畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (1): 74-81.doi: 10.11843/j.issn.0366-6964.2025.01.007
收稿日期:
2024-03-18
出版日期:
2025-01-23
发布日期:
2025-01-18
通讯作者:
马涛
E-mail:1612541223@qq.com;matao@caas.cn
作者简介:
孙同玉(2001-),男,黑龙江牡丹江人,硕士生,主要从事动物营养与饲料科学研究,E-mail:1612541223@qq.com
基金资助:
Received:
2024-03-18
Online:
2025-01-23
Published:
2025-01-18
Contact:
MA Tao
E-mail:1612541223@qq.com;matao@caas.cn
摘要:
反刍动物初乳中含有丰富的生物活性成分,其中microRNA是一类非编码RNA,可在转录后水平调节基因的表达,对于母体乳腺以及幼龄反刍动物肠道发育具有重要的调控作用。近年来,反刍动物初乳microRNA组成和功能的研究开始受到关注,本文综述了反刍动物初乳中microRNA的来源、组成及其影响因素、功能,以及目前研究的局限性和未来的研究方向,为生产高品质初乳,提高母仔一体化培育水平提供理论支撑。
中图分类号:
孙同玉, 马涛. 反刍动物初乳microRNA组成和功能研究进展[J]. 畜牧兽医学报, 2025, 56(1): 74-81.
SUN Tongyu, MA Tao. Research Progress on Composition and Function of Colostral MicroRNA in Ruminants[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 74-81.
表 1
不同反刍动物初乳研究中相对丰度排名前10的microRNA"
品种 Breed | 胎次 Parity | 相对丰度排名前10的microRNA Top 10 most abundant microRNA | MicroRNA数量 Amount of microRNA | 初乳收集时间 Collection time of colostrum | 文献 References |
荷斯坦奶牛 Holstein | 2~4胎次 Second to fourth parity | miR-148a-3p, miR-27b-3p, miR-let-7a-5p, miR-26a-5p | —— | 产后8 h内 Within 8 h after parturition | [ |
荷斯坦奶牛 Holstein | 经产 Multi-parity | miR-30a, miR-148a, let-7a, miR-181a, let-7f, miR-26a, miR-22, miR-92a, miR-21, miR-30d | 343 | 产后24 h内 Within 24 h postpartum | [ |
荷斯坦奶牛 Holstein | —— | bta-let-7b, bta-miR-3596, bta-miR-99a-5p, bta-miR-148a, bta-miR-26a, bta-miR-26c, bta-let-7a-5p, bta-miR-30a-5p, bta-miR-21-5p, bta-miR-30d | 299 | 产后1~2 d 1-2 postpartum days | [ |
东安纳托利亚红牛 Dogu Anadolu Kirmizisi (DAK) | —— | bta-miR-21-5p, bta-miR-451, bta-miR-143, bta-miR-148a, bta-let-7i, bta-miR-320a, bta-miR-26a, bta-miR-26c, bta-miR-99a-5p, bta-miR-1 | 269 | 产后1~2 d 1-2 d postpartum | [ |
荷斯坦奶牛 Holstein | —— | let-7a, let-7b, let-7c, let-7f, miR-15b, miR-20a, miR-24, miR-26a, miR-27b, miR-29b | 100 | 产后3 d内 Within 3 d postpartum | [ |
安格斯牛、赫里福德牛、安格斯×赫里福德牛 Angus, Hereford, Angus× Hereford | 初产经产混合 Mixed | let-7b, let-7a-5p, miR-30a-5p, miR-148a, miR-21-5p, miR-200a, miR-141, let-7f, miR-26a, miR-200c | 389 | —— | [ |
荷斯坦奶牛 Holstein | —— | bta-miR-26a, bta-miR-30a-5p, bta-miR181a, bta-let-7a-5p, bta-miR-22-3p, bta-miR-191, bta-miR-148a, bta-let-7f, bta-miR-27b, bta-miR-182 | —— | 产后3 d内 Within 3 d postpartum | [ |
—— | —— | let-7b, miR-30a, let-7a, let-7c, miR-21, miR-103, miR-25, miR-320a, miR-107, miR-423-5p | 230 | 产后7 d内 Within 7 d postpartum | [ |
