畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (7): 2825-2835.doi: 10.11843/j.issn.0366-6964.2024.07.005
孟亚轩1,2,3(), 刘彦1,2, 王晶1,2, 陈国顺3,*(
), 冯涛1,2,3,*(
)
收稿日期:
2024-01-02
出版日期:
2024-07-23
发布日期:
2024-07-24
通讯作者:
陈国顺,冯涛
E-mail:18793606358@163.com;chengs@gsau.edu.cn;fengtao_gs@163.com
作者简介:
孟亚轩(2000-),女,甘肃金昌人,硕士生,主要从事繁殖营养调控研究,E-mail:18793606358@163.com
基金资助:
Yaxuan MENG1,2,3(), Yan LIU1,2, Jing WANG1,2, Guoshun CHEN3,*(
), Tao FENG1,2,3,*(
)
Received:
2024-01-02
Online:
2024-07-23
Published:
2024-07-24
Contact:
Guoshun CHEN, Tao FENG
E-mail:18793606358@163.com;chengs@gsau.edu.cn;fengtao_gs@163.com
摘要:
卵巢是母畜生殖系统的重要组成部分,其功能受多种因素的调控,其中氧化应激作为一种重要的细胞生物学过程,被发现对卵巢功能产生深远影响。卵巢内氧化与抗氧化物的平衡对维持卵巢功能意义重大,卵巢内活性氧(reactive oxygen species,ROS)参与卵母细胞生长、减数分裂、排卵和其他生理过程的调节,ROS堆积可导致卵巢功能紊乱,影响优势卵泡形成,对卵母细胞成熟、受精以及随后的胚胎植入和发育均有影响。本文针对氧化应激对母畜卵巢功能的影响,进一步探究了氧化应激对母畜卵母细胞、颗粒细胞、卵泡膜细胞以及黄体的影响,深入了解其机制有助于揭示卵巢生理和病理的内在联系,为相关疾病的预防和治疗提供新的思路。
中图分类号:
孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2825-2835.
Yaxuan MENG, Yan LIU, Jing WANG, Guoshun CHEN, Tao FENG. Research Progress in the Effect of Oxidative Stress on Ovarian Function in Female Livestock[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2825-2835.
1 | 冯鑫, 栾嘉明, 张敏, 等. 反刍动物胃肠道菌群与机体氧化应激调节的研究进展[J]. 动物营养学报, 2023, 35 (4): 2063- 2071. |
FENG X , LUAN J M , ZHANG M , et al. Research progress of gastrointestinal microbiota and regulation of oxidative stress in ruminants[J]. Chinese Journal of Animal Nutrition, 2023, 35 (4): 2063- 2071. | |
2 | 范港, 黄鑫, 张伟伟, 等. 大麻二酚对脂多糖诱导的小鼠乳腺上皮细胞氧化损伤的保护作用[J]. 动物营养学报, 2023, 35 (2): 1298- 1307. |
FAN G , HUANG X , ZHANG W W , et al. Protective effects of cannabidiol on oxidative damage of mouse mammary epithelial cells induced by lipopolysaccharide[J]. Chinese Journal of Animal Nutrition, 2023, 35 (2): 1298- 1307. | |
3 | 韩书宇, 孙海霞, 刘静, 等. 淫羊藿提取物对老龄种公鸡精液品质、生殖内分泌激素及繁殖性能的影响[J]. 动物营养学报, 2024, 36 (1): 312- 322. |
HAN S Y , SUN H X , LIU J , et al. Effects of epimedium extract on semen quality, reproductive endocrine hormone, reproduction performance of aged breeder roosters[J]. Chinese Journal of Animal Nutrition, 2024, 36 (1): 312- 322. | |
4 |
彭巍, 付长其, 王国文, 等. 不同营养水平对牦牛生产性能、代谢水平和生殖激素的影响研究[J]. 中国畜禽种业, 2023, 19 (10): 107- 113.
doi: 10.3969/j.issn.1673-4556.2023.10.021 |
PENG W , FU C Q , WANG G W , et al. Effects of different nutrition levels on performance, metabolism and reproductive hormone of Yak[J]. The Chinese Livestock and Poultry Breeding, 2023, 19 (10): 107- 113.
