畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (11): 5085-5100.doi: 10.11843/j.issn.0366-6964.2024.11.025
卢建(), 居小军, 王星果, 马猛, 王强, 李永峰, 窦套存, 胡玉萍, 郭军, 邵丹, 童海兵, 曲亮*(
)
收稿日期:
2024-01-02
出版日期:
2024-11-23
发布日期:
2024-11-30
通讯作者:
曲亮
E-mail:lujian1617@163.com;liangquyz@126.com
作者简介:
卢建(1985-),男,山东济宁人,副研究员,博士,主要从事蛋鸡营养代谢与繁殖性能调控研究,E-mail: lujian1617@163.com
基金资助:
Jian LU(), Xiaojun JU, Xingguo WANG, Meng MA, Qiang WANG, Yongfeng LI, Taocun DOU, Yuping HU, Jun GUO, Dan SHAO, Haibing TONG, Liang QU*(
)
Received:
2024-01-02
Online:
2024-11-23
Published:
2024-11-30
Contact:
Liang QU
E-mail:lujian1617@163.com;liangquyz@126.com
摘要:
旨在研究育成期代谢能(ME)摄入量对蛋鸡生殖器官发育、激素水平和卵巢基因表达的影响。将720只6周龄海兰褐蛋鸡随机分为3组,每组6个重复,每个重复40只鸡。6~17周龄,各试验组饲粮粗蛋白质水平分别为17.5%(6~12周龄)和15.5%(12~17周龄),ME水平分别为12.34、11.11(12.34×90%)和9.87(12.34×80%)MJ ·kg-1(分别为对照组亦即自由采食组、90% ME限饲组和80% ME限饲组),其他营养素水平相同。对照组试验鸡自由采食,其他试验组蛋鸡按照对照组蛋鸡采食量定量饲喂。试验期为6~17周龄。结果表明:1)随着育成期能量限饲强度增加,各试验组蛋鸡17周龄体重、体斜长和跖围均显著线性减少(P < 0.001)。2)随着育成期能量限饲强度增加,血清尿素氮(UN)和葡萄糖(GLU)水平均显著线性减小(P=0.040,P=0.044),但血浆雌二醇水平显著线性增加(P=0.026)。3)对17周龄血液雌二醇水平差异最显著的自由采食组(ALF17W)和80%能量限饲组(ERF17W)蛋鸡卵巢基质部进行RNA-Seq分析,纯净序列匹配到鸡参考基因组的比例均超过了94.61%,Q20和Q30的纯净序列含量分别高于97.38%和92.87%,两组共筛选出1 299个差异基因,ERF17W中961个下调,338个上调。GO功能富集分析发现,差异表达的mRNAs参与调节细胞增殖、发育和生殖等48个显著富集的GO条目,KEGG信号通路显著富集在25个显著富集的KEGG通路,其中cAMP信号通路、雌激素信号通路、类固醇激素生物合成和卵巢类固醇生成等是与能量代谢或生殖相关的通路。筛选到的cAMP反应元件结合蛋白(CREB)和类固醇生成急性调节蛋白(StAR)富集在cAMP信号通路,孕激素受体(PGR)、代谢型谷氨酸受体1(GRM 1)和细胞骨架蛋白角蛋白18(KRT 18)富集在雌激素信号通路。qRT-PCR结果显示10个随机选择的差异表达基因的表达趋势与RNA-Seq结果一致。综上可见,随育成期ME摄入量减少,育成期末蛋鸡体重、血清UN和GLU含量均显著线性减小,但血浆雌二醇水平显著线性增加,育成期ME摄入量可能通过调控卵巢组织StAR、CREB1、KRT18、PGR和GRM1等基因的表达,作用于cAMP信号通路和雌激素信号通路,以调控蛋鸡能量代谢和雌激素生成。
中图分类号:
卢建, 居小军, 王星果, 马猛, 王强, 李永峰, 窦套存, 胡玉萍, 郭军, 邵丹, 童海兵, 曲亮. 育成期代谢能摄入量对蛋鸡生殖器官发育、激素水平和卵巢基因表达的影响[J]. 畜牧兽医学报, 2024, 55(11): 5085-5100.
Jian LU, Xiaojun JU, Xingguo WANG, Meng MA, Qiang WANG, Yongfeng LI, Taocun DOU, Yuping HU, Jun GUO, Dan SHAO, Haibing TONG, Liang QU. Effects of Metabolizable Energy Intake during Rearing on Development of Reproductive Organs, Hormone Level and Gene Expression in Ovary of Laying Hens[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5085-5100.
