畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (1): 45-62.doi: 10.11843/j.issn.0366-6964.2025.01.005
吕永乐(), 郑雯, 王签慧, 朱家琦, 黄晓琦, 曹中赞*(
), 栾新红*(
)
收稿日期:
2024-02-21
出版日期:
2025-01-23
发布日期:
2025-01-18
通讯作者:
曹中赞,栾新红
E-mail:1768170750@qq.com;caozhongzan@syau.edu.cn;xhluan@syau.edu.cn
作者简介:
吕永乐(1998-),男,安徽宿州人,硕士生,主要从事动物代谢疾病防治研究,E-mail:1768170750@qq.com
基金资助:
LÜ Yongle(), ZHENG Wen, WANG Qianhui, ZHU Jiaqi, HUANG Xiaoqi, CAO Zhongzan*(
), LUAN Xinhong*(
)
Received:
2024-02-21
Online:
2025-01-23
Published:
2025-01-18
Contact:
CAO Zhongzan, LUAN Xinhong
E-mail:1768170750@qq.com;caozhongzan@syau.edu.cn;xhluan@syau.edu.cn
摘要:
代谢相关脂肪性肝病是一种与代谢紊乱相关的慢性肝疾病,通常由体内脂肪、碳水化合物和蛋白质等代谢紊乱引起,其发病机制与炎症反应、氧化应激、胰岛素抵抗和肠道菌群稳态失调等有关。该病严重影响人和动物的肝健康,导致肝损伤、肝衰竭甚至肝癌的发生,增加糖尿病、心血管疾病等并发症乃至死亡的发生风险。源自蔬菜、水果、谷物及植物药材中的具有调节糖和脂类物质代谢、抗氧化应激、缓解炎症反应、改善肠道微生物菌群的天然活性物质可以调节肝代谢功能,减轻炎症反应,修复肝损伤,在代谢相关脂肪性肝病的预防和治疗中有着独特的优势。本文总结了能够调节糖脂代谢、抗氧化应激、缓解炎症反应、改善肠道菌群和胆汁酸代谢紊乱的天然活性物质,并阐述了这些活性物质在人和动物代谢相关脂肪性肝病中的潜在防治作用及其可能的机制,以期为临床医学或畜牧业生产实践中开发防治代谢相关脂肪性肝病的新药物提供理论参考。
中图分类号:
吕永乐, 郑雯, 王签慧, 朱家琦, 黄晓琦, 曹中赞, 栾新红. 抗代谢相关脂肪性肝病的天然活性物质研究进展[J]. 畜牧兽医学报, 2025, 56(1): 45-62.
LÜ Yongle, ZHENG Wen, WANG Qianhui, ZHU Jiaqi, HUANG Xiaoqi, CAO Zhongzan, LUAN Xinhong. Research Progress of Natural Active Substances against Metabolic Associated Fatty Liver Disease[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 45-62.
表 1
调节脂质代谢的天然活性物质"
天然活性物质 Natural active substances | 来源 Source | 试验模型 Model | 剂量/给药途径/给药时间 Dose/Route/Duration | 效果/作用机制 Effect/Mechanisms | 文献 Reference |
黄酮类Flavone | |||||
槲皮素 Quercetin | 水果和蔬菜 | 雄性C57BLKS/J小鼠/2型糖尿病模型 | 每日100 mg·kg-1/胃内注射/8周 | 通过ACC1/AMPK/PP2A轴减轻肝脂质积累,降低血糖 | [ |
染料木黄酮 Genistein | 大豆 | 雄性C57BL/6N小鼠/HFD模型 | 每日1、2、4 g·kg-1/口服/12周 | 改善小鼠血脂异常,降低肝和肾脂肪变性 | [ |
越橘花青素 Bilberry Anthocyanins | 越橘 | 雄性Sprague-Dawley大鼠/HFD模型 | 每日2%饲料添加量/口服/12周 | 减轻小鼠血脂异常,改善肠道菌群结构 | [ |
山楂叶黄酮 Hawthorn leaf flavonoids | 山楂 | 雄性Sprague-Dawley大鼠/HFD模型 | 每日50、100 mg·kg-1/口服/12周 | 增强脂联素/AMPK途径,改善脂质代谢紊乱 | [ |
萜类Terpene | |||||
梓醇 Catapol | 熟地黄根茎 | C57BL/6J小鼠/HFD模型 | 每日100、200、400 mg·kg-1/口服/18周 | 降低肝重和脂质积累,加快脂肪酸代谢 | [ |
五加酸 Pentacaric acid | 刺五加根皮 | C57BL/6小鼠/HFD模型 | 每日40 mg·kg-1/口服/12周 | 改善小鼠血脂异常和肝脂质积累,降低肝纤维化 | [ |
熊果酸Ursolic acid | 琵琶等植物 | 雄性Sprague-Dawley大鼠/HFD模型 | 0.125%、0.25%、0.5%饮食持续6周 | 改善脂质代谢紊乱,降低血糖 | [ |
多酚类Polyphenols | |||||
四角菱多酚 Tetrahydrocalcite polyphenol | 四角菱果皮 | 雄性ICR小鼠/HFD模型 | 每日15、30 mg·kg-1/口服/8周 | 改善血脂异常和肝脂质积累,降低胰岛素抵抗 | [ |
巴西莓多酚 Acai berry polyphenols | 巴西莓 | F344大鼠/HFD模型 | 每日2 g/口服/6周 | 减轻肝脂肪变性和肝损伤,改善抗氧化状态 | [ |
阿魏酸 Ferulic acid | 谷物 | 雄性C57BL/6J小鼠/HFD模型 | 每日100 mg·kg-1/口服/12周 | 促进脂肪酸氧化和能量消耗,降低脂质积累 | [ |
糖类和苷类Sugars and glycosides | |||||
