1 |
康国磊, 王净, 王红娜, 等. 肌肽的生理作用及其在畜禽生产中的应用研究进展[J]. 中国畜牧杂志, 2022, 58 (9): 58- 62.
|
|
KANG G L , WANG J , WANG H N , et al. Research progress on physiological role of carnosine and its application in livestock and poultry production[J]. Chinese Journal of Animal Science, 2022, 58 (9): 58- 62.
|
2 |
CHEN P R , LEE K . Invited review: inhibitors of myostatin as methods of enhancing muscle growth and development[J]. J Anim Sci, 2016, 94 (8): 3125- 3134.
doi: 10.2527/jas.2016-0532
|
3 |
HERNÁNDEZ-HERNÁNDEZ J M , GARCÍA-GONZÁLEZ E G , BRUN C E , et al. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration[J]. Semin Cell Dev Biol, 2017, 72, 10- 18.
doi: 10.1016/j.semcdb.2017.11.010
|
4 |
UMANSKY K B , GRUENBAUM-COHEN Y , TSOORY M , et al. Runx1 transcription factor is required for myoblasts proliferation during muscle regeneration[J]. PLoS Genet, 2015, 11 (8): e1005457.
doi: 10.1371/journal.pgen.1005457
|
5 |
LI Y Y , CHEN X N , SUN H , et al. Long non-coding RNAs in the regulation of skeletal myogenesis and muscle diseases[J]. Cancer Lett, 2018, 417, 58- 64.
doi: 10.1016/j.canlet.2017.12.015
|
6 |
HERKENHOFF M E , OLIVEIRA A C , NACHTIGALL P G , et al. Fishing into the microRNA transcriptome[J]. Front Genet, 2018, 9, 88.
doi: 10.3389/fgene.2018.00088
|
7 |
SORIANO-ARROQUIA A , MCCORMICK R , MOLLOY AP , et al. Age-related changes in miR-143-3p: Igfbp5 interactions affect muscle regeneration[J]. Aging Cell, 2016, 15 (2): 361- 369.
doi: 10.1111/acel.12442
|
8 |
ZHANG D H , RAN J S , LI J J , et al. miR-21-5p regulates the proliferation and differentiation of skeletal muscle satellite cells by targeting KLF3 in chicken[J]. Genes (Basel), 2021, 12 (6): 814.
doi: 10.3390/genes12060814
|
9 |
NGUYEN M T , LEE W . MiR-320-3p regulates the proliferation and differentiation of myogenic progenitor cells by modulating actin remodeling[J]. Int J Mol Sci, 2022, 23 (2): 801.
doi: 10.3390/ijms23020801
|
10 |
ZHU Y , LI P , DAN X G , et al. miR-377 inhibits proliferation and differentiation of bovine skeletal muscle satellite cells by targeting FHL2[J]. Genes (Basel), 2022, 13 (6): 947.
doi: 10.3390/genes13060947
|
11 |
ZHANG W , WANG S Y , DENG S Y , et al. MiR-27b promotes sheep skeletal muscle satellite cell proliferation by targeting myostatin gene[J]. J Genet, 2018, 97 (5): 1107- 1117.
doi: 10.1007/s12041-018-0998-5
|
12 |
GONNOT F , LANGER D , BOURILLOT P Y , et al. Regulation of cyclin E by transcription factors of the naïve pluripotency network in mouse embryonic stem cells[J]. Cell Cycle, 2019, 18 (20): 2697- 2712.
doi: 10.1080/15384101.2019.1656475
|
13 |
HOLSTEIN I , SINGH A K , POHL F , et al. Post-transcriptional regulation of MRTF-A by miRNAs during myogenic differentiation of myoblasts[J]. Nucl Acids Res, 2020, 48 (16): 8927- 8942.
doi: 10.1093/nar/gkaa596
|
14 |
KOUTALIANOS D , KOUTSOULIDOU A , MASTROYIANNOPOULOS N P , et al. MyoD transcription factor induces myogenesis by inhibiting Twist-1 through miR-206[J]. J Cell Sci, 2015, 128 (19): 3631- 3645.
|
15 |
MOK G F , LOZANO-VELASCO E , MANIOU E , et al. miR-133-mediated regulation of the Hedgehog pathway orchestrates embryo myogenesis[J]. Development, 2018, 145 (12): dev159657.
|
16 |
ZHU M H , CHEN G , YANG Y , et al. miR-217-5p regulates myogenesis in skeletal muscle stem cells by targeting FGFR2[J]. Mol Med Rep, 2020, 22 (2): 850- 858.
doi: 10.3892/mmr.2020.11133
|
17 |
PODKALICKA P , MUCHA O , BRONISZ-BUDZYŃSKA I , et al. Lack of miR-378 attenuates muscular dystrophy in mdx mice[J]. JCI Insight, 2020, 5 (11): e135576.
doi: 10.1172/jci.insight.135576
|
18 |
WANG K M , LIUFU S , YU Z G , et al. miR-100-5p regulates skeletal muscle myogenesis through the Trib2/mTOR/S6K signaling pathway[J]. Int J Mol Sci, 2023, 24 (10): 8906.
