畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (11): 5072-5084.doi: 10.11843/j.issn.0366-6964.2024.11.024
余洲1(), 杨柏高1, 李崇阳1, 张培培1, 曹建华1, 牛一凡1, 覃广胜2, 赵学明1,*(
)
收稿日期:
2024-05-09
出版日期:
2024-11-23
发布日期:
2024-11-30
通讯作者:
赵学明
E-mail:yz.zhouyu@qq.com;zhaoxueming@caas.cn
作者简介:
余洲(1998-), 男, 陕西山阳人, 硕士生, 主要从事动物繁殖研究, E-mail: yz.zhouyu@qq.com
基金资助:
Zhou YU1(), Baigao YANG1, Chongyang LI1, Peipei ZHANG1, Jianhua CAO1, Yifan NIU1, Guangsheng QIN2, Xueming ZHAO1,*(
)
Received:
2024-05-09
Online:
2024-11-23
Published:
2024-11-30
Contact:
Xueming ZHAO
E-mail:yz.zhouyu@qq.com;zhaoxueming@caas.cn
摘要:
旨在利用高通量DIA定量蛋白组学分析不同发情阶段水牛唾液中蛋白的差异。本研究将15头体况相近(平均体重为650~750 kg),发情正常,健康状态良好的2~5胎次的尼里-拉菲母水牛作为研究对象,在相同的管理条件下,对其注射氯前列醇并计为第0天,分别在发情前期(第1天)、发情期(第3天)、发情后期(第6天)早上饲喂之前(08:00-11:00)进行唾液的采集,唾液样本每个发情时期分组相同,每3头牛分为一组,共分为5组,样品处理后进行DIA定量蛋白组学检测。结果显示,不同发情阶段水牛的唾液中共定量到1 982个蛋白质,分别在发情期/发情前期和发情期/发情后期比较组中鉴定到59和38个差异丰度蛋白。功能分析发现,CBL、SOD1、SPP1和ARPC1B等蛋白质可能在细胞调控和抗氧化、维持细胞间相互作用等方面发挥作用。KEGG通路分析显示,发情前期、发情期和发情后期水牛唾液差异丰度蛋白被富集到mTOR信号通路、孕酮介导的卵母细胞成熟等通路上。综上,通过不同发情阶段的对比,获得与繁殖相关的差异蛋白4个,CBL、ARPC1B、SOD1和SPP1。这些唾液中的差异丰度蛋白可能作为水牛发情生物标志物的关键蛋白,进而为开发水牛发情检测诊断试剂盒提供数据支撑。
中图分类号:
余洲, 杨柏高, 李崇阳, 张培培, 曹建华, 牛一凡, 覃广胜, 赵学明. 不同发情阶段水牛唾液的DIA定量蛋白组学分析[J]. 畜牧兽医学报, 2024, 55(11): 5072-5084.
Zhou YU, Baigao YANG, Chongyang LI, Peipei ZHANG, Jianhua CAO, Yifan NIU, Guangsheng QIN, Xueming ZHAO. DIA Quantitative Proteomics Analysis of Buffalo Saliva at Different Estrus Stages[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5072-5084.
表 1
与繁殖相关的差异表达蛋白质"
名称缩写 Abbreviation | 名称或注释 Name or annotation | BT vs. AT组 变化倍数 Fold change | BT vs. CT组 变化倍数 Fold change | BT vs. AT组 P值 P value | BT vs. CT组 P值 P value |
CBL | E3泛素蛋白连接酶CBL亚型X1 | +3.81 | +2.29 | 0.009 | 0.04 |
ARPC1B | 肌动蛋白相关蛋白2/3复合物亚基1B | +2.11 | +1.92 | 0.02 | 0.04 |
SOD1 | 超氧化物歧化酶[Cu-Zn] | +0.53 | +0.97 | 0.02 | 0.87 |
SPP1 | 骨桥蛋白 | +1.65 | +0.37 | 0.03 | 0.11 |
表 2
发情前期vs.发情期比较组繁殖相关差异表达蛋白的信号通路分析"
MapID | 通路 Pathway | 与该通路相关的差异蛋白的数目 Number of differential proteins associated with the pathway | P值 P value | 代表性蛋白质 Typical protein |
map04914 | 孕酮介导的卵母细胞成熟 | 2 | 0.03 | RPS6KA3、KRAS |
map04012 | ErbB信号通路 | 2 | 0.07 | CBL、KRAS |
map04371 | Apelin信号通路 | 2 | 0.09 | SPP1、KRAS |
map04919 | 甲状腺激素信号途径 | 2 | 0.06 | KRAS |
map04150 | mTOR信号通路 | 4 | 0.003 | RPS6KA3、KRAS |
1 | 刘演景, 朱婧, 刘畅. 论广西水牛奶产业发展路径[J]. 中国奶牛, 2021, (7): 61- 64. |
LIU Y J , ZHU J , LIU C . Development path of Guangxi buffalo milk industry[J]. China Dairy Cattle, 2021, (7): 61- 64. | |
2 |
SINGHA S , PANDEY M , JAISWAL L , et al. Salivary cell-free HSD17B1 and HSPA1A transcripts as potential biomarkers for estrus identification in buffaloes (Bubalus bubalis)[J]. Anim Biotechnol, 2023, 34 (7): 2554- 2564.
