| 1 | 
																						 
											   GARCÍA A ,  FOX J G .  A one health perspective for defining and deciphering Escherichia coli pathogenic potential in multiple hosts[J]. Comp Med, 2021, 71 (1): 3- 45. 
											 												 
																									doi: 10.30802/AALAS-CM-20-000054
																																			 											 | 
										
																													
																						| 2 | 
																						 
											   CAMPOS F C ,  CASTILHO I G ,  ROSSI B F , et al.  Genetic and antimicrobial resistance profiles of mammary pathogenic E.coli (MPEC) isolates from bovine clinical mastitis[J]. Pathogens, 2022, 11 (12): 1435. 
											 												 
																									doi: 10.3390/pathogens11121435
																																			 											 | 
										
																													
																						| 3 | 
																						 
											   ZHAO X L ,  ZHAO H Y ,  ZHOU Z L , et al.  Characterization of extended-spectrum β-lactamase-producing Escherichia coli isolates that cause diarrhea in sheep in Northwest China[J]. Microbiol Spectr, 2022, 10 (4): e0159522. 
											 												 
																									doi: 10.1128/spectrum.01595-22
																																			 											 | 
										
																													
																						| 4 | 
																						 
											  封丽然.  猪大肠杆菌病的综合防治措施[J]. 特种经济动植物, 2024, 27 (4): 61-62, 78.
											 											 | 
										
																													
																						 | 
																						 
											   FENG L R .  Comprehensive control measures of Escherichia coli disease in pigs[J]. Special Economic Animals and Plants, 2024, 27 (4): 61-62, 78.
											 											 | 
										
																													
																						| 5 | 
																						 
											   NADEEM S F ,  GOHAR U F ,  TAHIR S F , et al.  Antimicrobial resistance: more than 70 years of war between humans and bacteria[J]. Crit Rev Microbiol, 2020, 46 (5): 578- 599. 
											 												 
																									doi: 10.1080/1040841X.2020.1813687
																																			 											 | 
										
																													
																						| 6 | 
																						 
											   HAMDI ABDULKAREEM M ,  ABBAS ABOOD I ,  MUNIS DAKHEEL M .  Antimicrobial resistance of tannin extract against E.coli isolates from sheep[J]. Arch Razi Inst, 2022, 77 (2): 697- 701.
											 											 | 
										
																													
																						| 7 | 
																						 
											   ZHAO B ,  HAN H ,  HE K , et al.  Decreased cyclic-AMP caused by ATP contributes to fosfomycin heteroresistance in avian Escherichia coli[J]. J Antimicrob Chemother, 2023, 78 (1): 216- 224. 
											 												 
																									doi: 10.1093/jac/dkac377
																																			 											 | 
										
																													
																						| 8 | 
																						 
											   MEAD A ,  TOUTAIN P L ,  RICHEZ P , et al.  Quantitative pharmacodynamic characterization of resistance versus heteroresistance of colistin in E.coli using a semimechanistic modeling of killing curves[J]. Antimicrob Agents Chemother, 2022, 66 (9): e00793- 22.
											 											 | 
										
																													
																						| 9 | 
																						 
											   LIN C K ,  PAGE A ,  LOHSEN S , et al.  Rates of resistance and heteroresistance to newer β-lactam/β-lactamase inhibitors for carbapenem-resistant Enterobacterales[J]. JAC Antimicrob Resist, 2024, 6 (2): dlae048. 
											 												 
																									doi: 10.1093/jacamr/dlae048
																																			 											 | 
										
																													
																						| 10 | 
																						 
											   RODRÍGUEZ-VILLODRES Á ,  DE LA ROSA J M O ,  ÁLVAREZ-MARÍN R , et al.  Heteroresistance to piperacillin-tazobactam in clinical isolates of Escherichia coli sequence type 131[J]. Antimicrob Agents Chemother, 2018, 62 (1): e01923- 17.
											 											 | 
										
																													
																						| 11 | 
																						 
											   SHERMAN E X ,  WOZNIAK J E ,  WEISS D S .  Methods to evaluate colistin heteroresistance in Acinetobacter baumannii[J]. Methods Mol Biol, 2019, 1946, 39- 50.
											 											 | 
										
																													
																						| 12 | 
																						 
											   ANDERSSON D I ,  NICOLOFF H ,  HJORT K .  Mechanisms and clinical relevance of bacterial heteroresistance[J]. Nat Rev Microbiol, 2019, 17 (8): 479- 496. 
											 												 
