畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4325-4333.doi: 10.11843/j.issn.0366-6964.2024.10.008
吴俊锋1,2(), 闫奕源3, 杨宁1,2, 孙从佼1,2, 李光奇3, 王彬3, 吴桂琴3, 连玲1,2,*(
)
收稿日期:
2024-03-06
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
连玲
E-mail:wjf960428@163.com;lianlinglara@126.com
作者简介:
吴俊锋(1996-), 男, 河南信阳人, 博士生, 主要从事家禽遗传育种研究, E-mail: wjf960428@163.com
基金资助:
Junfeng WU1,2(), Yiyuan YAN3, Ning YANG1,2, Congjiao SUN1,2, Guangqi LI3, Bin WANG3, Guiqin WU3, Ling LIAN1,2,*(
)
Received:
2024-03-06
Online:
2024-10-23
Published:
2024-11-04
Contact:
Ling LIAN
E-mail:wjf960428@163.com;lianlinglara@126.com
摘要:
旨在分析使用低密度芯片的基因分型数据通过基因型填充获取高密度的基因型数据的准确性。本研究利用10K SNP芯片数据填充至50K,分析填充所得基因型与50K真实基因型的基因型一致性。具体方法如下:使用4 435只健康纯系蛋鸡母系个体为试验群体,采用蛋鸡“凤芯壹号”50K芯片进行基因型测定获得基因型数据。在该群体中,随机抽取部分个体分别作为填充群体和参考群体。从填充群体的50K分型数据中均匀抽取10K基因型作为已知信息,其余位点信息将通过填充获得。填充时,结合参考群数据,利用Beagle 4.0软件将填充群体的10K分型数据填充至50K水平,对比填充基因型和真实基因型的一致性,以基因型填充一致性评价基因型填充准确性。同时比较系谱使用与否(所用填充群100只,参考群1 000只)、群体间亲缘关系(所用填充群100只,参考群1 000只)以及参考群体规模(所用填充群100只,参考群500、1 000、2 000、3 000只)3种因素对基因型填充准确性的影响。结果表明,本研究群体中,系谱信息的使用与否未影响基因型填充的一致性(0.973 vs. 0.973)。基因型填充一致性随群体间亲缘关系的改变而变化,当参考群体选取18世代个体(1 000只),来填充19世代群体(100只)基因型时,填充一致性为0.972,当参考群体分别均匀选取16、17、18世代个体(三世代群体总计选择1 000只)时,基因型填充一致性下降至0.968。基因型填充一致性随参考群体规模增大而上升,参考群体规模按500、1 000、2 000、3 000依次扩大时,基因型填充一致性依次提高,分别为0.959、0.973、0.980、0.984。本研究结果表明,蛋鸡基因芯片从10K填充至50K的方法可行,可在基因组选择育种中大规模推广,以降低应用成本。
中图分类号:
吴俊锋, 闫奕源, 杨宁, 孙从佼, 李光奇, 王彬, 吴桂琴, 连玲. 蛋鸡SNP芯片10K到50K基因型填充的准确性研究[J]. 畜牧兽医学报, 2024, 55(10): 4325-4333.
Junfeng WU, Yiyuan YAN, Ning YANG, Congjiao SUN, Guangqi LI, Bin WANG, Guiqin WU, Ling LIAN. Accuracy Analysis of Genotype Imputation from 10K to 50K SNP Loci in Layers[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4325-4333.