五味子多糖 Schisandra polysaccharides | 五味子 | 雄性C57BL/6小鼠/HFD模型 | 每日100 mg·kg-1/口服/12周 | 下调SREBPs的表达,抑制肝脂质积累 | [ |
枸杞多糖 Lycium barbarum polusaccharide | 枸杞 | 雄性C57BL/6J小鼠/HFD模型 | 每日100 mg·kg-1/口服/24周 | 激活AMPK通路,抑制SREBP-1c表达 | [ |
海参皂苷 Sea cucumber saponins | 海参 | Wistar大鼠/HFD模型 | 0.15%、1%饮食持续10 d | 改善小鼠血脂异常和肝脂质积累,促进胆汁酸排泄 | [ |
灵芝多糖Ganoderan | 灵芝 | 雄性C57BL6/J小鼠/HFD模型 | 每日100、400 mg·kg-1/口服/8周 | 改善小鼠血脂异常和肝脂质积累 | [ |
柴胡皂苷Saikoside | 柴胡 | 雄性C57BL/6J小鼠/HFD模型 | 2 mg·kg-1/口服/8周 | 改善小鼠血脂异常和肝脂质积累 | [ |
表 2
抗氧化应激的天然活性物质"
类别 Category | 天然活性物质 Natural active substances | 来源 Source | 试验模型 Model | 剂量/给药途径/给药时间 Dose/Route/Duration | 效果/作用机制 Effect/Mechanisms | 参考文献 References |
黄酮类 Flavone | 茶黄素Theaflavin | 红茶 | 雄性C57BL/6小鼠/HFD模型 | 每日30 mg·kg-1/腹腔注射/5d | 抑制肝氧化应激,降低ROS的产生 | [ |
枇杷叶黄酮 Loquat leaf flavonoids | 枇杷叶 | 雄性ICR小鼠/PM2.5模型 | 每日50、100、200 mg·kg-1/口服/7 d/35 d | 抑制肝和脂肪氧化应激,提高抗氧化酶活性 | [ | |
柚皮素 Naringenin | 葡萄柚 | BALB/c小鼠/药物损伤模型 | 每日50或100 mg·kg-1/灌胃/14 d | 减少肝氧化应激损伤,提高抗氧酶活性 | [ | |
水飞蓟素 Silymarin | 水飞蓟 | 雄性Wistar白化大鼠/果糖诱导模型 | 每日200、400 mg·kg-1/口服/8周 | 减少肝氧化应激损伤,提高抗氧酶活性 | [ | |
芦丁Rutin | 水果 | 雄性C57BL/小鼠/HFD模型 | 每日200 mg·kg-1/腹腔注射/8周 | 减少氧化应激,降低肝损伤 | [ | |
萜类 Terpene | 栀子苷 Geniposide | 栀子花果实 | 雄性Nrf2-/C57BL/6小鼠/HFD模型 | 每日50、75、100 mg·kg-1/腹腔注射/18 h | 减少肝氧化应激损伤,提高抗氧酶活性 | [ |
龙胆苦苷 Gentiopicroside | 龙胆科植物根茎 | 雌性C57BL/6小鼠/药物损伤模型 | 每日20、40、80 mg·kg-1/腹腔注射/12 h | 上调Nrf2抗氧化途径缓解氧化损伤和脂质积累 | [ | |
番茄红素 Lycopene | 红色蔬菜和水果 | 雄性Wistar大鼠/HFD模型 | 每日5、10、20 mg·kg-1/口服/6周 | 减少肝氧化应激损伤,提高抗氧酶活性 | [ | |
脱氢枞酸 Dehydroabietic acid | 针叶植物 | 雄性C57BL/6J小鼠/HFD模型 | 每日10、20 mg·kg-1/口服/9周 | 改善体内氧化应激和脂质过氧化,提高抗氧化酶活性 | [ | |
生物碱类 Polyphenols | 桑枝生物碱 Moricine | 桑树枝 | C57BL/6J小鼠HFD模型 | 每日100、200、300、400 mg·kg-1/腹腔注射/6周 | 减少肝氧化应激损伤,提高抗氧酶活性 | [ |
苦参碱 Sophocarpidine | 豆科植物 | C57BL/6J小鼠/HFD模型 | 每日0.5、2.5、10 mg·kg-1/口服/6周 | 通过影响SERCA通路改善氧化应激和脂质代谢紊乱 | [ |
表 3
改善炎症反应的天然活性物质"
天然活性物质 Natural active substances | 来源 Source | 试验模型 Model | 剂量/给药途径/给药时间 Dose/Route/Duration | 效果/作用机制 Effect/Mechanisms | 参考文献 References |
黄酮类Flavone | |||||
姜黄素Curcumin | 姜黄根茎 | 雄性C57BL/6J小鼠/HFD模型 | 每日2 g·kg-1口服/24周 | 抑制炎性细胞浸润和减少炎性细胞因子表达 | [ |
藏红花素Crocin | 藏红花 | 雄性C57BL/6J小鼠/HFD模型 | 每日10、30、50 mg·kg-1/口服/10周 | 抑制肝损伤,减少炎性细胞因子表达 | [ |
芹菜素Apigenin | 水果、蔬菜 | 雄性C57BL/6J小鼠/LPS诱导模型 | 每日50 mg·kg-1/口服/8周 | 抑制NLRP3/NF-κB信号通路,降低炎症反应 | [ |
萜类Terpene | |||||
芍药苷Paeoniflorin | 牡丹 | 雄性Sprague-Dawley大鼠/HFD模型 | 每日20mg·kg-1/口服/4周 | 抑制ROCK/NF-κB通路缓解炎症反应,降低肝损伤 | [ |
虾青素Astaxanthin | 虾等海洋生物 | 雄性C57BL /6J小鼠/HFD模型 | 0.02%含量高脂饮食/口服/10周 | 减少促炎型巨噬细胞和增加抑炎型巨噬细胞的量 | [ |
姜黄醇Turmerol | 姜黄 | 雄性SD大鼠/HFD模型 | 25、50、100 mg/kg/每3 d腹腔注射1次/21d | 调节TLR4/NF-κB通路缓解炎症反应 | [ |
多酚类Polyphenols | |||||
蔓越莓多酚Cranberry polyphenols | 蔓越莓 | 雄性C57BL/6J小鼠/HFD模型 | 每日0.5~7 g/口服/10周 | 抑制TLR4/NF-κB通路,降低炎症反应 | [ |