doi: 10.1080/10495398.2022.2105228 |
3 |
SINGH P , GOLLA N , SINGH P , et al. Salivary miR-16, miR-191 and miR-223: intuitive indicators of dominant ovarian follicles in buffaloes[J]. Mol Genet Genomics, 2017, 292 (5): 935- 953.
doi: 10.1007/s00438-017-1323-3 |
4 |
ACHIRAMAN S , ARCHUNAN G , SANKARGANESH D , et al. Biochemical analysis of female mice urine with reference to endocrine function: a key tool for estrus detection[J]. Zoolog Sci, 2011, 28 (8): 600- 605.
doi: 10.2108/zsj.28.600 |
5 | 贾银海. 基于唾液蛋白组学开发鉴定水牛发情方法的研究[D]. 南宁: 广西大学, 2018. |
JIA Y H. Research on the estrus identification method of the development based on the salivary proteomics in the buffalo[D]. Nanning: Guangxi University, 2018. (in Chinese) | |
6 | 张春梅, 席丽, 李志强, 等. 奶牛的发情鉴定方法比较[J]. 当代畜禽养殖业, 2019, (1): 4- 7. |
ZHANG C M , XI L , LI Z Q , et al. Comparison of estrus identification methods of dairy cows[J]. Modern Animal Husbandry, 2019, (1): 4- 7. | |
7 | 秦博文. 浅谈奶牛的发情鉴定与人工授精操作[J]. 农业开发与装备, 2019, (5): 238- 239. |
QIN B W . Discussion on estrus Identification and artificial insemination of dairy cows[J]. Agricultural Development & Equipments, 2019, (5): 238- 239. | |
8 | 蒋晓新, 刘炜, 魏星远, 等. 运用计步器鉴定泌乳盛期荷斯坦奶牛的发情效果研究[J]. 安徽农业科学, 2013, 41 (15): 6728-6729, 6732. |
JIANG X X , LIU W , WEI X Y , et al. Study on the effects of identifying the estrus of Holstein cows during peak lactation by using pedometer[J]. Journal of Anhui Agricultural Sciences, 2013, 41 (15): 6728-6729, 6732. | |
9 | 魏倩倩. 基于DIA蛋白质组学探究牦牛妊娠早中期胎盘组织中CTNNB1/CDH1的表达定位及功能[D]. 兰州: 甘肃农业大学, 2023. |
WEI Q Q. Study on the expression and function of CTNNB1/CDH1 in placenta of yak during early and middle pregnancy based on DIA proteomics[D]. Lanzhou: Gansu Agricultural University, 2023. (in Chinese) | |
10 |
MUTHUKUMAR S , RAJKUMAR R , RAJESH D , et al. Exploration of salivary proteins in buffalo: an approach to find marker proteins for estrus[J]. FASEB J, 2014, 28 (11): 4700- 4709.
doi: 10.1096/fj.14-252288 |
11 | LAMKIN M S , OPPENHEIM F G . Structural features of salivary function[J]. Crit Rev Oral Biol Med, 1993, 4 (3-4): 251- 259. |
12 |
LEVINE M J . Salivary macromolecules. A structure/function synopsis[J]. Ann N Y Acad Sci, 1993, 694, 11- 16.