表 1
10K和50K的SNP位点信息在各染色体上的描述性统计"
染色体 Chromosome | 10K | 50K | |||||||
SNPs数 Number of SNPs | 平均间隔/bp Average distance | 最小等位 基因频率 MAF | 连锁不平衡 程度 R2 | SNPs数 Number of SNPs | 平均间隔/bp Average distance | 最小等位 基因频率 MAF | 连锁不平衡 程度 R2 | ||
Chr1 | 1 639 | 120 290 | 0.298 | 0.389 | 7 807 | 25 263 | 0.302 | 0.389 | |
Chr2 | 1 167 | 126 163 | 0.313 | 0.401 | 5 556 | 26 624 | 0.306 | 0.401 | |
Chr3 | 978 | 112 598 | 0.291 | 0.410 | 4 656 | 23 696 | 0.291 | 0.409 | |
Chr4 | 746 | 120 931 | 0.296 | 0.377 | 3 552 | 25 606 | 0.293 | 0.377 | |
Chr5 | 521 | 112 847 | 0.292 | 0.324 | 2 480 | 23 938 | 0.300 | 0.324 | |
Chr6 | 356 | 98 085 | 0.337 | 0.369 | 1 697 | 20 635 | 0.332 | 0.366 | |
Chr7 | 387 | 92 890 | 0.293 | 0.346 | 1 844 | 19 739 | 0.314 | 0.346 | |
Chr8 | 290 | 101 059 | 0.296 | 0.292 | 1 383 | 21 511 | 0.299 | 0.294 | |
Chr9 | 272 | 83 585 | 0.300 | 0.291 | 1 296 | 18 175 | 0.333 | 0.289 | |
Chr10 | 238 | 82 340 | 0.291 | 0.289 | 1 134 | 17 391 | 0.295 | 0.286 | |
Chr11 | 201 | 99 018 | 0.297 | 0.273 | 886 | 22 476 | 0.285 | 0.273 | |
Chr12 | 307 | 59 453 | 0.328 | 0.358 | 1 230 | 16 078 | 0.323 | 0.358 | |
Chr13 | 240 | 60 477 | 0.313 | 0.349 | 961 | 16 035 | 0.305 | 0.346 | |
Chr14 | 181 | 69 687 | 0.275 | 0.267 | 724 | 19 543 | 0.298 | 0.267 | |
Chr15 | 194 | 62 109 | 0.262 | 0.248 | 815 | 15 450 | 0.337 | 0.246 | |
Chr16 | 3 | 555 532 | 0.336 | 0.235 | 14 | 119 643 | 0.336 | 0.237 | |
Chr17 | 149 | 57 342 | 0.323 | 0.244 | 595 | 15 625 | 0.338 | 0.250 | |
Chr18 | 161 | 64 390 | 0.299 | 0.191 | 685 | 15 755 | 0.307 | 0.191 | |
Chr19 | 168 | 58 214 | 0.291 | 0.195 | 672 | 14 710 | 0.294 | 0.199 | |
Chr20 | 205 | 64 342 | 0.305 | 0.251 | 859 | 15 882 | 0.277 | 0.252 | |
Chr21 | 119 | 56 265 | 0.330 | 0.215 | 476 | 14 123 | 0.338 | 0.215 | |
Chr22 | 54 | 84 299 | 0.279 | 0.167 | 218 | 21 123 | 0.276 | 0.167 | |
Chr23 | 73 | 78 035 | 0.290 | 0.134 | 294 | 19 376 | 0.255 | 0.133 | |
Chr24 | 100 | 61 991 | 0.285 | 0.167 | 401 | 15 459 | 0.279 | 0.165 | |
Chr25 | 23 | 166 397 | 0.268 | 0.140 | 94 | 41 112 | 0.266 | 0.140 | |
Chr26 | 133 | 38 166 | 0.291 | 0.182 | 532 | 9 666 | 0.294 | 0.182 | |
Chr27 | 80 | 48 474 | 0.341 | 0.169 | 320 | 16 639 | 0.310 | 0.171 | |
Chr28 | 93 | 50 277 | 0.271 | 0.159 | 374 | 13 079 | 0.276 | 0.158 | |
Chr30 | 2 | 242 272 | 0.294 | 0.190 | 5 | 96 909 | 0.271 | 0.243 | |
Chr31 | 2 | 483 221 | 0.348 | 0.241 | 9 | 166 190 | 0.355 | 0.249 | |
Chr32 | 2 | 59 559 | 0.360 | 0.210 | 9 | 13 235 | 0.350 | 0.209 | |
Chr33 | 21 | 326 054 | 0.320 | 0.271 | 86 | 79 839 | 0.307 | 0.271 | |
合计Total | 10 146 | 118 000 | 0.300 | 0.263 | 43 681 | 30 000 | 0.290 | 0.261 |
表 3
亲缘关系对基因型填充一致性的影响"
参考群体规模 Reference population size | 方法 Method | 基因型一致性 Genotype consistency | 显著性检验P P-value |
1 000(以18世代组成的禽类群体) 1 000(birds from 18th generation) | Beagle | 0.972±0.000 82(0.000 84) | 8.176×10-5 |
1 000(以16、17、18世代组成的禽类群体) 1 000 (birds from 16th, 17th, 18th generation) | Beagle | 0.968±0.001 32(0.001 36) |
1 | 叶绍潘. 基于全基因组测序数据的基因型填充准确性研究[D]. 广州: 华南农业大学, 2017. |
YE S P. Research on genotype imputation accuracy based on whole genome sequencing data[D]. Guangzhou: South China Agricultural University, 2017. (in Chinese) | |
2 | KUMAR S , BANKS T W , CLOUTIER S . SNP discovery through next-generation sequencing and its applications[J]. Int J Plant Genomics, 2012, 2012, 831460. |
3 |
滕晓坤, 肖华胜. 基因芯片与高通量DNA测序技术前景分析[J]. 中国科学C辑: 生命科学, 2008, 38 (10): 891- 899.