表 1
育成期试验饲粮组成及营养水平"
项目Item | 代谢能水平/(MJ·kg-1) ME level | |||||
6~12周龄 6 to 12 weeks of age | 12~17周龄 12 to 17 weeks of age | |||||
12.34 | 11.11 | 9.87 | 12.34 | 11.11 | 9.87 | |
原料Ingredient | ||||||
玉米Corn | 71.11 | 61.00 | 50.20 | 75.20 | 64.80 | 54.30 |
豆粕Soybean meal | 25.67 | 27.60 | 29.40 | 20.80 | 22.70 | 24.50 |
石粉Limestone | 1.40 | 1.40 | 1.40 | 2.00 | 2.00 | 2.00 |
沸石粉Zeolite powder | 8.23 | 17.26 | 0.20 | 8.75 | 17.49 | |
磷酸氢钙Dicalcium phosphate | 0.105 | 0.105 | 0.105 | 0.105 | 0.105 | 0.105 |
磷酸二氢钙Monocalcium phosphate | 0.595 | 0.595 | 0.595 | 0.595 | 0.595 | 0.595 |
食盐NaCl | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
50%胆碱50% Choline chloride | 0.12 | 0.12 | 0.12 | 0.10 | 0.10 | 0.10 |
DL-蛋氨酸DL-methionine | 0.15 | 0.16 | 0.17 | 0.15 | 0.15 | 0.16 |
赖氨酸Lysine | 0.10 | 0.04 | 0.00 | 0.10 | 0.05 | 0.00 |
预混料Premix1) | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
营养水平(计算值)Nutrient levels (calculated value) | ||||||
代谢能/(MJ·kg-1) ME | 12.34 | 11.11 | 9.87 | 12.34 | 11.11 | 9.87 |
粗蛋白质Crude protein | 17.50 | 17.50 | 17.50 | 15.50 | 15.50 | 15.50 |
可消化氨基酸Digestible amino acid | ||||||
赖氨酸Lysine | 0.94 | 0.94 | 0.94 | 0.82 | 0.82 | 0.82 |
蛋氨酸Methionine | 0.45 | 0.45 | 0.45 | 0.41 | 0.41 | 0.41 |
蛋氨酸+胱氨酸Met+Cys | 0.73 | 0.73 | 0.73 | 0.67 | 0.67 | 0.67 |
色氨酸L-tryptophan | 0.20 | 0.21 | 0.22 | 0.18 | 0.18 | 0.18 |
苏氨酸Threonine | 0.66 | 0.66 | 0.66 | 0.59 | 0.59 | 0.59 |
钙Calcium | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 |
总磷Total phosphorus | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
非植酸磷Nonphytate phosphorus | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 |
营养水平(实测值)Nutrient levels (measured value) | ||||||
粗蛋白质Crude protein | 17.75 | 17.59 | 17.63 | 15.61 | 15.58 | 15.58 |
赖氨酸Lysine | 0.89 | 0.87 | 0.87 | 0.78 | 0.76 | 0.79 |
蛋氨酸Methionine | 0.43 | 0.42 | 0.44 | 0.38 | 0.36 | 0.37 |
钙Calcium | 0.84 | 0.86 | 0.79 | 0.87 | 0.88 | 0.83 |
总磷Total phosphorus | 0.53 | 0.49 | 0.51 | 0.53 | 0.51 | 0.51 |
表 2
差异表达基因的qRT-PCR验证引物"
基因名称 Gene name | 登录号 GenBank accession number | 引物序列(5′ Primer sequence(5′ | 产物长度/bp Product size |
StAR | NM_204686 | F: GTCCCTCGCAGACCAAGT R: TCCCTACTGTTAGCCCTGA | 196 |
CREB1 | NM_204450.3 | F: GCACAGACCACAGATGGACA R: TTCAAGCACAGCCACTCGAT | 285 |
ADIPOQ | NM_206991.2 | F: CCCATCCGCTTCACCAAGAT R: GACGTCCGTCATGTAGACCG | 129 |
PLTP | NM_001162406.2 | F: CAGCCATGCACGCATACTTC R: AAGGTGGCTCTCAGCAGAAC | 97 |