绿茶多酚Green tea polyphenols | 绿茶 | 雄性Zucker大鼠/HFD模型 | 每日200 mg·kg-1/口服/8周 | 抑制肝损伤,减少炎性细胞因子表达 | [ |
白藜芦醇Resveratrol | 葡萄 | 雄性FVB/N小鼠/HFD模型 | 每日30 mg·kg-1/口服/60 d | 调节SIRT1通路,抑制炎症反应 | [ |
芒果苷Mangiferin | 芒果 | 雄性C57BL/6J小鼠/HFD模型 | 每日25、50、100 mg·kg-1/口服/12周 | 抑制NLRP3炎症小体表达,减轻炎症损伤 | [ |
表 4
改善肠道菌群的天然活性物质"
类别 Category | 天然活性物质 Natural active substances | 来源 Source | 试验模型 Model | 剂量/给药途径/给药时间 Dose/Route/Duration | 效果/作用机制 Effect/Mechanisms | 参考文献 References |
多酚类 Polyphenols | 金银花多酚 Honeysuckle polyphenol | 金银花 | 雄性C57BL/6N小鼠/HFD模型 | 每日0.5、1 g·kg-1/口服/35 d | 改善肠道微生物菌群结构,降低血清内毒素水平 | [ |
柑橘多酚 Citrus polyphenol | 柑橘皮粉 | Sprague-Dawley大鼠/HFD模型 | 每日1 g·kg-1/口服/12周 | 改善肠道微生物菌群结构,抑制炎症反应 | [ | |
绿原酸 Chlorogenic acid | 杜仲等植物 | 雄性C57BL/6小鼠/HFD模型 | 每日60 mg·kg-1/口服/12周 | 改善肠道微生物菌群结构,降低血清内毒素水平 | [ | |
糖类和苷类 Sugars and glycosides | 黄芪多糖 Astragalus polysaccharide | 黄芪 | 雄性C57BL/6J小鼠/HFD模型 | 每日2%、4%、8%/口服/14周 | 逆转肠道微生物结构和功能以及肠道代谢物的变化 | [ |
灵芝菌丝体多糖 Ganoderma lucidum mycelium polysaccharide | 灵芝 | 雄性C57BL/6N小鼠/HFD模型 | 每日100 μL/口服/2月 | 预防肠道菌群失调和肥胖相关代谢紊乱 | [ | |
绞股蓝多糖 Gynostemma Pentaphyllum | 绞股蓝 | 雄性C57BL/6小鼠/蛋氨酸和胆碱缺乏模型 | 每日150、300 mg·kg-1/口服/4周 | 调节肠道菌群和TLR2/NLRP3通路改善NASH | [ | |
云芝多糖 Coriolus versicolor polysaccharide | 云芝 | 雄性C57BL/6J小鼠/HFD模型 | 每日100、400 mg·kg-1/口服/40 d | 改善肠道微生物菌群结构,缓解肝脂肪变性 | [ | |
三七皂苷 Notoginsenoside | 三七 | 雄性C57BL/6小鼠/HFD模型 | 每日400、800 mg·kg-1/口服/7周 | 改善肠道微生物菌群结构,缓解肝脂肪变性 | [ | |
生物碱类 Polyphenols | 甜菜碱 Betaine | 甜菜 | C57BL/6J小鼠/HFD模型 | 1%水溶液自由饮水/13周 | 改善肠道微生物菌群结构,提高短链脂肪酸的浓度 | [ |
小檗碱和吴茱萸碱 Berberine and evodiine | 黄檗和吴茱萸 | 雄性Sprague-Dawley大鼠/HFD模型 | 每日18、36、72 mg·kg-1/口服/4周 | 调节肠道微生物群和保护肠道屏障 | [ |
表 5
调控胆汁酸代谢紊乱的天然活性物质"
天然活性物质 Natural active substances | 来源 Source | 试验模型 Model | 剂量/给药途径/给药时间 Dose/Route/Duration | 效果/作用机制 Effect/Mechanisms | 参考文献 References |
黄酮类Flavone | |||||
金丝桃苷 Hyperin | 山楂 | 10周龄雄性大鼠/HFD模型 | 每日0.6、1.5 mg·kg-1/口服/20 d | 上调FXR/LXRα通路,促进胆汁酸排泄和抑制脂肪生成 | [ |
柑橘的总黄酮提取物 Citrus flavone extract | 柑橘 | 雄性C57BL/6J小鼠/HFD模型 | 每日50 mg·kg-1/口服/7周 | 促进胆汁酸代谢和调节肠道菌群紊乱 | [ |
萜类Terpene | |||||
甘草甜素 Glycyrrhizin | 甘草 | 雄性C57BL/6小鼠/蛋氨酸和胆碱缺乏模型 | 每日50 mg·kg-1/腹腔注射/8周 | 调节胆汁酸排泄和胆固醇代谢 | [ |
绞股蓝皂苷 Gypenosides | 绞股蓝 | 雄性C57BL/6小鼠/HFD模型 | 每日10 mg·kg-1/口服/4周 | 促进胆汁酸合成并介导胆汁酸代谢,参与脂质代谢 | [ |
多酚类Polyphenols | |||||
儿茶素 Catechin | 绿茶 | 雄性C57BL/6J小鼠/HFD模型 | 每日3.2 g·kg-1/口服/32周 | 降低小鼠胆汁酸和脂质吸收 | [ |
茶褐素 Theabrownin | 普洱茶 | 13名健康男性 | 每日50 mg·kg-1/静脉输液/4周 | 促进胆汁酸排泄和胆固醇代谢 | [ |
原花青素 Procyanidine | 葡萄籽 | 雄性Wistar大鼠/高果糖诱导模型 | 每日250 mg每日/口服/7 d | 促进胆汁酸排泄和总脂质排泄 | [ |
1 |
GRABHERR F , GRANDER C , EFFENBERGER M , et al. MAFLD: what 2 years of the redefinition of fatty liver disease has taught us[J]. Ther Adv Endocrinol Metab, 2022, 13, 20420188221139101.