doi: 10.3321/j.issn:1006-9259.2008.10.003 |
TENG X K , XIAO H S . Prospect analysis of gene chip and high-throughput DNA sequencing technology[J]. Science China Life Sciences, 2008, 38 (10): 891- 899.
doi: 10.3321/j.issn:1006-9259.2008.10.003 |
|
4 |
YAN G R , LIU X X , XIAO S J , et al. An imputed whole-genome sequence-based GWAS approach pinpoints causal mutations for complex traits in a specific swine population[J]. Sci China Life Sci, 2022, 65 (4): 781- 794.
doi: 10.1007/s11427-020-1960-9 |
5 | 王珏, 刘成琨, 刘德武, 等. 基于不同密度SNP芯片在杜洛克公猪中的全基因组选择效果分析[J]. 中国畜牧杂志, 2019, 55 (12): 75- 79. |
WANG J , LIU C K , LIU D W , et al. Analysis of genomic selection based on SNP data of various density chips in Duroc male pig population[J]. Chinese Journal of Animal Science, 2019, 55 (12): 75- 79. | |
6 | 李勇, 杨漫漫, 苗泽圃, 等. 低深度全基因组测序在大白猪繁殖性状基因组选择的应用[J]. 农业生物技术学报, 2022, 30 (2): 325- 334. |
LI Y , YANG M M , MIAO Z P , et al. Application of low-depth whole genome sequencing in genomic selection of reproductive traits in large white pigs (Sus scrofa)[J]. Journal of Agricultural Biotechnology, 2022, 30 (2): 325- 334. | |
7 |
尹畅, 朱墨, 陈艳茹, 等. 基于芯片和填充测序数据的肉鸡屠宰性状基因组选择准确性评估[J]. 中国农业科学, 2023, 56 (15): 3032- 3039.
doi: 10.3864/j.issn.0578-1752.2023.15.016 |
YIN C , ZHU M , CHEN Y R , et al. Evaluation of accuracy of genome selection for broiler slaughtering traits based on chip and imputation sequencing data[J]. Scientia Agricultura Sinica, 2023, 56 (15): 3032- 3039.
doi: 10.3864/j.issn.0578-1752.2023.15.016 |
|
8 |
DAS S , FORER L , SCHÖNHERR S , et al. Next-generation genotype imputation service and methods[J]. Nat Genet, 2016, 48 (10): 1284- 1287.
doi: 10.1038/ng.3656 |
9 |
ZHANG Z , DRUET T . Marker imputation with low-density marker panels in Dutch Holstein cattle[J]. J Dairy Sci, 2010, 93 (11): 5487- 5494.
doi: 10.3168/jds.2010-3501 |
10 |
WEIGEL K A , VAN TASSELL C P , O'CONNELL J R , et al. Prediction of unobserved single nucleotide polymorphism genotypes of Jersey cattle using reference panels and population-based imputation algorithms[J]. J Dairy Sci, 2010, 93 (5): 2229- 2238.
