine variant at an allosteric site alters MIF dynamics and biological function in homo-and heterotrimeric assemblies[J]. Front Mol Biosci,2022,9:783669. |
[41] | ZHU B H,WU G S,WANG C,et al.Soluble cluster of differentiation 74 regulates lung inflammation through the nuclear factor-κB signaling pathway[J]. Immunobiology,2020,225(5):152007. |
[42] | WANG Y J,WEI S M,SONG H H,et al.Macrophage migration inhibitory factor derived from spinal cord is involved in activation of macrophages following gecko tail amputation[J]. FASEB J,2019,33(12):14798-14810. |
[43] | SONG H H,ZHU Z W,ZHOU Y,et al.MIF/CD74 axis participates in inflammatory activation of schwann cells following sciatic nerve injury[J]. J Mol Histol,2019,50(4):355-367. |
[44] | FARR L,GHOSH S,JIANG N,et al.CD74 signaling links inflammation to intestinal epithelial cell regeneration and promotes mucosal healing[J]. Cell Mol Gastroenterol Hepatol,2020,10(1):101-112. |
[45] | JANKAUSKAS S S,WONG D W L,BUCALA R,et al.Evolving complexity of MIF signaling[J]. Cell Signal,2019,57:76-88. |
[46] | PARKINS A,SKEENS E,MCCALLUM C M,et al.The N-terminus of MIF regulates the dynamic profile of residues involved in CD74 activation[J]. Biophys J,2021,120(18):3893-3900. |
[47] | CHEN E,REISS K,SHAH D,et al.A structurally preserved allosteric site in the MIF superfamily affects enzymatic activity and CD74 activation in D-dopachrome tautomerase[J]. J Biol Chem,2021,297(3):101061. |
[48] | GARCIA A B,SIU E,DU X,et al.Suppression of Plasmodium MIF-CD74 signaling protects against severe malaria[J]. FASEB J,2021,35(12):e21997. |
[49] | SINITSKI D,GRUNER K,BRANDHOFER M,et al.Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs[J]. J Biol Chem,2020,295(3):850-867. |
[50] | SKEENS E,GADZUK-SHEA M,SHAH D,et al.Redox-dependent structure and dynamics of macrophage migration inhibitory factor reveal sites of latent allostery[J]. Structure,2022,30(6):840-850.e6. |
[51] | SCHOEPS B,ECKFELD C,FLVTER L,et al.Identification of invariant chain CD74 as a functional receptor of tissue inhibitor of metalloproteinases-1(TIMP-1)[J]. J Biol Chem,2021,297(3):101072. |
[52] | ZHANG N,GAO P,YIN B,et al.Cathepsin L promotes secretory IgA response by participating in antigen presentation pathways during Mycoplasma Hyopneumoniae infection[J]. PLoS One,2019,14(4):e0215408. |
[53] | CLANCHY F I L,BORGHESE F,BYSTROM J,et al.Disease status in human and experimental arthritis,and response to TNF blockade,is associated with MHC class II invariant chain (CD74) isoform expression[J]. J Autoimmun,2022,128:102810. |
[54] | RIJVERS L,MELIEF M J,VAN LANGELAAR J,et al.The role of autoimmunity-related gene CLEC16A in the B cell receptor-mediated HLA class II pathway[J]. J Immunol,2020,205(4):945-956. |