doi: 10.1177/20420188221139101 |
2 |
RIOS R S , ZHENG K I , ZHENG M H . Non-alcoholic steatohepatitis and risk of hepatocellular carcinoma[J]. Chin Med J (Engl), 2021, 134 (24): 2911- 2921.
doi: 10.1097/CM9.0000000000001888 |
3 |
ZHOU X D , CAI J J , TARGHER G , et al. Metabolic dysfunction-associated fatty liver disease and implications for cardiovascular risk and disease prevention[J]. Cardiovasc Diabetol, 2022, 21 (1): 270.
doi: 10.1186/s12933-022-01697-0 |
4 |
TILG H , MOSCHEN A R . Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis[J]. Hepatology, 2010, 52 (5): 1836- 1846.
doi: 10.1002/hep.24001 |
5 |
XU J Q , SHEN J Y , YUAN R L , et al. Mitochondrial targeting therapeutics: promising role of natural products in non-alcoholic fatty liver disease[J]. Front Pharmacol, 2021, 12, 796207.
doi: 10.3389/fphar.2021.796207 |
6 | BYRNE C D , TARGHER G . NAFLD: a multisystem disease[J]. J Hepatol, 2015, 62 (S1): S47- S64. |
7 |
SAKURAI Y , KUBOTA N , YAMAUCHI T , et al. Role of insulin resistance in MAFLD[J]. Int J Mol Sci, 2021, 22 (8): 4156.
doi: 10.3390/ijms22084156 |
8 |
DALLIO M , SANGINETO M , ROMEO M , et al. Immunity as cornerstone of non-alcoholic fatty liver disease: the contribution of oxidative stress in the disease progression[J]. Int J Mol Sci, 2021, 22 (1): 436.
doi: 10.3390/ijms22010436 |
9 |
YAN F J , ZHANG X J , WANG W X , et al. The E3 ligase tripartite motif 8 targets TAK1 to promote insulin resistance and steatohepatitis[J]. Hepatology, 2017, 65 (5): 1492- 1511.
doi: 10.1002/hep.28971 |
10 |
RIVES C , FOUGERAT A , ELLERO-SIMATOS S , et al. Oxidative stress in NAFLD: role of nutrients and food contaminants[J]. Biomolecules, 2020, 10 (12): 1702.
doi: 10.3390/biom10121702 |
11 | ALISI A , CARPINO G , OLIVEIRA F L , et al. The role of tissue macrophage-mediated inflammation on NAFLD pathogenesis and its clinical implications[J]. Mediators Inflamm, 2017, 2017, 8162421. |
12 |
XU X H , POULSEN K L , WU L J , et al. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH)[J]. Signal Transduct Target Ther, 2022, 7 (1): 287.
doi: 10.1038/s41392-022-01119-3 |
13 |
VALLIANOU N , STRATIGOU T , CHRISTODOULATOS G S , et al. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives[J]. Curr Obes Rep, 2019, 8 (3): 317- 332.
doi: 10.1007/s13679-019-00352-2 |
14 | VALLIANOU N , CHRISTODOULATOS G S , KARAMPELA I , et al. Understanding the role of the gut microbiome and microbial metabolites in non-alcoholic fatty liver disease: current evidence and perspectives[J]. Biomolecules, 2022, 12 (1): 56. |
15 |
NI Y M , LU M N , XU Y , et al. The role of gut microbiota-bile acids axis in the progression of non-alcoholic fatty liver disease[J]. Front Microbiol, 2022, 13, 908011.
doi: 10.3389/fmicb.2022.908011 |
16 |
CHIANG J Y L , FERRELL J M . Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318 (3): G554- G573.
doi: 10.1152/ajpgi.00223.2019 |
17 |
韩福珍, 蔡李萌, 李卓然, 等. 肠道菌群介导次级胆汁酸及其受体调节肠黏膜免疫机制的研究进展[J]. 畜牧兽医学报, 2024, 55 (5): 1904- 1913.
doi: 10.11843/j.issn.0366-6964.2024.05.009 |
HAN F Z , CAI L M , LI Z R , et al. Research progress on the mechanism of intestinal flora-mediated regulation of intestinal mucosal immunity by secondary bile acids and their receptors[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (5): 1904- 1913.
doi: 10.11843/j.issn.0366-6964.2024.05.009 |
|
18 |
杜雪儿, 王菁, 姚军虎, 等. 胆汁酸肠肝循环转运蛋白及FXR对其的调控机制[J]. 畜牧兽医学报, 2021, 52 (10): 2721- 2739.
doi: 10.11843/j.issn.0366-6964.2021.010.004 |
DU X E , WANG J , YAO J H , et al. Bile acid enterohepatic circulation transporter and its regulatory mechanism by FXR[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (10): 2721- 2739.
doi: 10.11843/j.issn.0366-6964.2021.010.004 |
|
19 |
YANG H , YANG T T , HENG C , et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice[J]. Phytother Res, 2019, 33 (12): 3140- 3152.
doi: 10.1002/ptr.6486 |
20 |
KIM M H , KANG K S , LEE Y S . The inhibitory effect of genistein on hepatic steatosis is linked to visceral adipocyte metabolism in mice with diet-induced non-alcoholic fatty liver disease[J]. Br J Nutr, 2010, 104 (9): 1333- 1342.
doi: 10.1017/S0007114510002266 |
21 |
NAKANO H , WU S S , SAKAO K , et al. Bilberry anthocyanins ameliorate NAFLD by improving dyslipidemia and gut microbiome dysbiosis[J]. Nutrients, 2020, 12 (11): 3252.
doi: 10.3390/nu12113252 |
22 | LI Z P , XU J Y , ZHENG P Y , et al. Hawthorn leaf flavonoids alleviate nonalcoholic fatty liver disease by enhancing the adiponectin/AMPK pathway[J]. Int J Clin Exp Med, 2015, 8 (10): 17295- 17307. |
23 |
TIAN X , RU Q , XIONG Q , et al. Catalpol attenuates hepatic steatosis by regulating lipid metabolism via AMP-activated protein kinase activation[J]. Biomed Res Int, 2020, 2020, 6708061.