瑞士褐牛 Brown Swiss cows | 经产 Multi-parity | bta-miR-30a-5p, bta-miR-21-5p, bta-miR-148a, bta-miR-200a, bta-miR-200b, bta-miR-99a-5p, bta-miR-26a, bta-let-7f, bta-let-7g, bta-let-7a-5p | 141 | 产后立即收集 Immediately after parturition | [ |
荷斯坦奶牛 Holstein | —— | bta-mir-10, bta-mir-125b, bta-mir-150, bta-mir-223, bta-mir-24-1, bta-mir-93 | —— | 产后1~2 d 1-2 d postpartum | [ |
—— | —— | miR-24, miR-30d, miR-93, miR-106a, miR-181a, miR-200a, miR-451 | —— | 产后7 d内 Within 7 d postpartum | [ |
关中奶山羊 Guanzhong dairy goat | —— | chi-miR-143-3p, chi-miR-30a-5p, chi-miR-148a-3p, chi-miR-10b-5p, chi-miR-26a-5p, chi-miR-181c-5p, chi-miR-27b-3p, chi-miR-146b-5p, chi-miR-21-5p, chi-let-7f-5p | 568 | 产后2 d内 Within 2 d postpartum | [ |
萨能奶山羊 Saanen dairy goats | —— | chi-miR-30a-5p, chi-miR-148a, chi-miR-22-3p, chi-miR-27b, chi-miR-378-3p, chi-miR-92a-3p, chi-miR-92b, chi-miR-21-5p, chi-miR-146b-5p, chi-miR-141 | —— | 产后3 d内 Within 3 d postpartum | [ |
关中奶山羊 Guanzhong dairy goat | 初产 Primiparous | miR-423-5p, miR-30a-5p, miR-26a-5p, miR-200b, miR-148a-3p, let-7g-5p, let-7f-5p, let-7c-5p, let-7b-5p, let-7a-5p | 192 | 产后立即收集 Immediately after parturition | [ |
1 |
LINEHAN K , ROSS R P , STANTON C . Bovine colostrum for veterinary and human health applications: a critical review[J]. Annu Rev Food Sci Technol, 2023, 14, 387- 410.
doi: 10.1146/annurev-food-060721-014650 |
2 |
BAUMRUCKER C R , MACRINA A L , BRUCKMAIER R M . Colostrogenesis: role and mechanism of the bovine Fc receptor of the neonate (FcRn)[J]. J Mammary Gland Biol Neoplasia, 2021, 26 (4): 419- 453.
doi: 10.1007/s10911-021-09506-2 |
3 |
YLIOJA C M , ROLF M M , MAMEDOVA L K , et al. Associations between body condition score at parturition and microRNA profile in colostrum of dairy cows as evaluated by paired mapping programs[J]. J Dairy Sci, 2019, 102 (12): 11609- 11621.
doi: 10.3168/jds.2019-16675 |
4 |
CHEN X , BA Y , MA L J , et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res, 2008, 18 (10): 997- 1006.
doi: 10.1038/cr.2008.282 |
5 |
LODISH H F , ZHOU B Y , LIU G , et al. Micromanagement of the immune system by microRNAs[J]. Nat Rev Immunol, 2008, 8 (2): 120- 130.
doi: 10.1038/nri2252 |
6 |
LEE R C , AMBROS V . An extensive class of small RNAs in Caenorhabditis elegans[J]. Science, 2001, 294 (5543): 862- 864.
doi: 10.1126/science.1065329 |
7 |
MOSS E G . MicroRNAs: hidden in the genome[J]. Curr Biol, 2002, 12 (4): R138- R140.
doi: 10.1016/S0960-9822(02)00708-X |
8 |
BUCHAN J R , PARKER R . The two faces of miRNA[J]. Science, 2007, 318 (5858): 1877- 1878.
