1 |
ZHANG C Y , HU Z S , HU R M , et al. New insights into crosstalk between pyroptosis and autophagy co-induced by molybdenum and cadmium in duck renal tubular epithelial cells[J]. J Hazard Mater, 2021, 416, 126138.
doi: 10.1016/j.jhazmat.2021.126138
|
2 |
BHARDWAJ J K , BIKAL P , SACHDEVA S N . Cadmium as an ovarian toxicant: a review[J]. J Appl Toxicol, 2024, 44 (1): 129- 147.
doi: 10.1002/jat.4526
|
3 |
PANG Y T , WU D M , MA Y , et al. Reactive oxygen species trigger NF-κB-mediated NLRP3 inflammasome activation involvement in low-dose CdTe QDs exposure-induced hepatotoxicity[J]. Redox Biol, 2021, 47, 102157.
doi: 10.1016/j.redox.2021.102157
|
4 |
WANG C , NIE G H , YANG F , et al. Molybdenum and cadmium co-induce oxidative stress and apoptosis through mitochondria-mediated pathway in duck renal tubular epithelial cells[J]. J Hazard Mater, 2020, 383, 121157.
doi: 10.1016/j.jhazmat.2019.121157
|
5 |
赵晓祥, 冯璐, 王宇晖. 锌、镉单一及复合胁迫下番茄幼苗生理响应及联合毒性的研究[J]. 安全与环境学报, 2020, 20 (3): 1176- 1184.
|
|
ZHAO X X , FENG L , WANG Y H . Physiological responses and joint toxicity of tomato seedlings under single and combined stress of zinc and cadmium[J]. Journal of Safety and Environment, 2020, 20 (3): 1176- 1184.
|
6 |
ZHANG C Y , LIN T J , NIE G H , et al. Cadmium and molybdenum co-induce pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells[J]. Environ Pollut, 2021, 272, 116403.
doi: 10.1016/j.envpol.2020.116403
|
7 |
王红梅, 江春雨, 韩雪峰, 等. 反刍动物镉暴露及其危害的研究进展[J]. 黑龙江畜牧兽医, 2023, (16): 35- 39.
|
|
WANG H M , JIANG C L , HAN X F , et al. Research progress on cadmium exposure and its hazards in ruminants[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023, (16): 35- 39.
|
8 |
TESCHKE R . Aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc: molecular aspects in experimental liver injury[J]. Int J Mol Sci, 2022, 23 (20): 12213.
doi: 10.3390/ijms232012213
|
9 |
WU Y H , YANG F , ZHOU G B , et al. Molybdenum and cadmium co-induce mitochondrial quality control disorder via FUNDC1-mediated mitophagy in sheep kidney[J]. Front Vet Sci, 2022, 9, 842259.
doi: 10.3389/fvets.2022.842259
|
10 |
王浩, 肖金龙, 沈珏, 等. 细胞死亡的新方式——铁死亡与铜死亡[J]. 畜牧兽医学报, 2024, 55 (2): 461- 470.
|
|
WANG H , XIAO J L , SHEN J , et al. New ways of cell death—ferroptosis and cuproptosis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (2): 461- 470.
|
11 |
HE Z Q , SHEN P , FENG L J , et al. Cadmium induces liver dysfunction and ferroptosis through the endoplasmic stress-ferritinophagy axis[J]. Ecotoxicol Environ Saf, 2022, 245, 114123.
doi: 10.1016/j.ecoenv.2022.114123
|
12 |
柏合. 钼镉联合诱导绵羊肝细胞线粒体质量控制失调的作用机制[D]. 南昌: 江西农业大学, 2022.
|
|
BAI H. The mechanism of mitochondrial quality control dysregulation co-induced by molybdenum and cadmium in ovine hepatocytes[D]. Nanchang: Jiangxi Agricultural University, 2022. (in Chinese)
|
13 |
陈亚杰, 尤朵, 范宗民, 等. 食管癌旁组织席卷包埋大切片的临床病理特征[J]. 临床与实验病理学杂志, 2023, 39 (6): 641- 645.
|
|
CHEN Y J , YOU D , FAN Z M , et al. Clinicopathological characteristics of large tissue sections wrapped around esophageal carcinoma[J]. Journal of Clinical and Experimental Pathology, 2023, 39 (6): 641- 645.
|
14 |
陈敬宜, 于淼, 张金洋, 等. 铁死亡参与镉暴露鸡肝损伤的研究[J]. 畜牧兽医学报, 2023, 54 (02): 787- 802.
|
|
CHEN J Y , YU M , ZHANG J Y , et al. Study on the involvement of ferroptosis in liver injury of cadmium-exposed chickens[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 787- 802.
|
15 |
丁小丽, 宫中桂, 陈淑芳, 等. 海藻糖抑制NF-κB介导的炎性反应缓解镉致大鼠肾脏损伤[J]. 扬州大学学报: 农业与生命科学版, 2023, 44 (3): 37- 43.
|
|
DING X L , GONG Z G , CHEN S F , et al. Trehalose alleviates cadmium-induced kidney injury by inhibiting NF-κB-mediated inflammatory response in rats[J]. Journal of Yangzhou University: Agricultural and Life Sciences Edition, 2023, 44 (3): 37- 43.