doi: 10.1155/2020/6708061 |
24 |
HAN X , CUI Z Y , SONG J , et al. Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease via FXR/LXRs-dependent manner[J]. Chem Biol Interact, 2019, 311, 108794.
doi: 10.1016/j.cbi.2019.108794 |
25 |
LI S T , MENG F Y , LIAO X L , et al. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats[J]. PLoS One, 2014, 9 (1): e86724.
doi: 10.1371/journal.pone.0086724 |
26 |
JIAN T Y , LV H , DING X Q , et al. Polyphenol-rich Trapa quadrispinosa pericarp extract ameliorates high-fat diet induced non-alcoholic fatty liver disease by regulating lipid metabolism and insulin resistance in mice[J]. PeerJ, 2019, 7, e8165.
doi: 10.7717/peerj.8165 |
27 |
PEREIRA R R , DE ABREU I C M E , DA COSTA GUERRA J F , et al. Açai (Euterpe oleracea Mart.) upregulates paraoxonase 1 gene expression and activity with concomitant reduction of hepatic steatosis in high-fat diet-fed rats[J]. Oxid Med Cell Longev, 2016, 2016, 8379105.
doi: 10.1155/2016/8379105 |
28 |
LUO Z X , LI M Q , YANG Q , et al. Ferulic acid prevents nonalcoholic fatty liver disease by promoting fatty acid oxidation and energy expenditure in C57BL/6 mice fed a high-fat diet[J]. Nutrients, 2022, 14 (12): 2530.
doi: 10.3390/nu14122530 |
29 |
WANG C M , YUAN R S , ZHUANG W Y , et al. Schisandra polysaccharide inhibits hepatic lipid accumulation by downregulating expression of SREBPs in NAFLD mice[J]. Lipids Health Dis, 2016, 15 (1): 195.
doi: 10.1186/s12944-016-0358-5 |
30 | LI W , LI Y , WANG Q , et al. Crude extracts from Lycium barbarum suppress SREBP-1c expression and prevent diet-induced fatty liver through AMPK activation[J]. Biomed Res Int, 2014, 2014, 196198. |
31 |
LI X Y , ZENG B B , WEN L , et al. Sea cucumber saponins derivatives alleviate hepatic lipid accumulation effectively in fatty acids-induced HepG2 cells and orotic acid-induced rats[J]. Mar Drugs, 2022, 20 (11): 703.
doi: 10.3390/md20110703 |
32 | LI H N , ZHAO L L , ZHOU D Y , et al. Ganoderma lucidum polysaccharides ameliorates hepatic steatosis and oxidative stress in db/db mice via targeting nuclear factor E2 (erythroid-derived 2)-related factor-2/heme oxygenase-1 (HO-1) pathway[J]. Med Sci Monit, 2020, 26, e921905. |
33 |
CHANG G R , LIN W L , LIN T C , et al. The ameliorative effects of saikosaponin in thioacetamide-induced liver injury and non-alcoholic fatty liver disease in mice[J]. Int J Mol Sci, 2021, 22 (21): 11383.
doi: 10.3390/ijms222111383 |
34 |
ULLAH A , MUNIR S , BADSHAH S L , et al. Important flavonoids and their role as a therapeutic agent[J]. Molecules, 2020, 25 (22): 5243.
doi: 10.3390/molecules25225243 |
35 |
YI H , PENG H Y , WU X Y , et al. The therapeutic effects and mechanisms of quercetin on metabolic diseases: pharmacological data and clinical evidence[J]. Oxid Med Cell Longev, 2021, 2021, 6678662.
doi: 10.1155/2021/6678662 |
36 |
MOHAMMED H A , KHAN R A . Anthocyanins: traditional uses, structural and functional variations, approaches to increase yields and products ' quality, hepatoprotection, liver longevity, and commercial products[J]. Int J Mol Sci, 2022, 23 (4): 2149.
doi: 10.3390/ijms23042149 |
37 |
HUANG M , LU J J , HUANG M Q , et al. Terpenoids: natural products for cancer therapy[J]. Expert Opin Investig Drugs, 2012, 21 (12): 1801- 1818.
doi: 10.1517/13543784.2012.727395 |
38 | 魏翊, 刘永发, 巩璐, 等. 饲粮中添加槲皮素对产蛋中后期蛋鸡蛋品质和脂代谢的影响[J]. 动物营养学报, 2022, 34 (5): 2907- 2917. |
WEI Y , LIU Y F , GONG L , et al. Effects of dietary quercetin on egg quality and lipid metabolism of laying hens during middle-late laying period[J]. Chinese Journal of Animal Nutrition, 2022, 34 (5): 2907- 2917. | |
39 | 张欢, 史佳梅. 枸杞多糖作为饲料添加剂的应用前景[J]. 北方牧业, 2023, (24): 20. |
ZHANG H , SHI J M . Application prospect of lycium barbarum polysaccharide as feed additive[J]. Beifang Muye, 2023, (24): 20. | |
40 |
RADA P , GONZÁLEZ-RODRÍGUEZ Á , GARCÍA-MONZÓN C , et al. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver?[J]. Cell Death Dis, 2020, 11 (9): 802.
doi: 10.1038/s41419-020-03003-w |
41 |
LUO X Y , TAKAHARA T , HOU J G , et al. Theaflavin attenuates ischemia-reperfusion injury in a mouse fatty liver model[J]. Biochem Biophys Res Commun, 2012, 417 (1): 287- 293.
doi: 10.1016/j.bbrc.2011.11.102 |
42 |
JIAN T Y , DING X Q , WU Y X , et al. Hepatoprotective effect of loquat leaf flavonoids in PM2.5-induced non-alcoholic fatty liver disease via regulation of IRs-1/Akt and CYP2E1/JNK pathways[J]. Int J Mol Sci, 2018, 19 (10): 3005.
doi: 10.3390/ijms19103005 |
43 |
WANG C , FAN R Q , ZHANG Y X , et al. Naringenin protects against isoniazid- and rifampicin-induced apoptosis in hepatic injury[J]. World J Gastroenterol, 2016, 22 (44): 9775- 9783.