APOA1 | XM_015297971.3 | F: CTTGACCTGAAGCTGGCTGA R: CTCCTTCAGCTCCTCCTCCA | 165 |
CD36 | XM_040686380.1 | F: GTTACTGGGTGTGGTGCAGA R: AGGAACCCATGAATGCGAGG | 77 |
FABP5 | NM_001006346.2 | F: GGCCATCGACGCGTTTTTAG R: ACATCTGGTTTCGCCATGCT | 123 |
COL3A1 | XM_025152154.2 | F: CCTTCGGAGAATGCTGTCCA R: CCCGGAAAGCCACTACCTC | 217 |
MGST2 | XM_040671687.1 | F: AGTACTTCCACGGCTATGCG R: CCAACGTTGAAGCCCAGGTA | 145 |
RAC2 | NM_001201452.2 | F: TGATGGTTGACAGCAAGCCT R: ACCACTTAGCACGGACGTTT | 162 |
表 3
6~17周龄ME摄入量对蛋鸡体重、体重CV和体尺的影响"
项目Items | 代谢能水平/(MJ·kg-1) ME level | SEM | P值 P-value | ||||
12.34 | 11.11 | 9.87 | 代谢能 ME | 线性 Linear | 二次 Quadratic | ||
6周龄体重/g Body weight at 6 weeks of age | 374.5 | 379.9 | 376.1 | 1.953 | 0.504 | 0.731 | 0.266 |
6周龄体重CV Body weight CV at 6 weeks of age | 10.77 | 12.38 | 11.20 | 0.345 | 0.140 | 0.591 | 0.059 |
17周龄体重/g Body weight at 17 weeks of age | 1 474.3a | 1 404.9b | 1 249.8c | 8.460 | < 0.001 | < 0.001 | 0.001 |
17周龄体重CV Body weight CV at 17 weeks of age | 6.50 | 6.77 | 7.33 | 0.376 | 0.713 | 0.439 | 0.869 |
17周龄体斜长/cm Body slope length at 17 weeks of age | 21.45a | 21.07b | 20.68c | 0.052 | < 0.001 | < 0.001 | 0.976 |
17周龄跖长/cm Shank length at 17 weeks of age | 8.57b | 8.68a | 8.64ab | 0.017 | 0.026 | 0.065 | 0.051 |
17周龄跖围/cm Shank circumference at 17 weeks of age | 3.65a | 3.65a | 3.57b | 0.007 | < 0.001 | < 0.001 | 0.005 |
表 4
育成期ME摄入量对17周龄蛋鸡血液生化指标的影响"
项目Item | 代谢能水平/(MJ·kg-1) ME level | SEM | P值 P-value | ||||
12.34 | 11.11 | 9.87 | 代谢能 ME | 线性 Linear | 二次 Quadratic | ||
葡萄糖GLU | 10.60a | 10.28ab | 9.82b | 0.175 | 0.019 | 0.044 | 0.098 |
尿素氮UN | 1.22a | 0.73b | 0.68b | 0.116 | 0.049 | 0.040 | 0.355 |
总胆固醇TC | 2.85 | 3.26 | 2.91 | 0.109 | 0.273 | 0.826 | 0.116 |
甘油三酯TG | 0.33 | 0.27 | 0.31 | 0.013 | 0.136 | 0.585 | 0.057 |
游离脂肪酸UREA | 0.41 | 0.38 | 0.28 | 0.036 | 0.305 | 0.667 | 0.667 |
高密度脂蛋白胆固醇HDL-C | 1.88 | 2.04 | 1.82 | 0.065 | 0.367 | 0.689 | 0.180 |
低密度脂蛋白胆固醇LDL-C | 0.78 | 0.81 | 0.74 | 0.039 | 0.791 | 0.694 | 0.583 |
表 5
育成期ME摄入量对17周龄蛋鸡肝组织生化指标的影响"
项目Item | 代谢能水平/(MJ·kg-1) ME level | SEM | P值 P-value | ||||
12.34 | 11.11 | 9.87 | 代谢能 ME | 线性 Linear | 二次 Quadratic | ||
总胆固醇TC | 1.70 | 1.41 | 1.23 | 0.096 | 0.125 | 0.046 | 0.792 |
甘油三酯TG | 0.24 | 0.27 | 0.19 | 0.028 | 0.518 | 0.441 | 0.401 |
游离脂肪酸UREA | 0.40 | 0.37 | 0.33 | 0.038 | 0.800 | 0.933 | 0.933 |
高密度脂蛋白胆固醇HDL-C | 1.13 | 1.37 | 1.55 | 0.100 | 0.234 | 0.095 | 0.864 |
低密度脂蛋白胆固醇LDL-C | 0.31 | 0.24 | 0.22 | 0.025 | 0.298 | 0.144 | 0.623 |