|
16 |
宋超. 高钼对绵羊肝肾毒性及其机理的研究[D]. 洛阳: 河南科技大学, 2014.
|
|
SONG C. Effect of high molybdenum on the toxic effect and damage mechanism of the liver and kidney in sheep[D]. Luoyang: Henan University of Science and Technology, 2014. (in Chinese)
|
17 |
ZHANG C Y , WANG X R , PI S X , et al. Cadmium and molybdenum co-exposure triggers autophagy via CYP450s/ROS pathway in duck renal tubular epithelial cells[J]. Sci Total Environ, 2021, 759, 143570.
doi: 10.1016/j.scitotenv.2020.143570
|
18 |
龙梦菲. 葛根素对镉致大鼠肾脏损伤的保护效应[D]. 扬州: 扬州大学, 2018.
|
|
LONG M F. Protective effect of puerarin on cadmium-induced renal injury in rats[D]. Yangzhou: Yangzhou University, 2018. (in Chinese)
|
19 |
李冰心, 龚淑影, 许丹宁, 等. 白术多糖通过花生四烯酸代谢通路缓解环磷酰胺诱导的小鼠肾损伤[J]. 食品工业科技, 2024, 45 (10): 325- 334.
|
|
LI B X , GONG S Y , XU D N , et al. Polysaccharide of atractylodes macrocephala koidz alleviate kidney injury induced by cyclophosphamide in mice through arachidonic acid metabolic pathway[J]. Science and Technology of Food Industry, 2024, 45 (10): 325- 334.
|
20 |
邱文粤, 苏依曼, 叶嘉莉, 等. 积雪草酸通过调控细胞凋亡和自噬缓解脂多糖诱导肉鸡急性肾损伤的研究[J]. 畜牧兽医学报, 2024, 55 (2): 809- 821.
|
|
QIU W Y , SU Y M , YE J L , et al. Study on asiatic acid alleviates LPS-induced acute kidney injury by regulating apoptosis and autophagy of broilers[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (2): 809- 821.
|
21 |
KONG Z Y , LIU C H , OLATUNJI O J . Asperuloside attenuates cadmium-induced toxicity by inhibiting oxidative stress, inflammation, fibrosis and apoptosis in rats[J]. Sci Rep, 2023, 13 (1): 5698.
doi: 10.1038/s41598-023-29504-0
|
22 |
ZHANG Q , ZHANG C , GE J , et al. Ameliorative effects of resveratrol against cadmium-induced nephrotoxicity via modulating nuclear xenobiotic receptor response and PINK1/Parkin-mediated Mitophagy[J]. Food Funct, 2020, 11 (2): 1856- 1868.
|
23 |
孙晓怡. 基于铁死亡与氧化应激相关信号通路探讨铂类抗肿瘤药物肾毒性的机制研究[D]. 苏州: 苏州大学, 2022.
|
|
SUN X Y. Investigation of the mechanism of platinum-based antitumor drugs nephrotoxicity based on ferroptosis and oxidative stress signaling pathway[D]. Suzhou: Soochow University, 2022. (in Chinese)
|
24 |
李敏, 杨前, 刘亚轩, 等. 镉通过诱导自噬促进肾小管上皮细胞铁死亡的研究[J]. 陆军军医大学学报, 2022, 44 (17): 1705- 1711.
|
|
LI M , YANG Q , LIU Y X , et al. Cadmium promotes ferroptosis in renal tubular epithelial cells by inducing autophagy[J]. Journal of Army Medical University, 2022, 44 (17): 1705- 1711.
|
25 |
李鹏, 杨晶, 马艳梅, 等. 枸杞糖肽通过抑制铁死亡减轻高血糖大鼠脑缺血/再灌注损伤[J]. 中国药理学通报, 2023, 39 (11): 2043- 2049.
|
|
LI P , YANG J , MA Y M , et al. Lycium barbarum glycopeptide attenuates cerebral ischemia/reperfusion injury in hyperglycemic rats through inhibition of ferroptosis[J]. Chinese Pharmacological Bulletin, 2023, 39 (11): 2043- 2049.
|
26 |
LEWERENZ J , ATES G , METHNER A , et al. Oxytosis/Ferroptosis-(Re-) emerging roles for oxidative stress-dependent non-apoptotic cell death in diseases of the central nervous system[J]. Front Neurosci, 2018, 12, 214.
|
27 |
张雪姣. 靶向NCOA4抑制高糖诱导胰岛素样细胞铁死亡机制的研究[D]. 长春: 吉林大学, 2023.
|
|
ZHANG X J. Mechanism of inhibition effect of high-glucose induced ferroptosis in insulin-producing cells via targeting NCOA4[D]. Changchun: Jilin University, 2023. (in Chinese)
|
28 |
ZHOU Y Q , ZHOU H X , HUA L , et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis[J]. Free Radical Biol Med, 2021, 171, 55- 68.
|
29 |
CHEN G Z , LI L , TAO H M . Bioinformatics identification of ferroptosis-related biomarkers and therapeutic compounds in ischemic stroke[J]. Front Neurol, 2021, 12, 745240.
|
30 |
WANG L , YANG F , HU M W , et al. GPX4 utilization by selenium is required to alleviate cadmium-induced ferroptosis and pyroptosis in sheep kidney[J]. Environ Toxicol, 2023, 38 (4): 962- 974.
|