畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3957-3967.doi: 10.11843/j.issn.0366-6964.2024.09.020
龚一鸣(), 贾一轩, 李佳骏, 王翔宇, 贺小云, 储明星*(
), 狄冉*(
)
收稿日期:
2024-03-06
出版日期:
2024-09-23
发布日期:
2024-09-27
通讯作者:
储明星,狄冉
E-mail:82101215374@caas.cn;mxchu@263.net;dirangirl@163.com
作者简介:
龚一鸣(1998-), 男, 成都人, 硕士生, 主要从事肉羊分子遗传与育种的研究, E-mail: 82101215374@caas.cn
基金资助:
Yiming GONG(), Yixuan JIA, Jiajun LI, Xiangyu WANG, Xiaoyun HE, Mingxing CHU*(
), Ran DI*(
)
Received:
2024-03-06
Online:
2024-09-23
Published:
2024-09-27
Contact:
Mingxing CHU, Ran DI
E-mail:82101215374@caas.cn;mxchu@263.net;dirangirl@163.com
摘要:
旨在探究不同FecB基因型对绵羊卵泡中BMP/SMAD通路活性和蛋白表达的影响; 揭示成熟大卵泡和小卵泡之间BMP/SMAD通路活性和蛋白表达的差异。本研究采用TaqMan分型方法筛选出不同FecB基因型的母羊, 同期发情后取卵泡期成熟卵泡和黄体期卵巢表面小卵泡, 利用免疫印迹法(Western blot)测定BMP/SMAD通路相关蛋白表达水平和通路活性。结果表明, 对于小卵泡组, FecB突变型卵泡中骨形态发生蛋白1B型受体(bone morphogenetic protein receptor type 1B, BMPR1B)表达量显著高于野生型卵泡(P<0.05), 但SMAD家族成员4(SMAD family member 4, SMAD4)表达量和SMAD1/5/9的磷酸化水平显著低于野生型卵泡(P<0.05);对于成熟大卵泡组, FecB突变型卵泡中FKBP脯氨酰异构酶1A(FKBP prolyl isomerase 1A, FKBP1A)和SMAD4表达量显著低于野生型卵泡(P<0.05), Ⅰ型受体(BMPR1B)和Ⅱ型受体(BMPR2) 的蛋白表达量及SMAD1/5/9的磷酸化水平在两种基因型之间未显示出显著差异。另一方面, 对比FecB突变型小卵泡和成熟大卵泡发现: 成熟大卵泡中BMPR1B和SMAD4蛋白表达量和SMAD1/5/9磷酸化程度显著高于小卵泡(P<0.05)。上述结果表明, 由于SMAD4表达量的下降, FecB突变型大、小卵泡中结合到基因组靶区域的SMAD4-SMAD1/5/9蛋白复合物均相对较少, 将导致通路活性降低, 而且由于小卵泡中较低的SMAD1/5/9磷酸化水平, 其通路活性更低。另外, 绵羊突变型卵泡生长发育成熟后BMP/SMAD通路活性显著增强。
中图分类号:
龚一鸣, 贾一轩, 李佳骏, 王翔宇, 贺小云, 储明星, 狄冉. 不同FecB基因型和不同直径绵羊卵泡中BMP/SMAD通路活性及蛋白表达差异[J]. 畜牧兽医学报, 2024, 55(9): 3957-3967.
Yiming GONG, Yixuan JIA, Jiajun LI, Xiangyu WANG, Xiaoyun HE, Mingxing CHU, Ran DI. BMP/SMAD Pathway Activity and Protein Expression Profiles in Ovarian Follicles with Different Diameters in Diverse FecB Genotyped Ewes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3957-3967.
表 1
不同FecB基因型小尾寒羊大小卵泡直径及分组情况"
分组 Category | 基因型 Genotype | 卵巢个数 Amount of ovary | 卵泡直径(平均值±标准差) Diameter of ovarian follicle (Average ±Standard deviation) | 每只羊采样卵泡数量 Amount of ovarian follicle collected from each sheep |
大卵泡组 | FecB野生型 | 12 | 6.00±0.74a | 直径>5 mm的1个 |
Large follicle group | FecB突变型 | 12 | 4.40±0.42b | 直径>4 mm的2个 |
小卵泡组 | FecB野生型 | 12 | 2.42±0.19 | 直径 < 3 mm的5个以上 |
Small follicle group | FecB突变型 | 12 | 2.52±0.18 | 直径 < 3 mm的5个以上 |
1 |
XU Y F , LI E L , HAN Y D , et al. Differential expression of mRNAs encoding BMP/Smad pathway molecules in antral follicles of high- and low-fecundity Hu sheep[J]. Anim Reprod Sci, 2010, 120 (1-4): 47- 55.