doi: 10.1126/science.1152623 |
9 | ZOU Q P , LIANG Y , LUO H B , et al. miRNA-mediated RNAa by targeting enhancers[J]. Adv Exp Med Biol, 2017, 983, 113- 125. |
10 |
YIN J Q , ZHAO R C , MORRIS K V . Profiling microRNA expression with microarrays[J]. Trends Biotechnol, 2008, 26 (2): 70- 76.
doi: 10.1016/j.tibtech.2007.11.007 |
11 | MEHTA J P . Sequencing small RNA: introduction and data analysis fundamentals[J]. Methods Mol Biol, 2014, 1182, 93- 103. |
12 |
HUE D T , PETROVSKI K , CHEN T , et al. Analysis of immune-related microRNAs in cows and newborn calves[J]. J Dairy Sci, 2023, 106 (4): 2866- 2878.
doi: 10.3168/jds.2022-22398 |
13 |
LI R , DUDEMAINE P L , ZHAO X , et al. Comparative analysis of the miRNome of bovine milk fat, whey and cells[J]. PLoS One, 2016, 11 (4): e0154129.
doi: 10.1371/journal.pone.0154129 |
14 |
HATA T , MURAKAMI K , NAKATANI H , et al. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs[J]. Biochem Biophys Res Commun, 2010, 396 (2): 528- 533.
doi: 10.1016/j.bbrc.2010.04.135 |
15 |
LI Z J , LAN X Y , GUO W J , et al. Comparative transcriptome profiling of dairy goat micrornas from dry period and peak lactation mammary gland tissues[J]. PLoS One, 2012, 7 (12): e52388.
doi: 10.1371/journal.pone.0052388 |
16 |
ALSAWEED M , LAI C T , HARTMANN P E , et al. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk[J]. Sci Rep, 2016, 6, 20680.
doi: 10.1038/srep20680 |
17 |
CHANDLER T L , NEWMAN A , CHA J E , et al. Leukocytes, microRNA, and complement activity in raw, heat-treated, and frozen colostrum and their dynamics as colostrum transitions to mature milk in dairy cows[J]. J Dairy Sci, 2023, 106 (7): 4918- 4931.
doi: 10.3168/jds.2022-22876 |
18 |
IZUMI H , KOSAKA N , SHIMIZU T , et al. Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions[J]. J Dairy Sci, 2012, 95 (9): 4831- 4841.
doi: 10.3168/jds.2012-5489 |
19 |
LI Z , LIU H Y , JIN X L , et al. Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation[J]. BMC Genomics, 2012, 13, 731.
doi: 10.1186/1471-2164-13-731 |
20 |
KOSAKA N , IZUMI H , SEKINE K , et al. microRNA as a new immune-regulatory agent in breast milk[J]. Silence, 2010, 1 (1): 7.
doi: 10.1186/1758-907X-1-7 |
21 |
VICKERS K C , PALMISANO B T , SHOUCRI B M , et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins[J]. Nat Cell Biol, 2011, 13 (4): 423- 433.
doi: 10.1038/ncb2210 |
22 |
SUN Q , CHEN X , YU J X , et al. Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum[J]. Protein Cell, 2013, 4 (3): 197- 210.
doi: 10.1007/s13238-013-2119-9 |
23 |
SIMONSEN J B . What are we looking at?Extracellular vesicles, lipoproteins, or both?[J]. Circ Res, 2017, 121 (8): 920- 922.
doi: 10.1161/CIRCRESAHA.117.311767 |
24 |
GALLIER S , VOCKING K , POST J A , et al. A novel infant milk formula concept: mimicking the human milk fat globule structure[J]. Colloids Surf B: Biointerfaces, 2015, 136, 329- 339.
doi: 10.1016/j.colsurfb.2015.09.024 |
25 |
丁军, 付子琳, 和俊豪, 等. 乳源外泌体研究进展[J]. 畜牧兽医学报, 2022, 53 (4): 1019- 1029.
doi: 10.11843/j.issn.0366-6964.2022.04.003 |
DING J , FU Z L , HE J H , et al. Research progress of milk-derived exosomes[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (4): 1019- 1029.
doi: 10.11843/j.issn.0366-6964.2022.04.003 |
|
26 |
CHEN X , GAO C , LI H J , et al. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products[J]. Cell Res, 2010, 20 (10): 1128- 1137.