doi: 10.3748/wjg.v22.i44.9775 |
44 |
MENGESHA T , GNANASEKARAN N , MEHARE T . Hepatoprotective effect of silymarin on fructose induced nonalcoholic fatty liver disease in male albino wistar rats[J]. BMC Complement Med Ther, 2021, 21 (1): 104.
doi: 10.1186/s12906-021-03275-5 |
45 |
LIU Q S , PAN R , DING L , et al. Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries[J]. Int Immunopharmacol, 2017, 49, 132- 141.
doi: 10.1016/j.intimp.2017.05.026 |
46 |
SHEN B Y , FENG H H , CHENG J Q , et al. Geniposide alleviates non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways[J]. J Cell Mol Med, 2020, 24 (9): 5097- 5108.
doi: 10.1111/jcmm.15139 |
47 | JIN M Y , FENG H H , WANG Y , et al. Gentiopicroside ameliorates oxidative stress and lipid accumulation through nuclear factor erythroid 2-related factor 2 activation[J]. Oxid Med Cell Longev, 2020, 2020, 2940746. |
48 |
PETYAEV I M . Lycopene deficiency in ageing and cardiovascular disease[J]. Oxid Med Cell Longev, 2016, 2016, 3218605.
doi: 10.1155/2016/3218605 |
49 |
GAO G , XIE Z S , LI E W , et al. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis[J]. J Nat Med, 2021, 75 (3): 540- 552.
doi: 10.1007/s11418-021-01491-4 |
50 |
CHEN Y M , LIAN C F , SUN Q W , et al. Ramulus mori (Sangzhi) alkaloids alleviate high-fat diet-induced obesity and nonalcoholic fatty liver disease in mice[J]. Antioxidants (Basel), 2022, 11 (5): 905.
doi: 10.3390/antiox11050905 |
51 |
GAO X B , GUO S , ZHANG S , et al. Matrine attenuates endoplasmic reticulum stress and mitochondrion dysfunction in nonalcoholic fatty liver disease by regulating SERCA pathway[J]. J Transl Med, 2018, 16 (1): 319.
doi: 10.1186/s12967-018-1685-2 |
52 |
YAO P Y , LIU Y J . Terpenoids: natural compounds for non-alcoholic fatty liver disease (NAFLD) therapy[J]. Molecules, 2022, 28 (1): 272.
doi: 10.3390/molecules28010272 |
53 | 蔡龙, 蒋显仁, 丁宏标, 等. 水飞蓟素的生物学功能及其在畜禽生产中的应用研究进展[J]. 中国畜牧杂志, 2023, 59 (1): 27- 34. |
CAI L , JIANG X R , DING H B , et al. Biological functions of silymarin and its application in livestock and poultry production[J]. Chinese Journal of Animal Science, 2023, 59 (1): 27- 34. | |
54 | 马龙飞, 陈顺, 周斌斌, 等. 饲粮添加不同水平芦丁对肉鸡肉品质和抗氧化功能的影响[J]. 南京农业大学学报, 2024, 47 (1): 78- 86. |
MA L F , CHEN S , ZHOU B B , et al. Effects of different levels of dietary rutin supplementation on meat quality and muscle antioxidant capacity of broilers[J]. Journal of Nanjing Agricultural University, 2024, 47 (1): 78- 86. | |
55 |
刘慧娟, 王超, 周斌斌, 等. 饲粮中添加芦丁对肉鸡回肠形态、免疫、抗氧化及屏障功能的影响[J]. 畜牧兽医学报, 2023, 54 (2): 630- 641.
doi: 10.11843/j.issn.0366-6964.2023.02.020 |
LIU H J , WANG C , ZHOU B B , et al. Effects of dietary rutin supplementation on ileal morphology, immunity, antioxidant and barrier function of broilers[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 630- 641.
doi: 10.11843/j.issn.0366-6964.2023.02.020 |
|
56 | LUCI C , BOURINET M , LECLÈRE P S , et al. Chronic inflammation in non-alcoholic steatohepatitis: molecular mechanisms and therapeutic strategies[J]. Front Endocrinol (Lausanne), 2020, 11, 597648. |
57 | INZAUGARAT M E , DE MATTEO E , BAZ P , et al. New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans[J]. PLoS One, 2017, 12 (3): e0172900. |
58 | XU Z J , LIN S S , GONG J J , et al. Exploring the protective effects and mechanism of crocetin from saffron against NAFLD by network pharmacology and experimental validation[J]. Front Med (Lausanne), 2021, 8, 681391. |
59 | LU Z , LIU L , ZHAO S X , et al. Apigenin attenuates atherosclerosis and non-alcoholic fatty liver disease through inhibition of NLRP3 inflammasome in mice[J]. Sci Rep, 2023, 13 (1): 7996. |
60 | MA Z H , CHU L , LIU H Y , et al. Paeoniflorin alleviates non-alcoholic steatohepatitis in rats: involvement with the ROCK/NF-κB pathway[J]. Int Immunopharmacol, 2016, 38, 377- 384. |
61 | NI Y H , NAGASHIMADA M , ZHUGE F , et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: a comparison with vitamin E[J]. Sci Rep, 2015, 5, 17192. |
62 | 齐书妍, 黄华, 李永坤, 等. 莪术醇对非酒精性脂肪性肝大鼠肝功能和肝纤维化的影响及机制[J]. 中国应用生理学杂志, 2021, 37 (6): 611- 615. |
QI S Y , HUANG H , LI Y K , et al. Effects of curcumol on liver function and fibrosis in rats of nonalcoholic fatty liver disease and its mechanism[J]. Chinese Journal of Applied Physiology, 2021, 37 (6): 611- 615. | |
63 | GLISAN S L , RYAN C , NEILSON A P , et al. Cranberry extract attenuates hepatic inflammation in high-fat-fed obese mice[J]. J Nutr Biochem, 2016, 37, 60- 66. |
64 | TAN Y , KIM J , CHENG J , et al. Green tea polyphenols ameliorate non-alcoholic fatty liver disease through upregulating AMPK activation in high fat fed Zucker fatty rats[J]. World J Gastroenterol, 2017, 23 (21): 3805- 3814. |
65 | ANDRADE J M O , PARAÍSO A F , DE OLIVEIRA M V M , et al. Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation[J]. Nutrition, 2014, 30 (7-8): 915- 919. |
66 | ZHANG Y , WANG R Q , YAO H J , et al. Mangiferin ameliorates HFD-induced NAFLD through regulation of the AMPK and NLRP3 inflammasome signal pathways[J]. J Immunol Res, 2021, 2021, 4084566. |
67 | 杨浩, 金三俊, 庞倩, 等. 白藜芦醇对畜禽常见肝损伤保护机制及应用的研究进展[J]. 中国畜牧兽医, 2020, 47 (11): 3528- 3535. |
YANG H , JIN S J , PANG Q , et al. Research progress on the protective mechanism and application of resveratrol to common liver injury in livestock and poultry[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47 (11): 3528- 3535. | |
68 |
张宇, 徐子洁, 黄晓瑜, 等. 白藜芦醇对热应激诱导的山羊小肠上皮细胞炎性反应调节作用的研究[J]. 畜牧兽医学报, 2020, 51 (8): 1886- 1894.