																									doi: 10.1038/s41579-019-0218-1
																																			 											 | 
										
																													
																						| 13 | 
																						 
											   NICOLOFF H ,  HJORT K ,  LEVIN B R , et al.  The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification[J]. Nat Microbiol, 2019, 4 (3): 504- 514. 
											 												 
																									doi: 10.1038/s41564-018-0342-0
																																			 											 | 
										
																													
																						| 14 | 
																						 
											   SUN L ,  TALARICO S ,  YAO L N , et al.  Droplet digital PCR-based detection of clarithromycin resistance in Helicobacter pylori isolates reveals frequent heteroresistance[J]. J Clin Microbiol, 2018, 56 (9): e00019- 18.
											 											 | 
										
																													
																						| 15 | 
																						 
											   BAND V I ,  SATOLA S W ,  BURD E M , et al.  Carbapenem-resistant Klebsiella pneumoniae exhibiting clinically undetected colistin heteroresistance leads to treatment failure in a murine model of infection[J]. mBio, 2018, 9 (2): e02448- 17.
											 											 | 
										
																													
																						| 16 | 
																						 
											   LIAO W L ,  LIN J ,  JIA H Y , et al.  Resistance and heteroresistance to colistin in Escherichia coli isolates from Wenzhou, China[J]. Infect Drug Resist, 2020, 13, 3551- 3561. 
											 												 
																									doi: 10.2147/IDR.S273784
																																			 											 | 
										
																													
																						| 17 | 
																						 
											   MEHEISSEN M A ,  HENDAWY S M ,  SHABAAN F S , et al.  Colistin resistance and heteroresistance in Klebsiella pneumoniae & Escherichia coli clinical isolates from intensive care units[J]. Epidemiol Mikrobiol Imunol, 2022, 71 (2): 86- 92.
											 											 | 
										
																													
																						| 18 | 
																						 
											   KUANG Q H ,  HE D D ,  SUN H R , et al.  R93P substitution in the PmrB HAMP domain contributes to colistin heteroresistance in Escherichia coli isolates from swine[J]. Antimicrob Agents Chemother, 2020, 64 (11): e01509- 20.
											 											 | 
										
																													
																						| 19 | 
																						 
											 Clinical and Laboratory Standards Institute. CLSI M100 Performance standards for antimicrobial susceptibility testing[S]. 34th ed. Malvern, PA: Clinical and Laboratory Standards Institute, 2024.
											 											 | 
										
																													
																						| 20 | 
																						 
											   LI X D ,  HU H F ,  ZHU Y W , et al.  Population structure and antibiotic resistance of swine extrain-testinal pathogenic Escherichia coli from China[J]. Nat Commun, 2024, 15 (1): 5811. 
											 												 
																									doi: 10.1038/s41467-024-50268-2
																																			 											 | 
										
																													
																						| 21 | 
																						 
											   MORGANE CANONNE A ,  ROELS E ,  MENARD M , et al.  Clinical response to 2 protocols of aerosolized gentamicin in 46 dogs with Bordetella bronchiseptica infection (2012—2018)[J]. J Vet Intern Med, 2020, 34 (5): 2078- 2085. 
											 												 
																									doi: 10.1111/jvim.15843
																																			 											 | 
										
																													
																						| 22 | 
																						 
											   BAND V I ,  CRISPELL E K ,  NAPIER B A , et al.  Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae[J]. Nat Microbiol, 2016, 1 (6): 16053. 
											 												 
																									doi: 10.1038/nmicrobiol.2016.53
																																			 											 | 
										
																													
																						| 23 | 
																						 
											  赵冰, 梁玉蕾, 苑丽.  动物源分离菌异质性耐药研究进展[J]. 国外医药抗生素分册, 2023, 44 (3): 173- 177.
											 											 | 
										
																													
																						 | 
																						 
											   ZHAO B ,  LIANG Y L ,  YUAN L .  Reviews on heteroresistance of bacteria isolated from animals[J]. World Notes on Antibiotics, 2023, 44 (3): 173- 177.
											 											 | 
										
																													
																						| 24 | 
																						 
											 赵冰. 鸡源大肠杆菌磷霉素异质性耐药的形成机制[D]. 郑州: 河南农业大学, 2023.
											 											 | 
										
																													
																						 | 
																						 
											 ZHAO B. The formation mechanism of fosfomycin heteroresistance in avian Escherichia coli[D]. Zhengzhou: Henan Agricultural University, 2023. (in Chinese)
											 											 | 
										