[55] | KUPKE T,KLARE J P,BRVGGER B.Heme binding of transmembrane signaling proteins undergoing regulated intramembrane proteolysis[J]. Commun Biol,2020,3(1):73. |
[56] | HOFMANN B B,KRAPP N,LI Y C,et al.N-Octanoyl-Dopamine inhibits cytokine production in activated T-cells and diminishes MHC-class-II expression as well as adhesion molecules in IFNγ-stimulated endothelial cells[J]. Sci Rep,2019,9(1):19338. |
[57] | ANTOHE I,TANASA M P,DǍSCǍLESCU A,et al.The MHC-II antigen presentation machinery and B7 checkpoint ligands display distinctive patterns correlated with acute myeloid leukaemias blast cells HLA-DR expression[J]. Immunobiology,2021,226(1):152049. |
[58] | XIAO N,LI K S,ZHU X D,et al.CD74+ macrophages are associated with favorable prognosis and immune contexture in hepatocellular carcinoma[J]. Cancer Immunol Immunother,2022,71(1):57-69. |
[59] | AL ABDULMONEM W,RASHEED Z,ALJOHANI A S M,et al.Absence of CD74 isoform at 41 kDa prevents the heterotypic associations between CD74 and CD44 in human lung adenocarcinoma-derived cells[J]. Immunol Invest,2021,50(8):891-905. |
[60] | FUKUDA Y,BUSTOS M A,CHO S N,et al.Interplay between soluble CD74 and macrophage-migration inhibitory factor drives tumor growth and influences patient survival in melanoma[J]. Cell Death Dis,2022,13(2):117. |
[61] | 孟凡涛,陈芳芳,余为一.两种基于恒定链活性片段载体在增强抗体分泌中作用的比较[J].中国免疫学杂志,2012,28(8):728-732.MENG F T,CHEN F F,YU W Y.Comparison of effect of two vector based on invariant chain segments on the increasing antibody production[J]. Chinese Journal of Immunology,2012,28(8):728-732.(in Chinese) |
[62] | 王瑞靖,陈芳芳,余为一.恒定链CLIP的2个片段在增强体液免疫效果的比较[J].微生物学报,2014,54(3):338-344.WANG R J,CHEN F F,YU W Y.Effect difference between two segments in invariant chain CLIP on humoral immune[J]. Acta Microbiologica Sinica,2014,54(3):338-344.(in Chinese) |
[63] | 熊冉,艾珊珊,萧晟.基于恒定链载体不同抗原表位串联嵌合体免疫原性分析[J].中国兽医学报,2019,39(8):1460-1465.XIONG R,AI S S,XIAO C.Influence of series multiepitopes on immune enhancement mediated by invariant chain functional segments[J]. Chinese Journal of Veterinary Science,2019,39(8):1460-1465.(in Chinese) |
[64] | NEUKIRCH L,FOUGEROUX C,ANDERSSON A M C,et al.The potential of adenoviral vaccine vectors with altered antigen presentation capabilities[J]. Expert Rev Vaccines,2020,19(1):25-41. |
[65] | MCCARTHY P M,CLIFTON G T,VREELAND T J,et al.AE37:A HER2-targeted vaccine for the prevention of breast cancer recurrence[J]. Expert Opin Investig Drugs,2021,30(1):5-11. |
[66] | FOUGEROUX C,TURNER L,BOJESEN A M,et al.Modified MHC class II-associated invariant chain induces increased antibody responses against Plasmodium falciparum antigens after adenoviral vaccination[J]. J Immunol,2019,202(8):2320-2331. |