doi: 10.1038/cr.2010.80 |
27 |
KIRCHNER B , BUSCHMANN D , PAUL V , et al. Postprandial transfer of colostral extracellular vesicles and their protein and miRNA cargo in neonatal calves[J]. PLoS One, 2020, 15 (2): e0229606.
doi: 10.1371/journal.pone.0229606 |
28 |
HOU J X , AN X P , SONG Y X , et al. Detection and comparison of microRNAs in the caprine mammary gland tissues of colostrum and common milk stages[J]. BMC Genet, 2017, 18 (1): 38.
doi: 10.1186/s12863-017-0498-2 |
29 |
YUN B , KIM Y , PARK D J , et al. Comparative analysis of dietary exosome-derived microRNAs from human, bovine and caprine colostrum and mature milk[J]. J Anim Sci Technol, 2021, 63 (3): 593- 602.
doi: 10.5187/jast.2021.e39 |
30 |
MA T , LI W , CHEN Y , et al. Assessment of microRNA profiles in small extracellular vesicles isolated from bovine colostrum with different immunoglobulin G concentrations[J]. JDS Commun, 2022, 3 (5): 328- 333.
doi: 10.3168/jdsc.2022-0225 |
31 |
KAHN S , LIAO Y L , DU X G , et al. Exosomal micrornas in milk from mothers delivering preterm infants survive in vitro digestion and are taken up by human intestinal cells[J]. Mol Nutr Food Res, 2018, 62 (11): e1701050.
doi: 10.1002/mnfr.201701050 |
32 | QUAN S Y , NAN X M , WANG K , et al. Characterization of sheep milk extracellular vesicle-mirna by sequencing and comparison with cow milk[J]. Animals (Basel), 2020, 10 (2): 331. |
33 |
GU Y R , LI M Z , WANG T , et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes[J]. PLoS One, 2012, 7 (8): e43691.
doi: 10.1371/journal.pone.0043691 |
34 |
ÖZDEMIR S . Identification and comparison of exosomal microRNAs in the milk and colostrum of two different cow breeds[J]. Gene, 2020, 743, 144609.
doi: 10.1016/j.gene.2020.144609 |
35 |
QUAN S Y , NAN X M , WANG K , et al. Replacement of forage fiber with non-forage fiber sources in dairy cow diets changes milk extracellular vesicle-miRNA expression[J]. Food Funct, 2020, 11 (3): 2154- 2162.
doi: 10.1039/C9FO03097B |
36 |
ZHANG X L , CHENG Z X , WANG L X , et al. miR-21-3p centric regulatory network in dairy cow mammary epithelial cell proliferation[J]. J Agric Food Chem, 2019, 67 (40): 11137- 11147.
doi: 10.1021/acs.jafc.9b04059 |
37 |
LI X H , JIANG P , YU H B , et al. miR-21-3p targets Elovl5 and regulates triglyceride production in mammary epithelial cells of cow[J]. DNA Cell Biol, 2019, 38 (4): 352- 357.
doi: 10.1089/dna.2018.4409 |
38 |
LIAN S , GUO J R , NAN X M , et al. MicroRNA Bta-miR-181a regulates the biosynthesis of bovine milk fat by targeting ACSL1[J]. J Dairy Sci, 2016, 99 (5): 3916- 3924.
doi: 10.3168/jds.2015-10484 |
39 |
HEINZ R E , RUDOLPH M C , RAMANATHAN P , et al. Constitutive expression of microRNA-150 in mammary epithelium suppresses secretory activation and impairs de novo lipogenesis[J]. Development, 2016, 143 (22): 4236- 4248.
doi: 10.1242/dev.139642 |
40 |
SUN Y J , XIA H L , LU X B , et al. MicroRNA-141 participates in milk lipid metabolism by targeting SIRT1 in bovine mammary epithelial cells[J]. Anim Prod Sci, 2020, 60 (16): 1877- 1884.