doi: 10.1016/j.anireprosci.2010.02.009 |
2 | 龚一鸣, 王翔宇, 贺小云, 等. 绵羊FecB突变对BMPR1B活性及BMP/SMAD通路的影响研究进展[J]. 遗传, 2023, 45 (4): 295- 305. |
GONG Y M , WANG X Y , HE X Y , et al. Progress on the effect of FecB mutation on BMPR1B activity and BMP/SMAD pathway in sheep[J]. Hereditas, 2023, 45 (4): 295- 305. | |
3 |
MULSANT P , LECERF F , FABRE S , et al. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes[J]. Proc Natl Acad Sci U S A, 2001, 98 (9): 5104- 5109.
doi: 10.1073/pnas.091577598 |
4 | LI Q L . Inhibitory SMADs: potential regulators of ovarian function[J]. Biol Reprod, 2015, 92 (2): 50. |
5 |
YAO Y L , REHEMAN A , XU Y F , et al. miR-125b contributes to ovarian granulosa cell apoptosis through targeting BMPR1B, a major gene for sheep prolificacy[J]. Reprod Sci, 2019, 26 (2): 295- 305.
doi: 10.1177/1933719118770544 |
6 |
SHIMIZU T , KAYAMORI T , MURAYAMA C , et al. Bone morphogenetic protein (BMP)-4 and BMP-7 suppress granulosa cell apoptosis via different pathways: BMP-4 via PI3K/PDK-1/Akt and BMP-7 via PI3K/PDK-1/PKC[J]. Biochem Biophys Res Commun, 2012, 417 (2): 869- 873.
doi: 10.1016/j.bbrc.2011.12.064 |
7 |
WRANA J L . TGF-β receptors and signalling mechanisms[J]. Miner Electrolyte Metab, 1998, 24 (2-3): 120- 130.
doi: 10.1159/000057359 |
8 |
HUSE M , CHEN Y G , MASSAGUÉ J , et al. Crystal structure of the cytoplasmic domain of the type Ⅰ TGF β receptor in complex with FKBP12[J]. Cell, 1999, 96 (3): 425- 436.
doi: 10.1016/S0092-8674(00)80555-3 |
9 |
GALAT A . Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands[J]. Cell Mol Life Sci, 2013, 70 (18): 3243- 3275.
doi: 10.1007/s00018-012-1206-z |
10 |
MASSAGUÉ J , BLAIN S W , LO R S . TGFβ signaling in growth control, cancer, and heritable disorders[J]. Cell, 2000, 103 (2): 295- 309.
doi: 10.1016/S0092-8674(00)00121-5 |
11 |
ATTISANO L , WRANA J L . Signal transduction by members of the transforming growth factor-β superfamily[J]. Cytokine Growth Factor Rev, 1996, 7 (4): 327- 339.
doi: 10.1016/S1359-6101(96)00042-1 |
12 |
FABRE S , PIERRE A , PISSELET C , et al. The Booroola mutation in sheep is associated with an alteration of the bone morphogenetic protein receptor-IB functionality[J]. J Endocrinol, 2003, 177 (3): 435- 444.
doi: 10.1677/joe.0.1770435 |
13 | 王伟. BMP/Smad信号通路对猪卵泡颗粒细胞的影响[D]. 南京: 南京农业大学, 2010. |
WANG W. Effect of BMP/SMAD signaling on porcine follicular granulosa cells[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese) | |
14 |
WANG X Y , GUO X F , HE X Y , et al. Effects of FecB mutation on estrus, ovulation, and endocrine characteristics in small tail han sheep[J]. Front Vet Sci, 2021, 8, 709737.
doi: 10.3389/fvets.2021.709737 |
15 |
HIRSCHHORN T , LEVI-HOFMAN M , DANZIGER O , et al. Differential molecular regulation of processing and membrane expression of Type-Ⅰ BMP receptors: implications for signaling[J]. Cell Mol Life Sci, 2017, 74 (14): 2645- 2662.
doi: 10.1007/s00018-017-2488-y |
16 |
SCHNEIDER C A , RASBAND W S , ELICEIRI K W . NIH Image to ImageJ: 25 years of image analysis[J]. Nat Methods, 2012, 9 (7): 671- 675.