doi: 10.3969/j.issn.1673-4556.2023.10.021 |
|
5 | 廖文双, 周敏, 徐畅, 等. 玉米赤霉烯酮和雌二醇对断奶仔猪生长性能、养分利用率和卵巢形态的影响[J]. 动物营养学报, 2020, 32 (3): 1127- 1135. |
LIAO W S , ZHOU M , XU C , et al. Effects of zearalenone and estradiol on growth performance, nutrient utilization and ovary morphology of weaned piglets[J]. Chinese Journal of Animal Nutrition, 2020, 32 (3): 1127- 1135. | |
6 |
ZHANG L L , WANG Z , KONG L N , et al. Effect of SGLT2 inhibitors on improving glucolipid metabolism and reproductive hormone status in overweight/obese women with PCOS: a systematic review and meta-analysis[J]. Reprod Sci, 2023,
doi: 10.1007/s43032-023-01415-5 |
7 | MOLDOGAZIEVA N T , MOKHOSOEV I M , MEL'NIKOVA T I , et al. Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases[J]. Oxid Med Cell Longev, 2019, 2019, 3085756. |
8 |
WŁODARCZYK M , NOWICKA G . Obesity, DNA damage, and development of obesity-related diseases[J]. Int J Mol Sci, 2019, 20 (5): 1146.
doi: 10.3390/ijms20051146 |
9 |
王鑫, 聂桐, 李阿群, 等. 橙皮苷通过氧化磷酸化途径缓解高脂饲喂诱导的小鼠肝氧化应激[J]. 畜牧兽医学报, 2024, 55 (3): 1302- 1313.
doi: 10.11843/j.issn.0366-6964.2024.03.041 |
WANG X , NIE T , LI A Q , et al. Hesperidin alleviates high-fat-diet induced hepatic oxidative stress in mice via oxidative phosphorylation pathway[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 1302- 1313.
doi: 10.11843/j.issn.0366-6964.2024.03.041 |
|
10 |
李晓晓, 吴文星, 白云飞, 等. 产后抑郁大鼠子宫组织中氧化应激指标、炎性因子及雌激素受体表达分析[J]. 生殖医学杂志, 2023, 32 (11): 1710- 1717.
doi: 10.3969/j.issn.1004-3845.2023.11.015 |
LI X X , WU W X , BAI Y F , et al. Analysis of oxidative stress indicators, inflammatory factors and estrogen receptor expression in the uterine tissues of postpartum depression rat model[J]. Journal of Reproductive Medicine, 2023, 32 (11): 1710- 1717.
doi: 10.3969/j.issn.1004-3845.2023.11.015 |
|
11 |
于婷乔, 刘艺芳, 袁庆叶, 等. 脂联素对KGN细胞雌激素合成和氧化应激的影响[J]. 生殖医学杂志, 2022, 31 (10): 1403- 1409.
doi: 10.3969/j.issn.1004-3845.2022.10.014 |
YU T Q , LIU Y F , YUAN Q Y , et al. Effects of adiponectin on estrogen synthesis and oxidative stress in KGN cells[J]. Journal of Reproductive Medicine, 2022, 31 (10): 1403- 1409.
doi: 10.3969/j.issn.1004-3845.2022.10.014 |
|
12 |
HA B J , LEE S H , KIM H J , et al. The role of Salicornia herbacea in ovariectomy-induced oxidative stress[J]. Biol Pharm Bull, 2006, 29 (7): 1305- 1309.
doi: 10.1248/bpb.29.1305 |
13 |
MUÑOZ-CASTAÑEDA J R , MUNTANÉ J , HERENCIA C , et al. Ovariectomy exacerbates oxidative stress and cardiopathy induced by adriamycin[J]. Gynecol Endocrinol, 2006, 22 (2): 74- 79.
doi: 10.1080/09513590500490249 |
14 |
EL-GINDY Y M , ZAHRAN S M , AHMED M H , et al. Enhancing semen quality, antioxidant status and sex hormones of V-line rabbit bucks fed on supplemented diets with dried Moringa leaves[J]. Anim Biotechnol, 2023, 34 (7): 2626- 2635.
doi: 10.1080/10495398.2022.2110109 |
15 | ZARIDA H , NGAH WW , KHALID B A . Effect of gonadectomy and sex hormones replacement on glutathione related enzymes in rats[J]. Asia Pac J Pharmacol, 1993, 8 (4): 223- 230. |
16 |
DOS SANTOS D R , FIAIS G A , DE OLIVEIRA PASSOS A , et al. Effects of orchiectomy and testosterone replacement therapy on redox balance and salivary gland function in Wistar rats[J]. J Steroid Biochem Mol Biol, 2022, 218, 106048.