doi: 10.1071/AN19593 |
41 |
LIN X Z , LUO J , ZHANG L P , et al. miR-103 controls milk fat accumulation in goat (Capra hircus) mammary gland during lactation[J]. PLoS One, 2013, 8 (11): e79258.
doi: 10.1371/journal.pone.0079258 |
42 |
CHEN Z , LUO J , SUN S , et al. miR-148a and miR-17-5p synergistically regulate milk TAG synthesis via PPARGC1A and PPARA in goat mammary epithelial cells[J]. RNA Biol, 2017, 14 (3): 326- 338.
doi: 10.1080/15476286.2016.1276149 |
43 |
WANG X P , LUORENG Z M , ZAN L S , et al. Bovine miR-146a regulates inflammatory cytokines of bovine mammary epithelial cells via targeting the TRAF6 gene[J]. J Dairy Sci, 2017, 100 (9): 7648- 7658.
doi: 10.3168/jds.2017-12630 |
44 |
ZHOU M , BARKEMA H W , GAO J , et al. MicroRNA miR-223 modulates NLRP3 and Keap1, mitigating lipopolysaccharide-induced inflammation and oxidative stress in bovine mammary epithelial cells and murine mammary glands[J]. Vet Res, 2023, 54 (1): 78.
doi: 10.1186/s13567-023-01206-5 |
45 |
MA T , MENG Z , GHAFFARI M H , et al. Characterization and profiling of the microRNA in small extracellular vesicles isolated from goat milk samples collected during the first week postpartum[J]. JDS Commun, 2023, 4 (6): 507- 512.
doi: 10.3168/jdsc.2022-0369 |
46 |
KHANAM A , NGU A , ZEMPLENI J . Bioavailability of orally administered small extracellular vesicles from bovine milk in C57BL/6J mice[J]. Int J Pharm, 2023, 639, 122974.
doi: 10.1016/j.ijpharm.2023.122974 |
47 |
PECK B C E , SINCAVAGE J , FEINSTEIN S , et al. miR-30 family controls proliferation and differentiation of intestinal epithelial cell models by directing a broad gene expression program that includes Sox9 and the ubiquitin ligase pathway[J]. J Biol Chem, 2016, 291 (31): 15975- 15984.
doi: 10.1074/jbc.M116.733733 |
48 |
DEY B K , GAGAN J , YAN Z , et al. miR-26a is required for skeletal muscle differentiation and regeneration in mice[J]. Genes Dev, 2012, 26 (19): 2180- 2191.
doi: 10.1101/gad.198085.112 |
49 |
RIESS M , FUCHS N V , IDICA A , et al. Interferons induce expression of SAMHD1 in monocytes through down-regulation of miR-181a and miR-30a[J]. J Biol Chem, 2017, 292 (1): 264- 277.
doi: 10.1074/jbc.M116.752584 |
50 |
ZHANG W , FU X H , XIE J S , et al. miR-26a attenuates colitis and colitis-associated cancer by targeting the multiple intestinal inflammatory pathways[J]. Mol Ther Nucleic Acids, 2021, 24, 264- 273.
doi: 10.1016/j.omtn.2021.02.029 |
51 |
MUN D , KANG M K Y , SHIN M , et al. Alleviation of DSS-induced colitis via bovine colostrum-derived extracellular vesicles with microRNA let-7a-5p is mediated by regulating Akkermansia and β-hydroxybutyrate in gut environments[J]. Microbiol Spectr, 2023, 11 (6): e0012123.
doi: 10.1128/spectrum.00121-23 |
52 |
GONZALEZ-MARTIN A , ADAMS B D , LAI M Y , et al. The microRNA miR-148a functions as a critical regulator of B cell tolerance and autoimmunity[J]. Nat Immunol, 2016, 17 (4): 433- 440.
doi: 10.1038/ni.3385 |
53 |
TONG L J , ZHANG S T , LIU Q Q , et al. Milk-derived extracellular vesicles protect intestinal barrier integrity in the gut-liver axis[J]. Sci Adv, 2023, 9 (15): eade5041.
doi: 10.1126/sciadv.ade5041 |
54 |
JOHNSTON D G W , WILLIAMS M A , THAISS C A , et al. Loss of MicroRNA-21 influences the gut microbiota, causing reduced susceptibility in a murine model of colitis[J]. J Crohns Colitis, 2018, 12 (7): 835- 848.