doi: 10.11843/j.issn.0366-6964.2020.08.012 |
ZHANG Y , XU Z J , HUANG X Y , et al. Regulatory effect of resveratrol on inflammatory response induced by heat stress in goat small intestinal epithelial cells[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (8): 1886- 1894.
doi: 10.11843/j.issn.0366-6964.2020.08.012 |
|
69 | 袁欢, 曹敞, 黄若澜, 等. 姜黄素防治畜禽代谢性疾病的研究进展[J]. 中国畜牧杂志, 2022, 58 (5): 71- 76. |
YUAN H , CAO C , HUANG R L , et al. Research progress on curcumin in the prevention and treatment of metabolic diseases of livestock and poultry[J]. Chinese Journal of Animal Science, 2022, 58 (5): 71- 76. | |
70 | 徐兴昱, 陈永芳, 刘壮, 等. 姜黄素在畜禽养殖中的应用研究进展[J]. 中国畜牧杂志, 2023, 59 (4): 17- 23. |
XU X Y , CHEN Y F , LIU Z , et al. Research progress on the application of curcumin in livestock and poultry production[J]. Chinese Journal of Animal Science, 2023, 59 (4): 17- 23. | |
71 | RAHMAN S U. 绿茶多酚对高脂饮食诱导肥胖犬的肠道菌群及肠道炎症变化的干预作用[D]. 合肥: 安徽农业大学, 2019. |
RAHMAN S U. Intervene role of green tea polyphenols to ameliorate gut microbiota alteration, and intestinal inflammatory changes in high-fat diet induced obese dogs[D]. Hefei: Anhui Agricultural University, 2019. (in Chinese) | |
72 | 丘光恒, 李桦, 杨梅梅, 等. 绿茶多酚对热应激肉鸡部分免疫功能的影响[J]. 养禽与禽病防治, 2016, (1): 41- 43. |
QIU G H , LI H , YANG M M , et al. Effects of green tea polyphenols on partial immune function of broilers under heat stress[J]. Poultry Husbandry and Disease Control, 2016, (1): 41- 43. | |
73 | MUNGAMURI S K , VIJAYASARATHY K . Role of the gut microbiome in nonalcoholic fatty liver disease progression[J]. Crit Rev Oncog, 2020, 25 (1): 57- 70. |
74 | WU S S , HU R Z , NAKANO H , et al. Modulation of gut microbiota by Lonicera caerulea L. berry polyphenols in a mouse model of fatty liver induced by high fat diet[J]. Molecules, 2018, 23 (12): 3213. |
75 | HU M Y , ZHANG L , RUAN Z , et al. The regulatory effects of citrus peel powder on liver metabolites and gut flora in mice with non-alcoholic fatty liver disease (NAFLD)[J]. Foods, 2021, 10 (12): 3022. |
76 | SHI A M , LI T , ZHENG Y , et al. Chlorogenic acid improves NAFLD by regulating gut microbiota and GLP-1[J]. Front Pharmacol, 2021, 12, 693048. |
77 | HONG Y , LI B B , ZHENG N N , et al. Integrated metagenomic and metabolomic analyses of the effect of Astragalus polysaccharides on alleviating high-fat diet-induced metabolic disorders[J]. Front Pharmacol, 2020, 11, 833. |
78 | CHANG C J , LIN C S , LU C C , et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota[J]. Nat Commun, 2015, 6 (1): 7489. |
79 | YUE S R , TAN Y Y , ZHANG L , et al. Gynostemma pentaphyllum polysaccharides ameliorate non-alcoholic steatohepatitis in mice associated with gut microbiota and the TLR2/NLRP3 pathway[J]. Front Endocrinol (Lausanne), 2022, 13, 885039. |
80 | TANG H L , ZHA Z Q , TAN Y F , et al. Extraction and characterization of polysaccharide from fermented mycelia of Coriolus versicolor and its efficacy for treating nonalcoholic fatty liver disease[J]. Int J Biol Macromol, 2023, 248, 125951. |
81 | XU Y , WANG N , TAN H Y , et al. Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity[J]. Theranostics, 2020, 10 (24): 11302- 11323. |
82 | SUN L Q , TAN X Y , LIANG X P , et al. Maternal betaine supplementation mitigates maternal high fat diet-induced NAFLD in offspring mice through gut microbiota[J]. Nutrients, 2023, 15 (2): 284. |
83 | DAI Y F , ZHU W Y , ZHOU J X , et al. The combination of berberine and evodiamine ameliorates high-fat diet-induced non-alcoholic fatty liver disease associated with modulation of gut microbiota in rats[J]. Braz J Med Biol Res, 2022, 55, e12096. |
84 |
赖星, 陈庆菊, 卢昌文, 等. 日粮添加绿原酸和橙皮苷对断奶仔猪生长性能与肠道功能的影响[J]. 畜牧兽医学报, 2019, 50 (3): 570- 580.