doi: 10.1038/nmeth.2089 |
17 |
ZHENG X L , ZHENG Y Q , QIN D X , et al. Regulatory role and potential importance of GDF-8 in ovarian reproductive activity[J]. Front Endocrinol (Lausanne), 2022, 13, 878069.
doi: 10.3389/fendo.2022.878069 |
18 |
ERICKSON G F , SHIMASAKI S . The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle[J]. Reprod Biol Endocrinol, 2003, 1, 9.
doi: 10.1186/1477-7827-1-9 |
19 |
SOUZA C J H , MACDOUGALL C , CAMPBELL B K , et al. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene[J]. J Endocrinol, 2001, 169 (2): R1- R6.
doi: 10.1677/joe.0.169r001 |
20 |
WILSON T , WU X Y , JUENGEL J L , et al. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells[J]. Biol Reprod, 2001, 64 (4): 1225- 1235.
doi: 10.1095/biolreprod64.4.1225 |
21 | CHU Y L , XU Y R , YANG W X , et al. The role of FSH and TGF-β superfamily in follicle atresia[J]. Aging (Albany NY), 2018, 10 (3): 305- 321. |
22 |
OTSUKA F , MOORE R K , SHIMASAKI S . Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary[J]. J Biol Chem, 2001, 276 (35): 32889- 32895.
doi: 10.1074/jbc.M103212200 |
23 |
JIAO Y , JIANG T T , LIN Q Y , et al. Molecular characterization of the follicular development of BMP15-edited pigs[J]. Reproduction, 2023, 166 (4): 247- 261.
doi: 10.1530/REP-23-0034 |
24 |
CHAIKUAD A , BULLOCK A N . Structural basis of intracellular TGF-β signaling: receptors and smads[J]. Cold Spring Harb Perspect Biol, 2016, 8 (11): a022111.
doi: 10.1101/cshperspect.a022111 |
25 |
BAHIRE S V , RAJPUT P K , KUMAR V , et al. Quantitative expression of mRNA encoding BMP/SMAD signalling genes in the ovaries of Booroola carrier and non-carrier GMM sheep[J]. Reprod Domest Anim, 2019, 54 (10): 1375- 1383.
doi: 10.1111/rda.13535 |
26 |
FABRE S , PIERRE A , MULSANT P , et al. Regulation of ovulation rate in mammals: contribution of sheep genetic models[J]. Reprod Biol Endocrinol, 2006, 4, 20.
doi: 10.1186/1477-7827-4-20 |
27 | 种玉晴. 绵羊产羔数性状的分子遗传机理研究[D]. 武汉: 华中农业大学, 2021. |
ZHONG Y Q. Study on molecular genetic mechanism of litter size in sheep[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese) | |
28 |
MONTGOMERY G W , GALLOWAY S M , DAVIS G H , et al. Genes controlling ovulation rate in sheep[J]. Reproduction, 2001, 121 (6): 843- 852.
doi: 10.1530/rep.0.1210843 |
29 |
MONTGOMERY G W , MCNATTY K P , DAVIS G H . Physiology and molecular genetics of mutations that increase ovulation rate in sheep[J]. Endocr Rev, 1992, 13 (2): 309- 328.
doi: 10.1210/edrv-13-2-309 |
30 |
SHACKELL G H , HUDSON N L , HEATH D A , et al. Plasma gonadotropin concentrations and ovarian characteristics in Inverdale ewes that are heterozygous for a major gene (FecX1) on the X chromosome that influences ovulation rate[J]. Biol Reprod, 1993, 48 (5): 1150- 1156.
doi: 10.1095/biolreprod48.5.1150 |
31 |
MCNATTY K P , HEATH D A , CLARK Z , et al. Ovarian characteristics in sheep with multiple fecundity genes[J]. Reproduction, 2017, 153 (2): 233- 240.
doi: 10.1530/REP-16-0587 |
32 |
JUENGEL J L , FRENCH M C , QUIRKE L D , et al. Differential expression of CART in ewes with differing ovulation rates[J]. Reproduction, 2017, 153 (4): 471- 479.
doi: 10.1530/REP-16-0657 |
33 |
MCNATTY K P , HEATH D A , HUDSON N L , et al. Gonadotrophin-responsiveness of granulosa cells from bone morphogenetic protein 15 heterozygous mutant sheep[J]. Reproduction, 2009, 138 (3): 545- 551.