doi: 10.1093/ecco-jcc/jjy038 |
[1] | 陈权俊, 王祚, 万发春, 沈维军. 反刍动物胃肠道葡萄糖感应受体与转运载体的功能特征及相关调控[J]. 畜牧兽医学报, 2024, 55(11): 4819-4828. |
[2] | 李河林, 蒋玉芬, 程娜, 韩宇辰, 霍晓颖, 苏宏鼎, 常悦, 方玉珠, 王配, 贾宝瑜, 魏红江, 成文敏. 筛选的差异表达microRNAs对猪卵母细胞Npm2基因的表达调控及作用研究[J]. 畜牧兽医学报, 2024, 55(11): 5035-5049. |
[3] | 范定坤, 张吉贤, 付域泽, 马涛, 毕研亮, 张乃锋. 反刍动物瘤胃微生物培养组学研究进展[J]. 畜牧兽医学报, 2024, 55(1): 51-58. |
[4] | 马淑娟, 徐祎洁, 何珂, 马瑞丰, 朱英. 反刍动物Toll样受体多基因家族的分子进化及表达模式分析[J]. 畜牧兽医学报, 2023, 54(9): 3722-3734. |
[5] | 杨悦, 王锐, 甘源, 郝飞, 谢星, 张磊, 邵国青, 孟庆国, 陈蓉, 冯志新. 基于串联亲和层析法纯化并鉴定猪初乳中SIgA[J]. 畜牧兽医学报, 2023, 54(9): 3884-3894. |
[6] | 禹世雄, 魏凌云, 徐甜甜, 焦金真, 蒋林树, 贺志雄. 幼龄反刍动物肠道微生物定植规律及其营养调控研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2701-2707. |
[7] | 赵威, Mahmoud M. Abdelsattar, 柴建民, 王昕, 刁其玉, 张乃锋. 瘤胃微生物移植及应用研究进展[J]. 畜牧兽医学报, 2023, 54(5): 1792-1803. |
[8] | 杜海东, 娜仁花. 反刍动物胃肠道上皮屏障功能及与微生物互作研究[J]. 畜牧兽医学报, 2023, 54(5): 1804-1814. |
[9] | 王岚, 何明宇, 张敏, 丁军涛. MicroRNA调控抗病毒免疫和病毒复制[J]. 畜牧兽医学报, 2023, 54(2): 463-472. |
[10] | 杜海东, 娜仁花. 反刍动物妊娠期和泌乳期生理代谢和微生物变化及其对子代发育的影响研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4458-4467. |
[11] | 王逸群, 刘祖培, 李雅婷, 张海森, 李丹, 靳亚平, 陈华涛. 奶牛NR1D1基因的真核表达载体构建、表达谱及其在卵巢组织的定位[J]. 畜牧兽医学报, 2023, 54(1): 133-145. |
[12] | 赵旭, 凌玉钊, 王建华, 魏凌云, 焦金真, 贺志雄. 幼龄反刍动物瘤胃微生物定植及其营养调控研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3296-3304. |
[13] | 王素华, 王忠才, 黄凌哲, 莫虹斐, 吴绍强, 吕继洲, 赵治国, 帅江冰. 反刍动物埃立克体荧光定量PCR检测技术的建立和应用[J]. 畜牧兽医学报, 2021, 52(7): 1975-1982. |
[14] | 张蓉, 赵乐, 杨海丽, 杨永恒, 程文强, 赵永聚. 细胞外囊泡调控哺乳动物胚胎附植研究进展[J]. 畜牧兽医学报, 2021, 52(5): 1154-1162. |
[15] | 佟盼盼, 张萌萌, 陈文霞, 刘璐瑶, 张凌, 唐雪林, 苏战强, 谢金鑫. 新疆牛、羊和骆驼源产志贺毒素大肠埃希菌的系统进化分群、血清群与毒力基因及耐药性分析[J]. 畜牧兽医学报, 2021, 52(12): 3660-3668. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||