表 6
育成期ME摄入量对17周龄蛋鸡生殖器官发育的影响"
项目Item | 代谢能水平/(MJ·kg-1) ME level | SEM | P值 P-value | ||||
12.34 | 11.11 | 9.87 | 代谢能 ME | 线性 Linear | 二次 Quadratic | ||
输卵管长度/cm Oviduct length | 8.82 | 9.37 | 8.62 | 0.472 | 0.817 | 0.871 | 0.546 |
排卵前卵泡数/个 Preovulatory follicle amount | 0.00 | 0.00 | 0.00 | — | — | — | — |
小黄卵泡数/个 Small yellow follicle amount | 0.00 | 0.00 | 0.17 | 0.056 | 0.391 | 0.240 | 0.490 |
大白卵泡数/个 Big white follicle amount | 2.83 | 2.00 | 1.83 | 0.475 | 0.682 | 0.421 | 0.754 |
输卵管重/g Oviduct weight | 0.48 | 0.43 | 0.32 | 0.055 | 0.479 | 0.244 | 0.783 |
排卵前卵泡重/g Preovulatory follicle weight | 0.00 | 0.00 | 0.00 | — | — | — | — |
小黄卵泡重/g Small yellow follicle weight | 0.000 | 0.000 | 0.008 | 0.003 | 0.391 | 0.240 | 0.490 |
大白卵泡重/g Big white follicle weight | 0.050 | 0.037 | 0.027 | 0.009 | 0.604 | 0.325 | 0.934 |
卵巢基质部重/g Ovary stroma weight | 0.622b | 0.738a | 0.622b | 0.023 | 0.039 | 1.000 | 0.012 |
输卵管长度体重比/(cm·kg-1) Oviduct length index | 6.28 | 7.04 | 7.13 | 0.364 | 0.602 | 0.366 | 0.677 |
输卵管指数/(g·kg-1) Oviduct index | 0.347 | 0.317 | 0.262 | 0.039 | 0.693 | 0.406 | 0.886 |
排卵前卵泡指数/(g·kg-1) Preovulatory follicle index | 0.00 | 0.00 | 0.00 | — | — | — | — |
小黄卵泡指数/(g·kg-1) Small yellow follicle index | 0.000 | 0.000 | 0.007 | 0.002 | 0.391 | 0.240 | 0.490 |
大白卵泡指数/(g·kg-1) Big white follicle index | 0.035 | 0.027 | 0.022 | 0.007 | 0.748 | 0.458 | 0.914 |
卵巢基质部指数/(g·kg-1) Ovary stroma index | 0.442c | 0.555a | 0.512b | 0.018 | 0.021 | 0.071 | 0.024 |
表 7
RNA-seq数据统计"
样本 Sample | 原始序列数/条 Raw reads number | 高质量序列数/条 Pure reads number | 原始 碱基数/Gb Raw data | 高质量 碱基数/Gb Pure data | Q20/% | Q30/% | GC/% | 核糖体序列/% rRNA reads |
ALF17W-1 | 50 962 344 | 50 799 300 | 7.64 | 7.59 | 97.54 | 93.18 | 48.36 | 0.20 |
ALF17W-2 | 53 402 274 | 53 214 066 | 8.01 | 7.94 | 97.38 | 92.87 | 48.38 | 0.22 |
ALF17W-3 | 43 229 032 | 43 075 756 | 6.48 | 6.43 | 97.42 | 92.98 | 48.95 | 0.18 |
ALF17W-4 | 75 650 346 | 75 361 666 | 11.35 | 11.25 | 97.56 | 93.30 | 48.49 | 0.20 |
ERF17W-1 | 99 725 586 | 99 386 002 | 14.96 | 14.85 | 97.54 | 93.19 | 47.96 | 0.15 |
ERF17W-2 | 91 464 834 | 91 146 292 | 13.72 | 13.61 | 97.70 | 93.58 | 48.12 | 0.24 |
ERF17W-3 | 98 418 144 | 98 067 256 | 14.76 | 14.65 | 97.75 | 93.70 | 48.62 | 0.16 |
ERF17W-4 | 94 560 800 | 94 224 928 | 14.18 | 14.07 | 97.52 | 93.16 | 48.68 | 0.11 |
表 8
基因组数据比对结果"