doi: 10.3390/ijms24108906
|
19 |
ZHAI L L , WU R M , HAN W H , et al. miR-127 enhances myogenic cell differentiation by targeting S1PR3[J]. Cell Death Dis, 2017, 8 (3): e2707.
doi: 10.1038/cddis.2017.128
|
20 |
DE SOUSA M C , GJORGJIEVA M , DOLICKA D , et al. Deciphering miRNAs' action through miRNA editing[J]. Int J Mol Sci, 2019, 20 (24): 6249.
doi: 10.3390/ijms20246249
|
21 |
SU J L , CHEN P S , JOHANSSON G , et al. Function and regulation of let-7 family microRNAs[J]. MicroRNA, 2012, 1 (1): 34- 39.
doi: 10.2174/2211536611201010034
|
22 |
FABIAN M R , SONENBERG N , FILIPOWICZ W . Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010, 79, 351- 379.
doi: 10.1146/annurev-biochem-060308-103103
|
23 |
ZAMMIT P S . Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis[J]. Semin Cell Dev Biol, 2017, 72, 19- 32.
doi: 10.1016/j.semcdb.2017.11.011
|
24 |
LIANG H Y , WARD W F . PGC-1α: a key regulator of energy metabolism[J]. Adv Physiol Educ, 2006, 30 (4): 145- 151.
doi: 10.1152/advan.00052.2006
|
25 |
JIANG Y , QIAN H Y . Transcription factors: key regulatory targets of vascular smooth muscle cell in atherosclerosis[J]. Mol Med, 2023, 29 (1): 2.
doi: 10.1186/s10020-022-00586-2
|
26 |
TAYLOR D F , BISHOP D J . Transcription factor movement and exercise-induced mitochondrial biogenesis in human skeletal muscle: current knowledge and future perspectives[J]. Int J Mol Sci, 2022, 23 (3): 1517.
doi: 10.3390/ijms23031517
|
27 |
ARORA S , RANA R , CHHABRA A , et al. miRNA-transcription factor interactions: a combinatorial regulation of gene expression[J]. Mol Genet Genomics, 2013, 288 (3-4): 77- 87.
doi: 10.1007/s00438-013-0734-z
|
28 |
ASHRAFIZADEH M , ZARRABI A , OROUEI S M , et al. Interplay between SOX9 transcription factor and microRNAs in cancer[J]. Int J Biol Macromol, 2021, 183, 681- 694.
doi: 10.1016/j.ijbiomac.2021.04.185
|
29 |
DODD R D , SACHDEVA M , MITO J K , et al. Myogenic transcription factors regulate pro-metastatic miR-182[J]. Oncogene, 2016, 35 (14): 1868- 1875.
doi: 10.1038/onc.2015.252
|
30 |
DU Y , ZHAO Y , WANG Y , et al. MiR-25-3p regulates the differentiation of intramuscular preadipocytes in goat via targeting KLF4[J]. Arch Anim Breed, 2021, 64 (1): 17- 25.
doi: 10.5194/aab-64-17-2021
|
31 |
SKRZYPEK K , NIESZPOREK A , BADYRA B , et al. Enhancement of myogenic differentiation and inhibition of rhabdomyosarcoma progression by miR-28-3p and miR-193a-5p regulated by SNAIL[J]. Mol Ther Nucl Acids, 2021, 24, 888- 904.
doi: 10.1016/j.omtn.2021.04.013
|
32 |
CHANDY M , ISHIDA M , SHIKATANI E A , et al. c-Myb regulates transcriptional activation of miR-143/145 in vascular smooth muscle cells[J]. PLoS One, 2018, 13 (8): e0202778.
doi: 10.1371/journal.pone.0202778
|
33 |
GUY J L, MOR G G. Transcription factor-binding site identification and enrichment analysis[M]//ALVERO A B, MOR G G. Detection of Cell Death Mechanisms: Methods and Protocols. New York: Humana, 2021: 241-261.
|
34 |
NAVET S , BURESI A , BARATTE S , et al. The Pax gene family: highlights from cephalopods[J]. PLoS One, 2017, 12 (3): e0172719.
doi: 10.1371/journal.pone.0172719
|
35 |
LAGHA M , KORMISH J D , ROCANCOURT D , et al. Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program[J]. Genes Dev, 2008, 22 (13): 1828- 1837.
doi: 10.1101/gad.477908
|
36 |
MAGLI A , SCHNETTLER E , RINALDI F , et al. Functional dissection of Pax3 in paraxial mesoderm development and myogenesis[J]. Stem Cells, 2013, 31 (1): 59- 70.
doi: 10.1002/stem.1254
|
37 |
MESSINA G , SIRABELLA D , MONTEVERDE S , et al. Skeletal muscle differentiation of embryonic mesoangioblasts requires Pax3 activity[J]. Stem Cells, 2009, 27 (1): 157- 164.
doi: 10.1634/stemcells.2008-0503
|
38 |
AZHAR M , WARDHANI B W K , RENESTEEN E . The regenerative potential of Pax3/Pax7 on skeletal muscle injury[J]. J Genet Eng Biotechnol, 2022, 20 (1): 143.
doi: 10.1186/s43141-022-00429-x
|