doi: 10.3168/jds.2009-2849 |
11 |
MARINA H , SUAREZ-VEGA A , PELAYO R , et al. Accuracy of imputation of microsatellite markers from a 50K SNP chip in Spanish Assaf sheep[J]. Animals, 2021, 11 (1): 86.
doi: 10.3390/ani11010086 |
12 |
ROS-FREIXEDES R , WHALEN A , CHEN C Y , et al. Accuracy of whole-genome sequence imputation using hybrid peeling in large pedigreed livestock populations[J]. Genet Sel Evol, 2020, 52 (1): 17.
doi: 10.1186/s12711-020-00536-8 |
13 | 曾浩南, 钟展明, 徐志婷, 等. 3款猪50K SNP芯片基因型填充至序列数据的效果评估[J]. 华南农业大学学报, 2022, 43 (4): 10- 15. |
ZENG H N , ZHONG Z M , XU Z T , et al. Evaluation on genotype imputation performance of three porcine 50K SNP chips from chip data to sequencing data[J]. Journal of South China Agricultural University, 2022, 43 (4): 10- 15. | |
14 |
WANG Z , ZHANG Z , CHEN Z , et al. PHARP: a pig haplotype reference panel for genotype imputation[J]. Sci Rep, 2022, 12 (1): 12645.
doi: 10.1038/s41598-022-15851-x |
15 |
RUBINACCI S , DELANEAU O , MARCHINI J . Genotype imputation using the positional burrows wheeler transform[J]. PLoS Genet, 2020, 16 (11): e1009049.
doi: 10.1371/journal.pgen.1009049 |
16 |
WHALEN A , HICKEY J M . AlphaImpute2: fast and accurate pedigree and population based imputation for hundreds of thousands of individuals in livestock populations[J]. bioRxiv, 2020,
doi: 10.1101/2020.09.16.299677 |
17 |
KREINER-MØLLER E , MEDINA-GOMEZ C , UITTERLINDEN A G , et al. Improving accuracy of rare variant imputation with a two-step imputation approach[J]. Eur J Hum Genet, 2015, 23 (3): 395- 400.
doi: 10.1038/ejhg.2014.91 |
18 |
ROS-FREIXEDES R , WHALEN A , GORJANC G , et al. Evaluation of sequencing strategies for whole-genome imputation with hybrid peeling[J]. Genet Sel Evol, 2020, 52 (1): 18.
doi: 10.1186/s12711-020-00537-7 |
19 | DAETWYLER H D , VILLANUEVA B , WOOLLIAMS J A . Accuracy of predicting the genetic risk of disease using a genome-wide approach[J]. PLoS One, 2017, 3 (10): e3395. |
20 |
HAYES B J , BOWMAN P J , CHAMBERLAIN A J , et al. Invited review: genomic selection in dairy cattle: progress and challenges[J]. J Dairy Sci, 2009, 92 (2): 433- 443.
doi: 10.3168/jds.2008-1646 |
21 |
YE S P , YUAN X L , LIN X R , et al. Imputation from SNP chip to sequence: a case study in a Chinese indigenous chicken population[J]. J Anim Sci Biotechnol, 2018, 9, 30.
doi: 10.1186/s40104-018-0241-5 |
22 |
RUBINACCI S , RIBEIRO D M , HOFMEISTER R J , et al. Efficient phasing and imputation of low-coverage sequencing data using large reference panels[J]. Nat Genet, 2021, 53 (1): 120- 126.
doi: 10.1038/s41588-020-00756-0 |
23 |
DAVIES R W , KUCKA M , SU D W , et al. Rapid genotype imputation from sequence with reference panels[J]. Nat Genet, 2021, 53 (7): 1104- 1111.