doi: 10.1111/j.1749-6632.1993.tb18337.x |
13 | 辛海云, 孟繁明, 胡斌, 等. 唾液在家畜发情鉴定中的应用进展[J]. 畜牧与兽医, 2020, 52 (7): 136- 139. |
XIN H Y , MENG F M , HU B , et al. Application of saliva in animal estrus detection[J]. Animal Husbandry & Veterinary Medicine, 2020, 52 (7): 136- 139. | |
14 | 贾银海, 李芳芳, 蒋世强, 等. 水牛发情周期生殖激素变化规律及唾液结晶的分析[J]. 中国畜牧兽医, 2019, 46 (4): 1101- 1107. |
JIA Y H , LI F F , JIANG S Q , et al. The variations and correlation analysis of saliva reproduction hormones and crystallization patterns during estrus cycle in buffaloes[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46 (4): 1101- 1107. | |
15 | 董智豪, 时玉新, 郭冠华, 等. 母牛不同发情阶段唾液化合物的比较分析[J]. 畜牧兽医学报, 2023, 54 (11): 4636- 4652. |
DONG Z H , SHI Y X , GUO G H , et al. Comparative analysis of salivary compounds in different estrous stages of cows[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (11): 4636- 4652. | |
16 |
SHASHIKUMAR N G , BAITHALU R K , BATHLA S , et al. Global proteomic analysis of water buffalo (Bubalus bubalis) saliva at different stages of estrous cycle using high throughput mass spectrometry[J]. Theriogenology, 2018, 110, 52- 60.
doi: 10.1016/j.theriogenology.2017.12.046 |
17 |
KUMAR A , DUMASIA K , GAONKAR R , et al. Estrogen and androgen regulate actin-remodeling and endocytosis-related genes during rat spermiation[J]. Mol Cell Endocrinol, 2015, 404, 91- 101.
doi: 10.1016/j.mce.2014.12.029 |
18 |
KUMAR A , DUMASIA K , DESHPANDE S , et al. Actin related protein complex subunit 1b controls sperm release, barrier integrity and cell division during adult rat spermatogenesis[J]. Biochim Biophys Acta, 2016, 1863 (8): 1996- 2005.
doi: 10.1016/j.bbamcr.2016.04.022 |
19 |
ZHU M , CORNWALL-SCOONES J , WANG P Z , et al. Developmental clock and mechanism of de novo polarization of the mouse embryo[J]. Science, 2020, 370 (6522): eabd2703.
doi: 10.1126/science.abd2703 |
20 |
DIKIC I , SZYMKIEWICZ I , SOUBEYRAN P . Cbl signaling networks in the regulation of cell function[J]. Cell Mol Life Sci, 2003, 60 (9): 1805- 1827.
doi: 10.1007/s00018-003-3029-4 |
21 |
DUAN L , REDDI A L , GHOSH A , et al. The Cbl family and other ubiquitin ligases: destructive forces in control of antigen receptor signaling[J]. Immunity, 2004, 21 (1): 7- 17.
doi: 10.1016/j.immuni.2004.06.012 |
22 | THIEN C B , LANGDON W Y . Cbl: many adaptations to regulate protein tyrosine kinases[J]. Nat Rev Mol Cell Biol, 2001, 2 (4): 294- 307. |
23 |
RYAN P E , DAVIES G C , NAU M M , et al. Regulating the regulator: negative regulation of Cbl ubiquitin ligases[J]. Trends Biochem Sci, 2006, 31 (2): 79- 88.
doi: 10.1016/j.tibs.2005.12.004 |
24 |
YANG X B , HAO D J , HE B R . The regulation of E3 ubiquitin ligases Cbl and its cross-talking in bone homeostasis[J]. Curr Stem Cell Res Ther, 2021, 16 (6): 683- 687.
doi: 10.2174/1574888X15666200712191623 |
25 |
SKINNER M K , SCHMIDT M , SAVENKOVA M I , et al. Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development[J]. Mol Reprod Dev, 2008, 75 (9): 1457- 1472.
doi: 10.1002/mrd.20883 |
26 |
DENHARDT D T , GUO X J . Osteopontin: a protein with diverse functions[J]. FASEB J, 1993, 7 (15): 1475- 1482.
doi: 10.1096/fasebj.7.15.8262332 |
27 | KUWABARA Y , KATAYAMA A , TOMIYAMA R , et al. Gonadotropin regulation and role of ovarian osteopontin in the periovulatory period[J]. J Endocrinol, 2015, 224 (1): 49- 59. |
28 |
POOLE D H , NDIAYE K , PATE J L . Expression and regulation of secreted phosphoprotein 1 in the bovine corpus luteum and effects on T lymphocyte chemotaxis[J]. Reproduction, 2013, 146 (6): 527- 537.