doi: 10.1016/j.jsbmb.2021.106048 |
17 |
BRZÓSKA M M , GAŁAŻYN-SIDORCZUK M , KOZŁOWSKA M , et al. The Body status of manganese and activity of this element-dependent mitochondrial superoxide dismutase in a rat model of human exposure to cadmium and Co-administration of Aronia melanocarpa L. extract[J]. Nutrients, 2022, 14 (22): 4773.
doi: 10.3390/nu14224773 |
18 |
ALBRAHIM T , ALANGRY R , ALOTAIBI R , et al. Effects of regular exercise and intermittent fasting on neurotransmitters, inflammation, oxidative stress, and brain-derived neurotrophic factor in cortex of ovariectomized rats[J]. Nutrients, 2023, 15 (19): 4270.
doi: 10.3390/nu15194270 |
19 | 张民莹, 陈素娟, 王晓萌, 等. 褪黑素影响雌性动物生殖机能的研究进展[J]. 黑龙江畜牧兽医, 2023, (23): 110-115, 137. |
ZHANG M Y , CHEN S J , WANG X M , et al. Research progress on effects of melatonin on reproductive function in female animals[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023, (23): 110-115, 137. | |
20 | 季浩然, 卢建, 张欣, 等. 不同浓度葡萄糖对蛋鸡卵泡膜细胞增殖、雌二醇水平及类固醇合成相关基因表达的影响[J]. 中国家禽, 2022, 44 (10): 56- 61. |
JI H R , LU J , ZHANG X , et al. Effect of different concentrationon of glucose on proliferation, estradiol level and genes expression related to steroidogenesis in follicular theca cells of laying hens[J]. China Poultry, 2022, 44 (10): 56- 61. | |
21 | 马林纳, 马堃, 范晓迪, 等. HIF-1α对卵泡发育及排卵生物学作用的研究进展[J]. 生理学报, 2023, 75 (5): 727- 735. |
MA L N , MA K , FAN X D , et al. Research progress on the biological effects of HIF-1α on follicle development and ovulation[J]. Acta Physiologica Sinica, 2023, 75 (5): 727- 735. | |
22 |
VON MENGDEN L , KLAMT F , SMITZ J . Redox biology of human cumulus cells: basic concepts, impact on oocyte quality, and potential clinical use[J]. Antioxid Redox Signal, 2020, 32 (8): 522- 535.
doi: 10.1089/ars.2019.7984 |
23 |
YADAV P K , TIWARI M , GUPTA A , et al. Germ cell depletion from mammalian ovary: possible involvement of apoptosis and autophagy[J]. J Biomed Sci, 2018, 25 (1): 36.
doi: 10.1186/s12929-018-0438-0 |
24 |
JIA Z Z , WANG H Y , FENG Z Y , et al. Fluorene-9-bisphenol exposure induces cytotoxicity in mouse oocytes and causes ovarian damage[J]. Ecotoxicol Environ Saf, 2019, 180, 168- 178.
doi: 10.1016/j.ecoenv.2019.05.019 |
25 | 曹倍嘉, 秦建鹏, 潘波, 等. 超低温冷冻引发卵母细胞氧化应激及抗氧化剂的应用[J]. 黑龙江动物繁殖, 2023, 31 (1): 26-31, 37. |
CAO B J , QIN J P , PAN B , et al. Oxidative stress and oocyte cryopreservation: Recent advances in mitigation strategies involving antioxidants[J]. Heilongjiang Journal of Animal Reproduction, 2023, 31 (1): 26-31, 37. | |
26 |
WANG L , TANG J H , WANG L , et al. Oxidative stress in oocyte aging and female reproduction[J]. J Cell Physiol, 2021, 236 (12): 7966- 7983.
doi: 10.1002/jcp.30468 |
27 | 张学凯, 姜敏, 邢仲耘, 等. 冷应激下褐色脂肪细胞线粒体生物发生研究进展[J]. 动物营养学报, 2024, 36 (2): 737- 746. |
ZHANG X K , JIANG M , XING Z Y , et al. Research progress of mitochondrial biogenesis in brown adipocytes under cold stress[J]. Chinese Journal of Animal Nutrition, 2024, 36 (2): 737- 746. | |
28 |
ZOU W W , ZONG K , ZHANG Z K , et al. Novel economical, accurate, sensitive, single-cell analytical method for mitochondrial DNA quantification in mtDNA mutation carriers[J]. J Assist Reprod Genet, 2023, 40 (9): 2197- 2209.