doi: 10.1038/s41588-021-00877-0 |
24 | 丁向东, 王楚端, 张勤. 基于液相芯片的猪基因组选择实施新策略[J]. 中国畜牧杂志, 2022, 58 (4): 65- 69. |
DING X D , WANG C D , ZHANG Q . New strategy for pig genome selection based on liquid microarray[J]. Chinese Journal of Animal Science, 2022, 58 (4): 65- 69. | |
25 | 林雨浓. 低密度SNP集合填充准确性比较及基因组预测准确性验证[D]. 通辽: 内蒙古民族大学, 2022. |
LIN Y N. The imputation accuracy comparison of low-density SNP sets and validation of genome prediction accuracy[D]. Tongliao: Inner Mongolia University for Nationalities, 2022. (in Chinese) | |
26 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
27 | BROWNING S R , BROWNING B L . Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering[J]. Am J Hum Genet, 2007, 81 (5): 1084- 1097. |
28 | 邱奥, 王雪, 孟庆利, 等. 3款猪50K SNP芯片基因型填充效果研究[J]. 中国畜牧杂志, 2021, 57 (1): 33- 38. |
QIU A , WANG X , MENG Q L , et al. Research on genotype imputation effect of 3 pig 50K SNP chips[J]. Chinese Journal of Animal Science, 2021, 57 (1): 33- 38. | |
29 | KAI-LI Z , XIA P , SAI-XIAN Z , et al. A comprehensive evaluation of factors affecting the accuracy of pig genotype imputation using a single or multi-breed reference population[J]. J Integr Agric, 2022, 21 (2): 486- 495. |
30 | 滕军. 荷斯坦牛全基因组序列数据填充方法评估及产奶性状纵向全基因组关联分析[D]. 泰安: 山东农业大学, 2022. |
TENG J. Assessment of imputation methods for whole genome sequence data and longitudinal genome-wide association studies for milk production traits in Holstein[D]. Tai'an: Shandong Agricultural University, 2022. (in Chinese) | |
31 | 阳文攀, 叶绍潘, 叶浩强, 等. 参考群筛选方法及规模对基因型填充准确性的影响[J]. 畜牧兽医学报, 2021, 52 (12): 3357- 3365. |
YANG W P , YE S P , YE H Q , et al. Effect of reference population selection method and size on genotype imputation accuracy[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (12): 3357- 3365. | |
32 | YU X J , WOOLLIAMS J A , MEUWISSEN T H . Prioritizing animals for dense genotyping in order to impute missing genotypes of sparsely genotyped animals[J]. Genet Sel Evol, 2014, 46 (1): 46. |
33 | PAUSCH H , AIGNER B , EMMERLING R , et al. Imputation of high-density genotypes in the Fleckvieh cattle population[J]. Genet Sel Evol, 2013, 45 (1): 3. |
34 | TSAIRIDOU S , HAMILTON A , ROBLEDO D , et al. Optimizing Low-cost genotyping and imputation strategies for genomic selection in Atlantic salmon[J]. G3 (Bethesda), 2020, 10 (2): 581- 590. |
35 | WANG H Y , WOODWARD B , BAUCK S , et al. Imputation of missing SNP genotypes using low density panels[J]. Livest Sci, 2012, 146 (1): 80- 83. |
36 | YANG W Q , YANG Y B , ZHAO C C , et al. Animal-ImputeDB: a comprehensive database with multiple animal reference panels for genotype imputation[J]. Nucleic Acids Res, 2020, 48 (D1): D659- D667. |