doi: 10.1530/REP-13-0190 |
29 |
CRAIG A M , DENHARDT D T . The murine gene encoding secreted phosphoprotein 1 (osteopontin): promoter structure, activity, and induction in vivo by estrogen and progesterone[J]. Gene, 1991, 100, 163- 171.
doi: 10.1016/0378-1119(91)90362-F |
30 | ESKANDARI-NASAB E , KHARAZI-NEJAD E , NAKHAEE A , et al. 50-bp Ins/Del polymorphism of SOD1 is associated with increased risk of cardiovascular disease[J]. Acta Med Iran, 2014, 52 (8): 591- 595. |
31 |
QU J W , HU H R , NIU H Y , et al. Melatonin restores the declining maturation quality and early embryonic development of oocytes in aged mice[J]. Theriogenology, 2023, 210, 110- 118.
doi: 10.1016/j.theriogenology.2023.07.021 |
32 |
TRIPATHI S K , NANDI S , GUPTA P S P , et al. Antioxidants supplementation improves the quality of in vitro produced ovine embryos with amendments in key development gene expressions[J]. Theriogenology, 2023, 201, 41- 52.
doi: 10.1016/j.theriogenology.2022.11.048 |
33 |
ZHAO X M , WANG N , HAO H S , et al. Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events[J]. J Pineal Res, 2018, 64 (1): e12445.
doi: 10.1111/jpi.12445 |
34 |
ABBASI B , DONG Y , RUI R . Resveratrol hinders postovulatory aging by modulating oxidative stress in porcine oocytes[J]. Molecules, 2021, 26 (21): 6346.
doi: 10.3390/molecules26216346 |
35 |
XIONG X R , LAN D L , LI J , et al. Effects of zinc supplementation during in vitro maturation on meiotic maturation of oocytes and developmental capacity in yak[J]. Biol Trace Elem Res, 2018, 185 (1): 89- 97.
doi: 10.1007/s12011-017-1217-6 |
36 |
KHAN A , KHAN M Z , DOU J H , et al. SOD1 gene silencing promotes apoptosis and suppresses proliferation of heat-stressed bovine granulosa cells via induction of oxidative stress[J]. Vet Sci, 2021, 8 (12): 326.
doi: 10.3390/vetsci8120326 |
37 |
FAN H Y , HE J H , BAI Y C , et al. Baicalin improves the functions of granulosa cells and the ovary in aged mice through the mTOR signaling pathway[J]. J Ovarian Res, 2022, 15 (1): 34.
doi: 10.1186/s13048-022-00965-7 |
38 |
CHEN F L , WEN X , LIN P F , et al. Activation of CREBZF increases cell apoptosis in mouse ovarian granulosa cells by regulating the ERK1/2 and mTOR signaling pathways[J]. Int J Mol Sci, 2018, 19 (11): 3517.
doi: 10.3390/ijms19113517 |
39 |
SUN X H , SU Y P , HE Y L , et al. New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators[J]. Cell Cycle, 2015, 14 (5): 721- 731.
doi: 10.1080/15384101.2014.995496 |
40 |
KANEHISA M , GOTO S , SATO Y , et al. KEGG for integration and interpretation of large-scale molecular data sets[J]. Nucleic Acids Res, 2012, 40 (D1): D109- D114.
doi: 10.1093/nar/gkr988 |
41 |
ZIELAK-STECIWKO A E , BROWNE J A , MCGETTIGAN P A , et al. Expression of microRNAs and their target genes and pathways associated with ovarian follicle development in cattle[J]. Physiol Genomics, 2014, 46 (19): 735- 745.
doi: 10.1152/physiolgenomics.00036.2014 |
42 |
HUO S D , CHEN Z , LI S Y , et al. A comparative transcriptome and proteomics study of post-partum ovarian cycle arrest in yaks (Bos grunniens)[J]. Reprod Domest Anim, 2022, 57 (3): 292- 303.
doi: 10.1111/rda.14059 |
43 | TANIGUCHI C M , EMANUELLI B , KAHN C R . Critical nodes in signalling pathways: insights into insulin action[J]. Nat Rev Mol Cell Biol, 2006, 7 (2): 85- 96. |
44 |
SEKULOVSKI N , WHORTON A E , SHI M X , et al. Periovulatory insulin signaling is essential for ovulation, granulosa cell differentiation, and female fertility[J]. FASEB J, 2020, 34 (2): 2376- 2391.