样本 Sample | 总序列数 Total reads number | 未必对上序列数(占比) Unmapped reads number(ratio) | 唯一比对上序列数(占比) Unique mapped reads number(ratio) | 多基因组比对序列数(占比) Multiple mapped reads number(ratio) | 总比对上序列数(占比) Mapped reads number(ratio) |
ALF17W-1 | 50 699 230 | 2 646 173 (5.22%) | 47 104 260 (92.91%) | 948 797 (1.87%) | 48 053 057 (94.78%) |
ALF17W-2 | 53 098 502 | 2 759 806 (5.20%) | 49 339 935 (92.92%) | 998 761 (1.88%) | 50 338 696 (94.80%) |
ALF17W-3 | 42 997 384 | 2 292 500 (5.33%) | 39 875 883 (92.74%) | 829 001 (1.93%) | 40 704 884 (94.67%) |
ALF17W-4 | 75 208 912 | 4 051 145 (5.39%) | 69 679 240 (92.65%) | 1 478 527 (1.97%) | 71 157 767 (94.61%) |
ERF17W-1 | 99 236 998 | 4 736 818 (4.77%) | 92 599 873 (93.31%) | 1 900 307 (1.91%) | 94 500 180 (95.23%) |
ERF17W-2 | 90 928 890 | 4 404 556 (4.84%) | 84 759 588 (93.22%) | 1 764 746 (1.94%) | 86 524 334 (95.16%) |
ERF17W-3 | 97 907 900 | 4 817 719 (4.92%) | 91 119 179 (93.07%) | 1 971 002 (2.01%) | 93 090 181 (95.08%) |
ERF17W-4 | 94 120 564 | 4 674 565 (4.97%) | 87 580 401 (93.05%) | 1 865 598 (1.98%) | 89 445 999 (95.03%) |
表 9
与能量代谢、性成熟相关的信号通路及差异基因"
信号通路Signaling pathway | 基因Gene |
ECM受体相互作用 ECM-receptor interaction | FN1、ITGA7、COL6A3、COL6A1、COL6A2、COL4A1、COL4A2、GP5、VWF、TNC、 ITGB6、LAMA5、FREM2、CD44、VTN、CD36、RELN、GP9、ITGA8、ITGB5、HSPG2、COL1A2、CEACAM20、COL1A2、CEACAM20 |
松弛素信号通路 Relaxin signaling pathway | COL1A1、MAPK11、MMP13、MMP9、COL4A1、RLN3、COL4A2、NOS3、TGFB1、SHC3、MMP2、ACTA2、COL1A2、COL3A1 |
雌激素信号通路 Estrogen signaling pathway | KRT18、PGR、GRM1、MMP9、KRT23、KRT13、KRT14、KRT17、CALML4、NOS3、GNAQ、SHC3、MMP2 |
醛固酮的合成和分泌 Aldosterone synthesis and secretion | CAMK2D、CALML4、AGTR1、CACNA1C、KCNK3、GNAQ、CYP21A1、CAMK1D、CAMK2A |
胆固醇代谢 Cholesterol metabolism | PLTP、APOA1、LCAT、LRP1、CD36、ANGPTL4 |
催产素信号通路 Oxytocin signaling pathway | NOS3、MYL9、GNAQ、NFATC1、CAMK1D、NPR2、CACNA2D1、CAMK2A、MYLK |
生长激素的合成、分泌和作用 Growth hormone synthesis, secretion and action | SOCS3、MAPK11、CACNA1C、SST、GNAQ、SSTR2、SSTR5、SHC3 |
cAMP信号通路 cAMP signaling pathway | StAR、CREB1 |
类固醇生物合成 Steroid biosynthesis | CEL |
GnRH信号通路 GnRH signaling pathway | MAPK11、CAMK2D、CALML4、EGR1、CACNA1C、GNAQ、MMP2、CAMK2A |
1 | BESTMAN M , RUIS M , HEIJMANS J , et al.Poultry signals: a practical guide for bird focused poultry farming[M].Zutphen: Roodbont Publishers B.V.,2011:42-55. |
2 |
FRIKHA M , SAFAA H M , JIMÉNEZ-MORENO E , et al.Influence of energy concentration and feed form of the diet on growth performance and digestive traits of brown egg-laying pullets from 1 to 120 days of age[J].Anim Feed Sci Technol,2009,153(3-4):292-302.