doi: 10.1530/REP-09-0154 |
34 |
ONGARO L , SCHANG G , HO C C , et al. TGF-β superfamily regulation of follicle-stimulating hormone synthesis by gonadotrope cells: is there a role for bone morphogenetic proteins?[J]. Endocrinology, 2019, 160 (3): 675- 683.
doi: 10.1210/en.2018-01038 |
35 |
WEI C C , CHEN X Y , PENG J Z , et al. BMP4/SMAD8 signaling pathway regulated granular cell proliferation to promote follicle development in Wanxi white goose[J]. Poult Sci, 2023, 102 (1): 102282.
doi: 10.1016/j.psj.2022.102282 |
36 | 徐梦思, 黄涛, 刘丽娟, 等. TGFβ-SMAD信号通路基因在梅山猪与杜洛克猪不同级别卵泡中的表达分析[J]. 家畜生态学报, 2016, 37 (2): 12- 18. |
XU M S , HUANG T , LIU L J , et al. Expression patterns of genes of TGFβ-SMAD signaling pathway in meishan and duroc follicle of different size[J]. Journal of Domestic Animal Ecology, 2016, 37 (2): 12- 18. | |
37 |
DU X , ZHANG L F , LI X Y , et al. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis[J]. Cell Death Dis, 2016, 7 (11): e2476.
doi: 10.1038/cddis.2016.379 |
[1] | 贾宇航, 郭良富, 张茹楠, 赵阿勇, 刘玉芳, 储明星. miR-127调控绵羊骨骼肌细胞增殖分化及其转录因子PAX3筛选[J]. 畜牧兽医学报, 2024, 55(9): 3864-3875. |
[2] | 陈静, 吴薛蓓, 苗冬枝, 张弛, 郭振玉, 王莹. 产蛋间隔前期鸽卵泡转录组比较分析揭示卵泡发育相关基因[J]. 畜牧兽医学报, 2024, 55(8): 3503-3515. |
[3] | 王婷, 张元庆, 闫益波, 上官明军, 郭宏宇, 王志武. “特藏寒羊”群体遗传结构分析与选择信号的对比分析[J]. 畜牧兽医学报, 2024, 55(7): 2913-2926. |
[4] | 宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
[5] | 刘畅, 郝科兴, 陈岩, 曾维斌, 喻恒彬, 陈磊, 王静, 胡广东. 干扰PPARγ基因对绵羊滋养层细胞增殖、凋亡、迁移和脂质积累的影响[J]. 畜牧兽医学报, 2024, 55(6): 2421-2430. |
[6] | 彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369. |
[7] | 杨杨, 余乾, 刘昱成, 杨华, 赵卓, 王立民, 周平, 杨庆勇, 代蓉. 绵羊MYL基因家族的鉴定与组织表达分析[J]. 畜牧兽医学报, 2024, 55(4): 1551-1564. |
[8] | 江锦秀, 张靖鹏, 林裕胜, 刘维巍, 胡奇林, 万春和. 基于Hsp70基因的绵羊肺炎支原体TaqMan检测方法的建立及其遗传演化分析[J]. 畜牧兽医学报, 2024, 55(4): 1684-1695. |
[9] | 杜改梅, 王月, 茅慧华, 雷卫强, 储岳峰, 刘茂军. 绵羊肺炎支原体小鼠感染模型的建立[J]. 畜牧兽医学报, 2024, 55(4): 1728-1737. |
[10] | 片慧芳, 杜旭彬, 李妍, 张雨辰, 何惠, 虞德兵. 甜菜碱对产蛋后期蛋鸡生产性能、蛋品质和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(3): 1085-1094. |
[11] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[12] | 曹建华, 杨柏高, 张培培, 冯肖艺, 张航, 余洲, 牛一凡, 郝海生, 杜卫华, 朱化彬, 杨凌, 赵学明. 能量负平衡影响奶牛卵泡发育的机制[J]. 畜牧兽医学报, 2024, 55(1): 22-30. |
[13] | 王海波, 占今舜, 谷志勇, 陈新锋, 潘月, 贾浩滨, 钟小军, 李开嵘, 赵生国, 霍俊宏. 湖羊与三元杂交绵羊夏杜湖、夏澳湖肉质特性比较研究[J]. 畜牧兽医学报, 2024, 55(1): 110-119. |
[14] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
[15] | 茹盟, 曾文惠, 彭剑玲, 曾庆节, 殷超, 崔勇, 魏庆, 梁海平, 谢贤华, 黄建珍. 蛋鸡卵泡发育及其表观遗传调控机制研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3613-3622. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||