																													
																						| 25 | 
																						 
											 邝启红. 动物源大肠杆菌对黏菌素和头孢噻呋异质性耐药的特性研究[D]. 郑州: 河南农业大学, 2021.
											 											 | 
										
																													
																						 | 
																						 
											 KUANG Q H. The characteristics of heteroresistance to colistin and ceftiofur in Escherichia coli isolates from animals[D]. Zhengzhou: Henan Agricultural University, 2021. (in Chinese)
											 											 | 
										
																													
																						| 26 | 
																						 
											  刘宝宝, 汪洋, 易力, 等.  细菌生物被膜检测与分析方法[J]. 微生物学通报, 2018, 45 (10): 2263- 2270.
											 											 | 
										
																													
																						 | 
																						 
											   LIU B B ,  WANG Y ,  YI L , et al.  Detection and analysis methods of bacterial biofilm[J]. Microbiology China, 2018, 45 (10): 2263- 2270.
											 											 | 
										
																													
																						| 27 | 
																						 
											   SHARMA G ,  SHARMA S ,  SHARMA P , et al.  Escherichia coli biofilm: development and therapeutic strategies[J]. J Appl Microbiol, 2016, 121 (2): 309- 319.
											 											 | 
										
																													
																						| 28 | 
																						 
											   LEBEAUX D ,  GHIGO J M ,  BELOIN C .  Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics[J]. Microbiol Mol Biol Rev, 2014, 78 (3): 510- 543.
											 											 | 
										
																													
																						| 29 | 
																						 
											   BISHT K ,  WAKEMAN C A .  Discovery and therapeutic targeting of differentiated biofilm subpopulations[J]. Front Microbiol, 2019, 10, 1908.
											 											 | 
										
																													
																						| 30 | 
																						 
											  乔涵, 胡辛欣, 聂彤颖, 等.  碳青霉烯类异质性耐药铜绿假单胞菌的耐药机制研究[J]. 中国抗生素杂志, 2022, 47 (9): 933- 938.
											 											 | 
										
																													
																						 | 
																						 
											   QIAO H ,  HU X X ,  NIE T Y , et al.  Resistance mechanism study of carbapenem heteroresistant Pseudomonas aeruginosa[J]. Chinese Journal of Antibiotics, 2022, 47 (9): 933- 938.
											 											 | 
										
																													
																						| 31 | 
																						 
											  李聪聪, 姚玉峰, 张传珍.  铜绿假单胞菌对环丙沙星异质性耐药的研究[J]. 上海交通大学学报: 医学版, 2022, 42 (7): 839- 845.
											 											 | 
										
																													
																						 | 
																						 
											   LI C C ,  YAO Y F ,  ZHANG C Z .  Emergence of ciprofloxacin heteroresistance in clinical Pseudomonas aeruginosa[J]. Journal of Shanghai Jiao Tong University: Medical Science, 2022, 42 (7): 839- 845.
											 											 | 
										
																													
																						| 32 | 
																						 
											   MELLO P L ,  PINHEIRO L ,  DE ALMEIDA MARTINS L , et al.  Short communication: β-lactam resistance and vancomycin heteroresistance in Staphylococcus spp.isolated from bovine subclinical mastitis[J]. J Dairy Sci, 2017, 100 (8): 6567- 6571.
											 											 | 
										
																													
																						| 33 | 
																						 
											   CHEONG H S ,  KIM S Y ,  WI Y M , et al.  Colistin heteroresistance in Klebsiella pneumoniae isolates and diverse mutations of PmrAB and PhoPQ in resistant subpopulations[J]. J Clin Med, 2019, 8 (9): 1444.
											 											 | 
										
																													
																						| 34 | 
																						 
											   LOHSEN S ,  STEPHENS D S .  Inducible mega-mediated macrolide resistance confers heteroresistance in Streptococcus pneumoniae[J]. Antimicrob Agents Chemother, 2023, 67 (3): e0131922.
											 											 | 
										
																													
																						| 35 | 
																						 
											   HE J C ,  JIA X J ,  YANG S S , et al.  Heteroresistance to carbapenems in invasive Pseudomonas aeruginosa infections[J]. Int J Antimicrob Agents, 2018, 51 (3): 413- 421.
											 											 |