doi: 10.1016/j.anifeedsci.2009.06.012 |
3 |
AFROUZIYEH M , ZUKIWSKY N M , ZUIDHOF M J .Timing of growth affected broiler breeder feeding motivation and reproductive traits[J].Poult Sci,2021,100(9):101375.
doi: 10.1016/j.psj.2021.101375 |
4 | LU J , QU L , LI Y F , et al.Effects of energy-restricted feeding during rearing on the performance, uniformity, and development of Rugao layer breeders at the initiation of the laying period[J].Animals (Basel),2021,11(8):2222. |
5 |
PAN Y E , LIU Z C , CHANG C J , et al.Feed restriction ameliorates metabolic dysregulation and improves reproductive performance of meat-type country chickens[J].Anim Reprod Sci,2014,151(3-4):229-236.
doi: 10.1016/j.anireprosci.2014.10.003 |
6 |
ZUIDHOF M J , FEDORAK M V , OUELLETTE C A , et al.Precision feeding: innovative management of broiler breeder feed intake and flock uniformity[J].Poult Sci,2017,96(7):2254-2263.
doi: 10.3382/ps/pex013 |
7 |
FULLER H L , CHANEY L W .Effect of delayed maturity of white leghorn chickens on subsequent productivity[J].Poult Sci,1974,53(4):1348-1355.
doi: 10.3382/ps.0531348 |
8 | 卢建, 王克华, 杨晓东, 等.育成期饲粮代谢能水平对开产时如皋黄鸡生长发育的影响[J].畜牧兽医学报,2022,53(7):2215-2227. |
LU J , WANG K H , YANG X D , et al.Effects of dietary metabolizable energy levels during rearing on growth and development of Rugao yellow chicken at the Initiation of the laying period[J].Acta Veterinaria et Zootechnica Sinica,2022,53(7):2215-2227. | |
9 |
LU J , LI Y F , QU L , et al.Effects of energy-restricted feeding during rearing on sexual maturation and reproductive performance of Rugao layer breeders[J].Poult Sci,2021,100(8):101225.
doi: 10.1016/j.psj.2021.101225 |
10 |
LU J , WANG Q , WANG K H , et al.Effects of energy restriction during growing phase on the productive performance of Hyline brown laying hens aged 6 to 72 wk[J].Poult Sci,2023,102(10):102942.
doi: 10.1016/j.psj.2023.102942 |
11 |
VAN DER KLEIN S A S , SILVA F A , KWAKKEL R P , et al.The effect of quantitative feed restriction on allometric growth in broilers[J].Poult Sci,2017,96(1):118-126.
doi: 10.3382/ps/pew187 |
12 |
BUTZEN F M , RIBEIRO A M L , VIEIRA M M , et al.Early feed restriction in broilers.I-performance, body fraction weights, and meat quality[J].J Appl Poult Res,2013,22(2):251-259.
doi: 10.3382/japr.2012-00639 |
13 |
URDANETA-RINCON M , LEESON S .Quantitative and qualitative feed restriction on growth characteristics of male broiler chickens[J].Poult Sci,2002,81(5):679-688.
doi: 10.1093/ps/81.5.679 |
14 | NOVEL D J , NGAMBI J W , NORRIS D , et al.Effect of different feed restriction regimes during the starter stage on productivity and carcass characteristics of male and female Ross 308 broiler chickens[J].Int J Poult Sci,2009,8(1):35-39. |
15 |
卢建, 王克华, 杨晓东, 等.饲粮代谢能水平对3~8周龄如皋黄鸡生长发育和血清生化指标的影响[J].动物营养学报,2022,34(4):2301-2313.
doi: 10.3969/j.issn.1006-267x.2022.04.026 |
LU J , WANG K H , YANG X D , et al.Effects of dietary metabolic energy level on growth and development and serum biochemical indexes of Rugao yellow chickens aged from 3 to 8 weeks[J].Chinese Journal of Animal Nutrition,2022,34(4):2301-2313.
doi: 10.3969/j.issn.1006-267x.2022.04.026 |
|
16 |
BRUGGEMAN V , ONAGBESAN O , D'HONDT E , et al.Effects of timing and duration of feed restriction during rearing on reproductive characteristics in broiler breeder females[J].Poult Sci,1999,78(10):1424-1434.