doi: 10.11843/j.issn.0366-6964.2019.03.012 |
LAI X , CHEN Q J , LU C W , et al. The effects of dietary chlorogenic acid and hesperidin on growth performance and intestinal function in weaned piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (3): 570- 580.
doi: 10.11843/j.issn.0366-6964.2019.03.012 |
|
85 | CLIFFORD B L , SEDGEMAN L R , WILLIAMS K J , et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption[J]. Cell Metab, 2021, 33 (8): 1671- 1684. |
86 | WANG S S , SHENG F Y , ZOU L , et al. Hyperoside attenuates non-alcoholic fatty liver disease in rats via cholesterol metabolism and bile acid metabolism[J]. J Adv Res, 2021, 34, 109- 122. |
87 | HE B H , JIANG J P , SHI Z , et al. Pure total flavonoids from citrus attenuate non-alcoholic steatohepatitis via regulating the gut microbiota and bile acid metabolism in mice[J]. Biomed Pharmacother, 2021, 135, 111183. |
88 | YAN T T , WANG H , CAO L J , et al. Glycyrrhizin alleviates nonalcoholic steatohepatitis via modulating bile acids and meta-inflammation[J]. Drug Metab Dispos, 2018, 46 (9): 1310- 1319. |
89 | LI H S , XI Y F , XIN X , et al. Gypenosides regulate farnesoid X receptor-mediated bile acid and lipid metabolism in a mouse model of non-alcoholic steatohepatitis[J]. Nutr Metab (Lond), 2020, 17, 34. |
90 | HUANG J B , FENG S M , LIU A N , et al. Green tea polyphenol EGCG alleviates metabolic abnormality and fatty liver by decreasing bile acid and lipid absorption in mice[J]. Mol Nutr Food Res, 2018, 62 (4): 1700696. |
91 | HUANG F J , ZHENG X J , MA X H , et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J]. Nat Commun, 2019, 10 (1): 4971. |
92 | DOWNING L E , HEIDKER R M , CAIOZZI G C , et al. A grape seed procyanidin extract ameliorates fructose-induced hypertriglyceridemia in rats via enhanced fecal bile acid and cholesterol excretion and inhibition of hepatic lipogenesis[J]. PLoS One, 2015, 10 (10): e0140267. |
93 | GU M , ZHANG S Y , ZHAO Y Y , et al. Cycloastragenol improves hepatic steatosis by activating farnesoid X receptor signalling[J]. Pharmacol Res, 2017, 121, 22- 32. |
[1] | 王梦迪, 王恒, 鲁秀香, 王昱旻, 樊文杰, 姚晨, 刘鹏翔, 马延杰, 杨国宇. 锰纳米佐剂的制备及生物学效应[J]. 畜牧兽医学报, 2024, 55(8): 3374-3382. |
[2] | 李竟, 张元旭, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 机器学习全基因组选择研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2281-2292. |
[3] | 张元旭, 李竟, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 动物遗传评估软件研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1827-1841. |
[4] | 彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369. |
[5] | 周梦婷, 宋银娟, 许健, 李斌, 冉多良, 储岳峰. 基于碳水化合物的佐剂作用机制研究进展[J]. 畜牧兽医学报, 2024, 55(2): 491-501. |
[6] | 蔡子雯, 孙志刚, 司晓慧, 吕若一, 刘晓晔. 动物病原感染性呼吸系统疾病兽药研究进展及新药研发趋势分析[J]. 畜牧兽医学报, 2024, 55(11): 4872-4889. |
[7] | 吕若一, 司晓慧, 孙志刚, 史晓敏, 刘晓晔. 猪链球菌耐药现状分析及感染防控措施[J]. 畜牧兽医学报, 2023, 54(12): 4920-4933. |
[8] | 夏春秋, 万发春, 刘磊, 沈维军, 肖定福. 缬氨酸的生物学功能及其在畜禽日粮中的应用[J]. 畜牧兽医学报, 2023, 54(11): 4502-4513. |
[9] | 毕睿晨, 刘相泽, 胡泽琼, 杨美雪, 乔嘉宁, 黄嘉, 郭芳申, 孔令华, 王忠. 植物多酚在家禽领域应用研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4488-4501. |
[10] | 孙康泰, 刘彬, 刘军, 蒋大伟, 姚志鹏, 葛毅强, 邓小明. 基于文献计量的“十三五”国家重点研发计划“畜禽专项”研究进展与热点趋势分析[J]. 畜牧兽医学报, 2022, 53(9): 2819-2832. |
[11] | 严蕊, 任昳, 陈秋慧, 李政志, 杨晶涵, 赵天睿, 雷镒妃, 胡长敏. 猫下泌尿道综合征[J]. 畜牧兽医学报, 2022, 53(8): 2470-2478. |
[12] | 赵志显, 常雪蕊, 郭勇, 龙城, 盛熙晖, 王相国, 邢凯, 肖龙菲, 林自力, 倪和民, 齐晓龙. 种公鸡精液品质营养调控的研究进展[J]. 畜牧兽医学报, 2022, 53(8): 2435-2443. |
[13] | 郭蓉, 郭亚洲, 王帅, 杨晨, 苏永霞, 吴晨晨, 路浩, 赵宝玉. 中国天然草地有毒植物及其放牧家畜中毒病研究进展[J]. 畜牧兽医学报, 2021, 52(5): 1171-1185. |
[14] | 何依蓉, 张奕杰, 杨伟, 陈晓聪, 张家翔, 陈培富. 鼠伤寒沙门菌烈性噬菌体的分离鉴定与生物学特性[J]. 畜牧兽医学报, 2021, 52(3): 763-771. |
[15] | 刘晓文, 张庆, 宋新慧, 骆延波, 胡明, 李璐璐, 齐静, 张印, 赵效南, 刘玉庆. 噬菌体降低铜绿假单胞菌所致腐蛋的效果[J]. 畜牧兽医学报, 2020, 51(7): 1756-1763. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||