37 | BADKE Y M , BATES R O , ERNST C W , et al. Accuracy of estimation of genomic breeding values in pigs using low-density genotypes and imputation[J]. G3 (Bethesda), 2014, 4 (4): 623- 631. |
38 | WENG Z , ZHANG Z , ZHANG Q , et al. Comparison of different imputation methods from low-to high-density panels using Chinese Holstein cattle[J]. Animal, 2012, 7 (5): 729- 735. |
39 | GHOREISHIFAR S M , MORADI-SHAHRBABAK H , MORADI-SHAHRBABAK M , et al. Accuracy of imputation of single-nucleotide polymorphism marker genotypes for water buffaloes (Bubalus bubalis) using different reference population sizes and imputation tools[J]. Livest Sci, 2018, 216, 174- 182. |
40 | BUTTY A M , SARGOLZAEI M , MIGLIOR F , et al. Optimizing selection of the reference population for genotype imputation from array to sequence variants[J]. Front Genet, 2019, 10, 510. |
41 | LEE D , KIM Y , CHUNG Y , et al. Accuracy of genotype imputation based on reference population size and marker density in Hanwoo cattle[J]. J Anim Sci Technol, 2021, 63 (6): 1232- 1246. |
[1] | 章琦, 郭江鹏, 倪爱心, 杜洪峰, 陈继兰, 孙研研. 蛋鸡啄羽行为的影响因素与遗传调控基础研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3745-3756. |
[2] | 于秀菊, 胡燕姣, 刘佳悦, 王海东, 朱芷葳, 范阔海, 王蓉蓉, 段承昊, 石佳炜, 杨丽华. 一株鸡源唾液乳杆菌的分离鉴定及其对育雏早期蛋鸡肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(9): 4161-4171. |
[3] | 窦腾飞, 吴嘉浩, 吴姿仪, 白利瑶, 李新建, 韩雪蕾, 乔瑞敏, 王克君, 杨峰, 王一宁, 李秀领. 基因组选择和选配技术在猪育种中的应用[J]. 畜牧兽医学报, 2024, 55(7): 2795-2808. |
[4] | 王晓旭, 陈艳青, 张家麒, 王野, 王蕊, 于翰林, 杨凯淇, 包军, 张润祥. 爪趾皮肤炎对富集笼养蛋鸡生产性能、蛋品质、行为和免疫的影响[J]. 畜牧兽医学报, 2024, 55(6): 2680-2691. |
[5] | 王中波, 刘爽, 贺丽霞, 冯雪, 杨梦丽, 汪书哲, 刘源, 冯兰, 丁晓玲, 冀国尚, 杨润军, 张路培, 马云. 固原黄牛不同部位肌肉组织代谢组学分析[J]. 畜牧兽医学报, 2024, 55(4): 1565-1578. |
[6] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[7] | 片慧芳, 杜旭彬, 李妍, 张雨辰, 何惠, 虞德兵. 甜菜碱对产蛋后期蛋鸡生产性能、蛋品质和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(3): 1085-1094. |
[8] | 张寅梁, 张冉, 王文君, 王德贺, 李兰会, 周荣艳. 基于转录组数据挖掘蛋鸡产蛋前后骨代谢差异的关键候选基因[J]. 畜牧兽医学报, 2024, 55(10): 4455-4465. |
[9] | 郭妍婷, 周建民, 王晶, 齐广海. 产蛋鸡子宫部钙离子转运及调控的研究进展[J]. 畜牧兽医学报, 2024, 55(1): 39-50. |
[10] | 卢建, 张欣, 江栋材, 马猛, 王强, 王星果, 李永峰, 郭军, 窦套存, 胡玉萍, 李尚民, 邵丹, 曲亮. 甘氨酸锰对产蛋后期蛋鸡产蛋性能和肠道微生物的影响[J]. 畜牧兽医学报, 2024, 55(1): 218-231. |
[11] | 茹盟, 曾文惠, 彭剑玲, 曾庆节, 殷超, 崔勇, 魏庆, 梁海平, 谢贤华, 黄建珍. 蛋鸡卵泡发育及其表观遗传调控机制研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3613-3622. |
[12] | 韩坤良, 兰伟, 胡新, 崔亚东, 孔祥峰. 复方中药超微粉对蛋鸡抗氧化性能及相关基因表达的影响[J]. 畜牧兽医学报, 2023, 54(9): 3784-3792. |
[13] | 常心雨, 王继光, 王晶, 张海军, 齐广海, 邱凯, 武书庚. 商品蛋鸡精准饲养技术研究进展[J]. 畜牧兽医学报, 2023, 54(5): 1815-1823. |
[14] | 韩云珍, 阳文攀, 洪渊, 龙毅, 刘相杰, 范小萍, 李文静, 邓政, 刘鸣慧, 郑素梅, 阮国荣, 丁能水. 基于芯片数据估计不同方法对槐猪近交系数的影响[J]. 畜牧兽医学报, 2023, 54(3): 947-955. |
[15] | 丁小伟, 何万领, 李晓丽, 丁美洁, 杨龙帮. 裂殖壶菌发酵物对蛋鸡生产性能、蛋品质及肠道菌群结构的影响[J]. 畜牧兽医学报, 2023, 54(3): 1135-1147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||