doi: 10.1093/ps/78.10.1424 |
17 |
BÉDÉCARRATS G Y .Control of the reproductive axis: balancing act between stimulatory and inhibitory input[J].Poult Sci,2015,94(4):810-815.
doi: 10.3382/ps/peu042 |
18 |
CHENG Y , ZHU H , REN J , et al.Follicle-stimulating hormone orchestrates glucose-stimulated insulin secretion of pancreatic islets[J].Nat Commun,2023,14(1):6991.
doi: 10.1038/s41467-023-42801-6 |
19 |
YUAN X H , YANG C R , WANG X N , et al.Progesterone maintains the status of granulosa cells and slows follicle development partly through PGRMC1[J].J Cell Physiol,2019,234(1):709-720.
doi: 10.1002/jcp.26869 |
20 | 李永峰. 育成期能量摄入量对苏禽绿壳蛋鸡母本早期蛋用性能的影响[D]. 北京: 中国农业科学院, 2017. |
LI Y F. The impact of energy intake during growing period on early laying performance of Suqin green eggshell layer female parent[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) | |
21 |
RENEMA R A , ROBINSON F E , ZUIDHOF M J .Reproductive efficiency and metabolism of female broiler breeders as affected by genotype, feed allocation, and age at photostimulation.2.Sexual maturation[J].Poult Sci,2007,86(10):2267-2277.
doi: 10.1093/ps/86.10.2267 |
22 |
BASTOS N M , GOULART R S , BAMBIL D B , et al.High body energy reserve influences extracellular vesicles miRNA contents within the ovarian follicle[J].PLoS One,2023,18(1):e0280195.
doi: 10.1371/journal.pone.0280195 |
23 |
CASARINI L , CRÉPIEUX P .Molecular mechanisms of action of FSH[J].Front Endocrinol (Lausanne),2019,10,305.
doi: 10.3389/fendo.2019.00305 |
24 |
PURI P , LITTLE-IHRIG L , CHANDRAN U , et al.Protein kinase a: a master kinase of granulosa cell differentiation[J].Sci Rep,2016,6,28132.
doi: 10.1038/srep28132 |
25 |
KOO S H , FLECHNER L , QI L , et al.The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism[J].Nature,2005,437(7062):1109-1114.
doi: 10.1038/nature03967 |
26 |
WANG Y G , VERA L , FISCHER W H , et al.The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis[J].Nature,2009,460(7254):534-537.
doi: 10.1038/nature08111 |
27 |
WANG Y G , LI G , GOODE J , et al.Inositol-1, 4, 5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes[J].Nature,2012,485(7396):128-132.
doi: 10.1038/nature10988 |
28 |
HIORT O , HOLTERHUS P M , WERNER R , et al.Homozygous disruption of P450 side-chain cleavage (CYP11A1) is associated with prematurity, complete 46, XY sex reversal, and severe adrenal failure[J].J Clin Endocrinol Metab,2005,90(1):538-541.
doi: 10.1210/jc.2004-1059 |
29 |
HAN J B , LI E W , CHEN L Q , et al.The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1[J].Nature,2015,524(7564):243-246.
doi: 10.1038/nature14557 |
30 |
CORMIER M , GHOUILI F , ROUMAUD P , et al.Influences of flavones on cell viability and cAMP-dependent steroidogenic gene regulation in MA-10 Leydig cells[J].Cell Biol Toxicol,2018,34(1):23-38.
doi: 10.1007/s10565-017-9395-8 |
31 |
GOOSSENS K , TESFAYE D , RINGS F , et al.Suppression of keratin 18 gene expression in bovine blastocysts by RNA interference[J].Reprod Fertil Dev,2010,22(2):395-404.
doi: 10.1071/RD09080 |
32 |
CHERMUŁA B , HUTCHINGS G , KRANC W , et al.Expression profile of new gene markers and signaling pathways involved in immunological processes in human cumulus-oophorus cells[J].Genes (Basel),2021,12(9):1369.
doi: 10.3390/genes12091369 |
33 |
FISCHER D , LAIHO A , GYENESEI A , et al.Identification of reproduction-related gene polymorphisms using whole transcriptome sequencing in the large white pig population[J].G3 (Bethesda),2015,5(7):1351-1360.