doi: 10.1007/s10815-023-02878-w |
29 | 李秀芳, 王忠清, 朱蕾, 等. 补肾中药改善高龄不孕女性卵母细胞氧化应激损伤的研究进展[J]. 世界中医药, 2022, 17 (22): 3263- 3269. |
LI X F , WANG Z Q , ZHU L , et al. Kidney-tonifying chinese medicine in alleviating oxidative stress in oocyte in older infertile women: a review[J]. World Chinese Medicine, 2022, 17 (22): 3263- 3269. | |
30 | 刘鹤洁, 吉木斯, 谢望为, 等. 活性氧对精子氧化损伤及获能影响的研究进展[J]. 黑龙江畜牧兽医, 2023, (24): 31-34, 56. |
LIU H J , JI M S , XIE W W , et al. Research progress on the effects of reactive oxygen species on oxidative damage and capacitation of sperm[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023, (24): 31-34, 56. | |
31 |
XIAN H X , LIU Y , RUNDBERG NILSSON A , et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation[J]. Immunity, 2021, 54 (7): 1463- 1477.e11.
doi: 10.1016/j.immuni.2021.05.004 |
32 |
SHANG D H , HUANG M H , WANG B Y , et al. mtDNA maintenance and alterations in the pathogenesis of neurodegenerative diseases[J]. Curr Neuropharmacol, 2023, 21 (3): 578- 598.
doi: 10.2174/1570159X20666220810114644 |
33 |
KNORRE D A . Intracellular quality control of mitochondrial DNA: evidence and limitations[J]. Philos Trans R Soc B Biol Sci, 2020, 375 (1790): 20190176.
doi: 10.1098/rstb.2019.0176 |
34 |
PÉREZ-TREVIÑO P , VELÁSQUEZ M , GARCÍA N . Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866 (6): 165761.
doi: 10.1016/j.bbadis.2020.165761 |
35 | FEISSNER R F , SKALSKA J , GAUM W E , et al. Crosstalk signaling between mitochondrial Ca2+ and ROS[J]. Front Biosci (Landmark Ed), 2009, 14 (4): 1197- 1218. |
36 | MURPHY M P . Understanding and preventing mitochondrial oxidative damage[J]. Biochem Soc Trans, 2016, 44 (5): 1219- 1226. |
37 |
庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55 (2): 822- 833.
doi: 10.11843/j.issn.0366-6964.2024.02.038 |
ZHUANG C C , HAN B . Mechanism of mitochondrial damage in bovine mammary epithelial cells and mouse mammary gland infected with Escherichia coli isolated from bovine mastitis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (2): 822- 833.
doi: 10.11843/j.issn.0366-6964.2024.02.038 |
|
38 | MARTÍN-ROMERO F J , ORTÍZ-DE-GALISTEO J R , LARA-LARANJEIRA J , et al. Store-operated calcium entry in human oocytes and sensitivity to oxidative stress[J]. Biol Reprod, 2008, 78 (2): 307- 315. |
39 | 段晨阳. 缺氧后线粒体Drp1通过LRRK2-HK2诱导mPTP过度开放的机制研究[J]. 重庆医科大学学报, 2023, 48 (2): 117- 123. |
DUAN C Y . Mechanisms of mitochondrial Drp1 inducing excessive opening of mPTP channel through LRRK2-HK2 after hypoxia[J]. Journal of Chongqing Medical University, 2023, 48 (2): 117- 123. | |
40 | 景祎馨, 张贻帼, 潘锐, 等. 线粒体通透性转换孔改变致mtDNA释放在肠缺血再灌注损伤中的作用[J]. 武汉大学学报(医学版), 2023, 44 (4): 421- 427. |
JING Y X , ZHANG Y G , PAN R , et al. Role of mitochondrial DNA release induced by altered mitochondrial permeability transition pore in intestinal ischemia reperfusion injury[J]. Medical Journal of Wuhan University, 2023, 44 (4): 421- 427. | |
41 | ZOROV D B , JUHASZOVA M , SOLLOTT S J . Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev, 2014, 94 (3): 909- 950. |
42 | WANG L Y , WANG D H , ZOU X Y , et al. Mitochondrial functions on oocytes and preimplantation embryos[J]. J Zhejiang Univ Sci B, 2009, 10 (7): 483- 492. |
43 | 卢青青, 范婷婷, 万彩云, 等. 基于Ca2+浓度及线粒体氧化应激探讨补阳还五汤对脊髓损伤大鼠受损红核神经元的保护作用[J]. 湖南中医药大学学报, 2023, 43 (4): 598- 604. |