doi: 10.1096/fj.201901791R |
45 |
LI C L , SONG C L , QI K L , et al. Identification of estrus in sows based on salivary proteomics[J]. Animals, 2022, 12 (13): 1656.
doi: 10.3390/ani12131656 |
[1] | 何塔娜, 胡馨匀, 米洁兰, 高立, 张艳萍, 祁小乐, 崔红玉, 杨桂连, 高玉龙. 基于16S rDNA分析饲喂唾液乳杆菌XP132对白羽肉种鸡肠道菌群的影响[J]. 畜牧兽医学报, 2024, 55(9): 4091-4099. |
[2] | 于秀菊, 胡燕姣, 刘佳悦, 王海东, 朱芷葳, 范阔海, 王蓉蓉, 段承昊, 石佳炜, 杨丽华. 一株鸡源唾液乳杆菌的分离鉴定及其对育雏早期蛋鸡肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(9): 4161-4171. |
[3] | 屠芸, 曾雅楠, 张蒸豪, 洪瑞, 王震, 吴平, 周泽洋, 叶艺茹, 杜亚楠, 左福元, 张龚炜. 保种场涪陵水牛及西南地区水牛品种间遗传结构与ROH分析[J]. 畜牧兽医学报, 2024, 55(5): 1989-1998. |
[4] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[5] | 陈玲, 陈浩, 岳婵娟, 马锐, 范雪阳, 刘颂蕊, 杨光友. 原核表达的褐黄血蜱唾液腺蛋白和铁蛋白1的免疫保护效果评价[J]. 畜牧兽医学报, 2024, 55(2): 688-697. |
[6] | 杨书含, 时玉新, 庞云渭, 原开敏, 修豪宇, 汪超, 路永强, 王栋. 母牛发情鉴定标记研究进展[J]. 畜牧兽医学报, 2024, 55(11): 4785-4795. |
[7] | 杨书含, 沙里金, 庞云渭, 修豪宇, 汪超, 王禹恒, 何信逢, 原开敏, 路永强, 王栋. 母牛安静发情的特征及原因分析[J]. 畜牧兽医学报, 2024, 55(11): 4808-4818. |
[8] | 蒋婷, 李文东, 李兴起, 黄雨, 王启贵, 王海威, 杨朝武, 刘凌斌. 转录组和蛋白组筛选就巢鸡卵巢发育候选基因及其调控网络构建[J]. 畜牧兽医学报, 2024, 55(11): 4950-4967. |
[9] | 余洲, 杨柏高, 张航, 徐茜, 张培培, 冯肖艺, 曹建华, 牛一凡, 杜卫华, 郝海生, 朱化彬, 阿布力孜·吾斯曼, 赵学明. 奶水牛发情标记物的研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3623-3630. |
[10] | 何文峰, 李琛, 常洪涛, 李隆熙, 陈静, 杨国庆, 刘慧敏. 抑制伪狂犬病病毒复制的宿主蛋白的筛选与鉴定[J]. 畜牧兽医学报, 2023, 54(3): 1177-1186. |
[11] | 董智豪, 时玉新, 郭冠华, 原开敏, 修豪宇, 汪超, 白俊艳, 王栋. 母牛不同发情阶段唾液化合物的比较分析[J]. 畜牧兽医学报, 2023, 54(11): 4636-4652. |
[12] | 王剑, 陈雪苹, 李继昌. 唾液乳杆菌对鸡毒支原体感染肉鸡生长性能及肺损伤的影响[J]. 畜牧兽医学报, 2022, 53(9): 3172-3179. |
[13] | 董智豪, 张秋雪, 郭冠华, 段晨莹, 赵羚均, 白俊艳, 王栋. 牛发情特异信息素的研究进展[J]. 畜牧兽医学报, 2022, 53(4): 1010-1018. |
[14] | 冯雪, 赵金辉, 汪书哲, 黄洁萍, 魏雪锋, 史远刚, 马云. 过表达circNMT1促进水牛脂肪细胞的成脂分化[J]. 畜牧兽医学报, 2022, 53(4): 1077-1088. |
[15] | 祁梦凡, 谢苏, 高若男, 孙义姗, 孙晓梅, 和军飞, 鲁慧文, 卢世豪, 陈鑫, 李清春, 黄涛. 母猪妊娠早期血液中差异表达蛋白的鉴定[J]. 畜牧兽医学报, 2022, 53(4): 1109-1121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||