[67] | HOBBS S J,HARBOUR J C,YATES P A,et al.Vaccinia virus vectors targeting peptides for MHC class II presentation to CD4+ T cells[J]. Immunohorizons,2020,4(1):1-13. |
[68] | BOILESEN D R,RAGONNAUD E,LAURSEN H,et al.CD8+ T cells induced by adenovirus-vectored vaccine are capable of preventing establishment of latent murineγ-herpesvirus 68 infection[J]. Vaccine,2019,37(22):2952-2959. |
[69] | ATCHESON E,LI W Q,BLISS C M,et al.Use of an outbred rat hepacivirus challenge model for design and evaluation of efficacy of different immunization strategies for hepatitis c virus[J]. Hepatology,2020,71(3):794-807. |
[70] | NECKERMANN P,BOILESEN D R,WILLERT T,et al.Design and immunological validation of Macaca fascicularis papillomavirus type 3 based vaccine candidates in outbred mice:basis for future testing of a therapeutic papillomavirus vaccine in NHPs[J]. Front Immunol,2021,12:761214. |
[71] | NAZERAI L,BUUS S,STRYHN A,et al.Efficient control of zika virus infection induced by a non-replicating adenovector encoding zika virus NS1/NS2 antigens fused to the MHC class II-associated invariant chain[J]. Viruses,2021,13(11):2215. |
[72] | DONNISON T,VON DELFT A,BROWN A,et al.Viral vectored hepatitis C virus vaccines generate pan-genotypic T cell responses to conserved subdominant epitopes[J]. Vaccine,2020,38(32):5036-5048. |
[1] | 高欣, 孙怡朋. A型流感病毒诱导细胞炎症反应的研究进展[J]. 畜牧兽医学报, 2024, 55(2): 481-490. |
[2] | 宫浩阳, 吴佳鑫, 杨晓钰, 解伟纯, 王雪莹, 李佳璇, 姜艳平, 崔文, 李一经, 唐丽杰. 肠道菌群抗病毒机制研究进展[J]. 畜牧兽医学报, 2023, 54(12): 4910-4919. |
[3] | 崔恩慧, 薛玉环, 李辞霞, 王帅, 朱晓岩, 柴学军, 赵善廷. 杜仲叶免疫调节机制的网络药理学分析及验证[J]. 畜牧兽医学报, 2023, 54(1): 403-413. |
[4] | 谢欣然, 张玥, 陆明敏, 徐立新, 宋小凯, 李祥瑞, 严若峰. 捻转血矛线虫重组磷脂酰肌醇转移蛋白对山羊外周血单个核细胞模式识别受体和细胞因子转录水平的影响[J]. 畜牧兽医学报, 2023, 54(1): 252-262. |
[5] | 刘倩, 李大鹏, 张宏, 刘琴, 王学智, 李建喜, 杨孝朴, 张景艳. 黄芪多糖降低脂多糖对鸡巨噬细胞促炎细胞因子和TLRs mRNA转录水平影响的效应分析[J]. 畜牧兽医学报, 2022, 53(9): 3251-3261. |
[6] | 郭文亮, 徐元庆, 金晓, 史彬林. 热休克蛋白在冷应激引起的炎症反应和氧化应激中的调节作用[J]. 畜牧兽医学报, 2022, 53(6): 1668-1677. |
[7] | 谢黎卿, 杨洋, 彭远义, 李能章. 病原微生物荚膜多糖的生物学功能[J]. 畜牧兽医学报, 2021, 52(3): 576-587. |
[8] | 陈芳芳, 桂亚萍, 于凤梅, 张俊, 谈阳, 李锦春, 刘翠艳, 查丽莎. 鸡Ii结合Rab5a和Rab7b分子的分析[J]. 畜牧兽医学报, 2021, 52(12): 3588-3597. |
[9] | 尚丽君, 杨天任, 于海涛, 黄烁, 曾祥芳, 谯仕彦. 抗菌肽Sublancin与黄芪多糖对免疫抑制小鼠免疫功能调节作用的比较分析[J]. 畜牧兽医学报, 2019, 50(2): 406-414. |
[10] | 周贝, 林焱, 朱伟云. 肠道噬菌体与细菌和宿主互作及其对动物机体健康影响的研究进展[J]. 畜牧兽医学报, 2019, 50(1): 14-20. |
[11] | 张千, 李发弟, 李飞. 反刍动物应激反应中糖皮质激素对免疫系统的调节机理[J]. 畜牧兽医学报, 2017, 48(5): 785-792. |
[12] | 季文恒,储岳峰,赵萍,陈胜利,郝华芳,王展慧,刘永生. 牛支原体逃避宿主免疫的研究进展[J]. 畜牧兽医学报, 2017, 48(3): 393-402. |
[13] | 刘生杰,吴超,倪庆胜,余为一. 鸳鸯鸭恒定链两异构体组织转录模式研究[J]. 畜牧兽医学报, 2014, 45(12): 2034-2042. |
[14] | 许发芝;吴胜国;刘雪兰;余为一. 鸡恒定链分子跨膜区2个氨基酸残基在形成MHCⅡIi复合物中的作用[J]. 畜牧兽医学报, 2011, 42(5): 721-728. |
[15] | 闫文朝;王天奇;索勋;韩利方;丁轲;董发明;张龙现. 表达黄色荧光蛋白和乙胺嘧啶抗性基因的转基因柔嫩艾美耳球虫的发育和致病性分析[J]. 畜牧兽医学报, 2009, 40(12): 1794-1798. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||