LU Q Q , FAN T T , WAN C Y , et al. Protective effects of Buyang Huanwu Decoction on damaged rubrospinal neurons in rats after spinal cord injury based on Ca2+ concentration and mitochondrial oxidative stress[J]. Journal of Hunan University of Chinese Medicine, 2023, 43 (4): 598- 604. | |
44 | STARKOV A A , CHINOPOULOS C , FISKUM G . Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury[J]. Cell Calcium, 2004, 36 (3-4): 257- 264. |
45 | 陈舟. Ca2+通过CaMKⅡ调控牦牛卵母细胞体外成熟的机制[D]. 兰州: 西北民族大学, 2022. |
CHEN Z. Mechanism of Ca'+ regulating oocyte maturation through CaMKⅡ in Yak[D]. Lanzhou: Northwest University for Nationalities, 2022. (in Chinese) | |
46 | BROOKES P S , YOON Y , ROBOTHAM J L , et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle[J]. Am J Physiol Cell Physiol, 2004, 287 (4): C817- C833. |
47 | YAN Y , WEI C L , ZHANG W R , et al. Cross-talk between calcium and reactive oxygen species signaling[J]. Acta Pharmacol Sin, 2006, 27 (7): 821- 826. |
48 | SHAIDULLOV I F , ERMAKOVA E V , SOROKINA D M , et al. Salts of Short-chain fatty acids increase the activity of large conductance Ca2+-Activated K+ channels and decrease calcium oscillations in rat GH3 cells[J]. Biophysics, 2023, 68 (4): 561- 569. |
49 | MALEKI B , MODARRES P , SALEHI P , et al. Identification of ITPR1 gene as a novel target for hsa-miR-34b-5p in non-obstructive azoospermia: a Ca2+/apoptosis pathway cross-talk[J]. Sci Rep, 2023, 13 (1): 21873. |
50 | KROEMER G , MARIÑO G , LEVINE B . Autophagy and the integrated stress response[J]. Mol Cell, 2010, 40 (2): 280- 293. |
51 | SHEN Q Z , LIU Y , LI H G , et al. Effect of mitophagy in oocytes and granulosa cells on oocyte quality[J]. Biol Reprod, 2021, 104 (2): 294- 304. |
52 | FAUSTINI M , AGRADI S , VIGO D , et al. Bioencapsulation of oocytes and granulosa cells[J]. Methods Mol Biol, 2024, 2749, 103- 108. |
53 | JIANG Y , HE Y T , PAN X C , et al. Advances in oocyte maturation in vivo and in vitro in mammals[J]. Int J Mol Sci, 2023, 24 (10): 9059. |
54 | KUBLI D A , GUSTAFSSON Å B . Mitochondria and mitophagy: the yin and yang of cell death control[J]. Circ Res, 2012, 111 (9): 1208- 1221. |
55 | LI A Q , GAO M , JIANG W T , et al. Mitochondrial dynamics in adult cardiomyocytes and heart diseases[J]. Front Cell Dev Biol, 2020, 8, 584800. |
56 | BHATTI J S , BHATTI G K , REDDY P H . Mitochondrial dysfunction and oxidative stress in metabolic disorders-A step towards mitochondria based therapeutic strategies[J]. Biochim Biophys Acta Mol Basis Dis, 2016, 1863 (5): 1066- 1077. |
57 | MURPHY E , ARDEHALI H , BALABAN R S , et al. Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association[J]. Circ Res, 2016, 118 (12): 1960- 1991. |
58 | GONG G H , SONG M S , CSORDAS G , et al. Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice[J]. Science, 2015, 350 (6265): aad2459. |
59 | MONZEL A S , ENRÍQUEZ J A , PICARD M . Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction[J]. Nat Metab, 2023, 5 (4): 546- 562. |
60 | 贾振伟. 线粒体代谢功能对早期胚胎表观遗传组和发育的影响[J]. 中国细胞生物学学报, 2020, 42 (4): 733- 740. |
JIA Z W . The effect of mitochondrial function on epigenome and development in preimplantation embryos[J]. Chinese Journal of Cell Biology, 2020, 42 (4): 733- 740. | |