doi: 10.1534/g3.115.018382 |
34 | 王震, 马铁伟, 邓凯平, 等.能量限饲和补偿对湖羊生长性能及相关激素和肉品质的影响[J].南京农业大学学报,2018,41(4):722-729. |
WANG Z , MA T W , DENG K P , et al.Effects of energy restriction and compensation on growth performance, and related hormones and meat quality of Hu sheep[J].Journal of Nanjing Agricultural University,2018,41(4):722-729. | |
35 | 陶乐凯, 高何璇, 蔡永强, 等.甘加型藏羊发情周期血浆孕酮动态变化及HPO轴PGR的表达[J].中国农业大学学报,2023,28(9):128-135. |
TAO L K , GAO H X , CAI Y Q , et al.Dynamic changes of plasma progesterone and expression of HPO axis PGR in Ganjia Tibetan sheep during estrus cycle[J].Journal of China Agricultural University,2023,28(9):128-135. | |
36 |
ZHU M T , ZHANG H M , YANG H , et al.Polymorphisms and association of GRM1, GNAQ and HCRTR1 genes with seasonal reproduction and litter size in three sheep breeds[J].Reprod Domest Anim,2022,57(5):532-540.
doi: 10.1111/rda.14091 |
[1] | 章琦, 郭江鹏, 倪爱心, 杜洪峰, 陈继兰, 孙研研. 蛋鸡啄羽行为的影响因素与遗传调控基础研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3745-3756. |
[2] | 于秀菊, 胡燕姣, 刘佳悦, 王海东, 朱芷葳, 范阔海, 王蓉蓉, 段承昊, 石佳炜, 杨丽华. 一株鸡源唾液乳杆菌的分离鉴定及其对育雏早期蛋鸡肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(9): 4161-4171. |
[3] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2825-2835. |
[4] | 王晓旭, 陈艳青, 张家麒, 王野, 王蕊, 于翰林, 杨凯淇, 包军, 张润祥. 爪趾皮肤炎对富集笼养蛋鸡生产性能、蛋品质、行为和免疫的影响[J]. 畜牧兽医学报, 2024, 55(6): 2680-2691. |
[5] | 张琰, 吴梅金, 周家豪, 刁洪秀. 阿霉素处理后对犬乳腺肿瘤细胞系CHMp lncRNAs差异表达的影响[J]. 畜牧兽医学报, 2024, 55(6): 2716-2726. |
[6] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[7] | 片慧芳, 杜旭彬, 李妍, 张雨辰, 何惠, 虞德兵. 甜菜碱对产蛋后期蛋鸡生产性能、蛋品质和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(3): 1085-1094. |
[8] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[9] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
[10] | 蒋婷, 李文东, 李兴起, 黄雨, 王启贵, 王海威, 杨朝武, 刘凌斌. 转录组和蛋白组筛选就巢鸡卵巢发育候选基因及其调控网络构建[J]. 畜牧兽医学报, 2024, 55(11): 4950-4967. |
[11] | 张唯玉, 程景, 许家宝, 王静, 陶薪燕, 李博, 张亚伟, 张丹丹, 张宁, 郝振凯, 周琛帛, 张元庆. 晋南牛SREBP1基因调控前体脂肪细胞分化的研究[J]. 畜牧兽医学报, 2024, 55(11): 5003-5017. |
[12] | 蔡梦雷, 赵东旭, 张政钢, 刘东海, 姜婷婷, 苏士炫, 闫雪敏, 薛晓阳, 崔国林. GreA蛋白对肠炎沙门菌生物学特性及致病力影响[J]. 畜牧兽医学报, 2024, 55(11): 5173-5182. |
[13] | 吴俊锋, 闫奕源, 杨宁, 孙从佼, 李光奇, 王彬, 吴桂琴, 连玲. 蛋鸡SNP芯片10K到50K基因型填充的准确性研究[J]. 畜牧兽医学报, 2024, 55(10): 4325-4333. |
[14] | 毛晓宇, 杜嘉伟, 汤嘉玉, 潘金海, 蒋蕾, 孙小磊, 昝林森, 王洪宝. 干扰和过表达CHRNG对牛成肌细胞增殖分化的影响[J]. 畜牧兽医学报, 2024, 55(10): 4360-4376. |
[15] | 张寅梁, 张冉, 王文君, 王德贺, 李兰会, 周荣艳. 基于转录组数据挖掘蛋鸡产蛋前后骨代谢差异的关键候选基因[J]. 畜牧兽医学报, 2024, 55(10): 4455-4465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||