61 | DEVINE P J , PERREAULT S D , LUDERER U . Roles of reactive oxygen species and antioxidants in ovarian toxicity[J]. Biol Reprod, 2012, 86 (2): 27. |
62 | MATSUDA F , INOUE N , MANABE N , et al. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells[J]. J Reprod Dev, 2012, 58 (1): 44- 50. |
63 | KAUR S , KUROKAWA M . Regulation of oocyte apoptosis: a view from gene knockout mice[J]. Int J Mol Sci, 2023, 24 (2): 1345. |
64 | 香秀婷. 17β-雌二醇通过上调SIRT3表达和促进自噬抑制过氧化氢诱导的人脐静脉内皮细胞衰老的机制研究[D]. 广州: 南方医科大学, 2021. |
XIANG X T. Mechanism of 17β-estradiol inhibiting hydrogen peroxide induced senescence of human umbilical vein endothelial cells by up regulating SIRT3 expression and promoting autophagy[D]. Guangzhou: Southern Medical University, 2021. (in Chinese) | |
65 | GRAHAM B M , DAHER M . Estradiol and progesterone have opposing roles in the regulation of fear extinction in female rats[J]. Neuropsychopharmacology, 2016, 41 (3): 774- 780. |
66 | CHAUBE S K , SHRIVASTAV T G , TIWARI M , et al. Neem (Azadirachta indica L.) leaf extract deteriorates oocyte quality by inducing ROS-mediated apoptosis in mammals[J]. SpringerPlus, 2014, 3, 464. |
67 |
刘阳光, 章会斌, 文浩宇, 等. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55 (2): 576- 586.
doi: 10.11843/j.issn.0366-6964.2024.02.015 |
LIU Y G , ZHANG H B , WEN H Y , et al. SNP/indel screening analysis of porcine ovarian granulosa cells treated with follicular fluid exosomes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (2): 576- 586.
doi: 10.11843/j.issn.0366-6964.2024.02.015 |
|
68 | SUGIURA K , SU Y Q , LI Q L , et al. Estrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9 and BMP15[J]. Mol Endocrinol, 2010, 24 (12): 2303- 2314. |
69 | ZHOU J L , YAO W , LI C Y , et al. Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells[J]. Cell Death Dis, 2017, 8 (8): e3001. |
70 | SHEN M , JIANG Y , GUAN Z Q , et al. Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy[J]. Autophagy, 2017, 13 (8): 1364- 1385. |
71 | DAI W J , YANG H , XU B , et al. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) alleviate excessive autophagy of ovarian granular cells through VEGFA/PI3K/AKT/mTOR pathway in premature ovarian failure rat model[J]. J Ovarian Res, 2023, 16 (1): 198. |
72 | PAN X H , LIU D S , WANG J , et al. Peneciraistin C induces caspase-independent autophagic cell death through mitochondrial-derived reactive oxygen species production in lung cancer cells[J]. Cancer Sci, 2013, 104 (11): 1476- 1482. |
73 | SHARMA P , KAUSHAL N , SALETH L R , et al. Oxidative stress-induced apoptosis and autophagy: Balancing the contrary forces in spermatogenesis[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869 (6): 166742. |
74 | 张萍. 从线粒体介导的细胞凋亡途径探讨多囊卵巢综合征痰证的生物学基础[D]. 福州: 福建中医药大学, 2020. |
ZHANG P. Exploring the biological basis of polycystic ovary syndrome phlegm syndrome frommitochondria-mediated apoptosis pathway[D]. Fuzhou: Fujian University of Traditional Chinese Medicine, 2020. (in Chinese) | |
75 | WANG Y R , YANG C X , ELSHEIKH N A H , et al. HO-1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress[J]. Aging (Albany NY), 2019, 11 (15): 5535- 5547. |
76 | 董若曦. 淫羊藿苷抑制氧化应激改善大鼠化疗损伤性卵巢早衰的机制研究[D]. 上海: 上海中医药大学, 2019. |
DONG R X. Mechanism research of icariin improves chemotherapy-induced premature Ovarian failure in rats by inhibiting oxidative stress[D]. Shanghai: Shanghai University of Traditional Chinese Medicine, 2019. (in Chinese) | |
77 | LLIBEROS C , LIEW S H , ZAREIE P , et al. Evaluation of inflammation and follicle depletion during ovarian ageing in mice[J]. Sci Rep, 2021, 11 (1): 278. |
78 | 李萌, 肖飞, 严醒, 等. 基于生物信息学分析和实验验证的肥胖相关蛋白促进肾小球系膜细胞自噬和抑制炎症反应的机制研究[J]. 中国医院药学杂志, 2024, 44 (2): 138- 145. |
LI M , XIAO F , YAN X , et al. Study on the mechanism of fat mass and obesity associated proteins in promoting autophagy and inhibiting inflammatory response in glomerular mesangial cells based on bioinformatics analysis and experimental verification[J]. Chinese Journal of Hospital Pharmacy, 2024, 44 (2): 138- 145. | |
79 | 麻俊渊. 褪黑素调控绵羊卵泡膜细胞生物学功能及抗焦亡分子机制研究[D]. 兰州: 西北民族大学, 2023. |
MA J Y. Study of molecular mechanism of melatoninregulates the biological function and anti-pyroptosis in sheep theca cells[D]. Lanzhou: Northwest Minzu University, 2023. (in Chinese) | |
80 | YUAN C F , CHEN X , SHEN C M H , et al. Follicular fluid exosomes regulate oxidative stress resistance, proliferation, and steroid synthesis in porcine theca cells[J]. Theriogenology, 2022, 194, 75- 82. |
81 | ESQUIVEL M R , HAYES E , LAKOMY O , et al. Salt-inducible kinases regulate androgen synthesis in theca cells by enhancing CREB signaling[J]. Mol Cell Endocrinol, 2023, 577, 112030. |
82 | MEDINA-MOCTEZUMA Z B , HERNÁNDEZ-CORONADO C G , MARÍN-LÓPEZ L , et al. Sphingosine-1-phosphate regulation of luteinising hormone-induced steroidogenesis and proliferation of bovine theca cells in vitro[J]. Reprod Fertil Dev, 2023, 35 (9): 518- 526. |
83 | DAS A , ROYCHOUDHURY S . Reactive oxygen species in the reproductive system: sources and physiological roles[M]. Cham: Springer, 2022: 9- 40. |
84 | REYES-PEREA A D , GUERRERO-NETRO H M , MEZA-SERRANO E , et al. The mycotoxin de-epoxy-deoxynivalenol (DOM-1) increases endoplasmic reticulum stress in ovarian theca cells[J]. Toxins (Basel), 2023, 15 (3): 228. |
85 | VLIEGHE H , LEONEL E C R , ASIABI P , et al. The characterization and therapeutic applications of ovarian theca cells: An update[J]. Life Sci, 2023, 317, 121479. |
86 | MA J Y , WANG J N , HU S M , et al. Effects of melatonin on development and hormone secretion of sheep theca cells in vitro[J]. Theriogenology, 2023, 198, 172- 182. |
87 | BECK A L , REHFELD A , MORTENSEN L J , et al. Ovarian follicular fluid levels of phthalates and benzophenones in relation to fertility outcomes[J]. Environ Int, 2024, 183, 108383. |
88 | LORD T , AITKEN R J . Oxidative stress and ageing of the post-ovulatory oocyte[J]. Reproduction, 2013, 146 (6): R217- R227. |
89 | SANDHU J K , WAQAR A , JAIN A , et al. Oxidative stress in polycystic ovarian syndrome and the effect of antioxidant N-acetylcysteine on ovulation and pregnancy rate[J]. Cureus, 2021, 13 (9): e17887. |
90 |
BHATTACHARYA K , DEY R , SEN D , et al. Polycystic ovary syndrome and its management: In view of oxidative stress[J]. Biomol Concepts, 2024, 15 (1)
doi: 10.1515/bmc-2022-0038 |
91 | PEREZ G I , ACTON B M , JURISICOVA A , et al. Genetic variance modifies apoptosis susceptibility in mature oocytes via alterations in DNA repair capacity and mitochondrial ultrastructure[J]. Cell Death Differ, 2007, 14 (3): 524- 533. |
92 | CHEN Z Y , ZHANG D D , SUN Z Y , et al. A proper increasing in the testosterone level may be associated with better pregnancy outcomes for patients with tubal or male infertility during in vitro fertilization/intracytoplasmic sperm injection[J]. Front Physiol, 2021, 12, 696854. |
93 | SCHÜTZ L F , HEMPLE A M , MORRELL B C , et al. Changes in fibroblast growth factor receptors-1c, -2c, -3c, and -4 mRNA in granulosa and theca cells during ovarian follicular growth in dairy cattle[J]. Domest Anim Endocrinol, 2022, 80, 106712. |
94 | SHI Y Q , ZHU X T , ZHANG S N , et al. Premature ovarian insufficiency: a review on the role of oxidative stress and the application of antioxidants[J]. Front Endocrinol (Lausanne), 2023, 14, 1172481. |
95 | SIES H , BELOUSOV V V , CHANDEL N S , et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology[J]. Nat Rev Mol Cell Biol, 2022, 23 (7): 499- 515. |
96 | MATSUMOTO H . Molecular and cellular events during blastocyst implantation in the receptive uterus: clues from mouse models[J]. J Reprod Dev, 2017, 63 (5): 445- 454. |
97 | ATEN R F , KOLODECIK T R , ROSSI M J , et al. Prostaglandin F2α treatment in vivo, but not in vitro, stimulates protein kinase C-activated superoxide production by nonsteroidogenic cells of the rat corpus luteum[J]. Biol Reprod, 1998, 59 (5): 1069- 1076. |
98 | REID K , DANIELS E G , VASAM G , et al. Reducing mitochondrial ribosomal gene expression does not alter metabolic health or lifespan in mice[J]. Sci Rep, 2023, 13 (1): 8391. |
99 | SUGINO N , KARUBE-HARADA A , KASHIDA S , et al. Differential regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase by progesterone withdrawal in human endometrial stromal cells[J]. Mol Hum Reprod, 2002, 8 (1): 68- 74. |
100 | SUGINO N , OKUDA K . Species-related differences in the mechanism of apoptosis during structural luteolysis[J]. J Reprod Dev, 2007, 53 (5): 977- 986. |
[1] | 李媛媛, 王天玉, 李梦, 张文慧, 王英卉, 赵天瑞, 李浩洁, 赵阳飞, 王金明. 硒代蛋氨酸通过PINK1/Parkin介导的线粒体自噬缓解氟诱导的抑郁样行为[J]. 畜牧兽医学报, 2024, 55(7): 3213-3224. |
[2] | 陈倩玲, 沙玉柱, 刘秀, 邵鹏阳, 王翻兄, 陈小伟, 杨文鑫, 谢转回, 高敏, 黄薇. 肠道微生物与线粒体互作调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2293-2303. |
[3] | 宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
[4] | 李婉君, 徐皆欢, 何孟纤, 孔钰婷, 张德福, 戴建军. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55(5): 1999-2010. |
[5] | 吕世琪, 周荣艳, 田树军, 陈晓勇. 线粒体tRNA-Lys(T7719G)基因变异影响绵羊颗粒细胞凋亡生理机制研究[J]. 畜牧兽医学报, 2024, 55(5): 2011-2021. |
[6] | 董书餐, 毛帅翔, 伍翠莹, 李耀坤, 孙宝丽, 郭勇庆, 邓铭, 刘德武, 柳广斌. 雄激素受体抑制剂恩杂鲁胺对山羊卵泡颗粒细胞增殖凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2022-2031. |
[7] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[8] | 李菲菲, 张晨淼, 童津津, 蒋林树. 线粒体自噬调节NLRP3炎症小体活性改善动物健康的作用机制[J]. 畜牧兽医学报, 2024, 55(4): 1446-1455. |
[9] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. |
[10] | 章心婷, 邱文粤, 庞晓玥, 苏依曼, 叶嘉莉, 黄健佳, 周水莲, 唐兆新, 王荣梅, 苏荣胜. 积雪草酸通过抑制氧化应激和铁死亡减轻脂多糖诱导的肉鸡心肌损伤的研究[J]. 畜牧兽医学报, 2024, 55(4): 1787-1799. |
[11] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[12] | 姜丽君, 宗云鹤, 李云雷, 陈继兰, 耿照玉, 孙研研, 金四华. 抗氧化剂在家禽精液储存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(3): 913-923. |
[13] | 片慧芳, 杜旭彬, 李妍, 张雨辰, 何惠, 虞德兵. 甜菜碱对产蛋后期蛋鸡生产性能、蛋品质和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(3): 1085-1094. |
[14] | 王鑫, 聂桐, 李阿群, 马隽. 橙皮苷通过氧化磷酸化途径缓解高脂饲喂诱导的小鼠肝氧化应激[J]. 畜牧兽医学报, 2024, 55(3): 1302-1313. |
[15] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||