畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4360-4376.doi: 10.11843/j.issn.0366-6964.2024.10.011
毛晓宇1(), 杜嘉伟1, 汤嘉玉1, 潘金海1, 蒋蕾1, 孙小磊1, 昝林森1,2, 王洪宝1,2,*(
)
收稿日期:
2024-03-13
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
王洪宝
E-mail:maoxiaoyu@163.com;wanghongbao@nwsuaf.edu.cn
作者简介:
毛晓宇(1999-), 女, 陕西西安人, 硕士, 主要从事动物遗传育种研究, E-mail: maoxiaoyu@163.com
基金资助:
Xiaoyu MAO1(), Jiawei DU1, Jiayu TANG1, Jinhai PAN1, Lei JIANG1, Xiaolei SUN1, Linsen ZAN1,2, Hongbao WANG1,2,*(
)
Received:
2024-03-13
Online:
2024-10-23
Published:
2024-11-04
Contact:
Hongbao WANG
E-mail:maoxiaoyu@163.com;wanghongbao@nwsuaf.edu.cn
摘要:
旨在研究CHRNG基因对牛成肌细胞增殖分化的影响及其潜在的分子作用途径。本研究从健康3日龄秦川牛背最长肌和后腿肌中分离到成肌细胞,利用腺病毒在秦川牛成肌细胞中过表达及干扰CHRNG基因,分为干扰组(sh-CHRNG)、干扰对照组(sh-NC)、过表达组(OE-CHRNG)、过表达对照组(OE-NC),每组3个重复,采用CCK-8、EdU、qRT-PCR、Western blot、免疫荧光染色等方法分别检测了干扰及过表达CHRNG基因对牛成肌细胞增殖分化的作用;通过RNA-Seq进一步筛选差异基因,富集信号通路。结果表明,过表达及干扰CHRNG均显著下调了细胞周期因子PCNA、CCNB1、CCND2的表达(P < 0.01),显著上调了CDKN1A的表达(P < 0.01),减少了发生增殖的细胞数量(CCK-8,P < 0.01)且减少了处于S复制期的阳性细胞比例(EdU)。在牛成肌细胞上过表达和干扰CHRNG并诱导分化后D2、4、6进行形态学观察和免疫荧光染色,结果表明干扰和过表达CHRNG抑制牛成肌细胞的分化和肌管形成。qRT-PCR和Western blot结果表明,过表达及干扰CHRNG下调了MYOD1、MYOG、MYH3基因mRNA和蛋白水平的表达(P < 0.01)。通过RNA-Seq测序分析发现,过表达CHRNG筛选到的差异基因主要富集在内质网蛋白质加工、IL-17、甲状腺激素合成、PPAR、PI3K-Akt等信号通路,KEGG分析富集的前20条通路中有10条通路与细胞分化相关;干扰CHRNG筛选到的差异基因主要富集在轴突导向、MAPK、PI3K-Akt等信号通路,KEGG分析富集的前20条通路中有8条通路与细胞分化相关。本研究结果表明,过表达和干扰CHRNG基因均能抑制牛成肌细胞的增殖和分化,且过表达和干扰CHRNG引起的差异基因所富集的通路大多与细胞分化相关。
中图分类号:
毛晓宇, 杜嘉伟, 汤嘉玉, 潘金海, 蒋蕾, 孙小磊, 昝林森, 王洪宝. 干扰和过表达CHRNG对牛成肌细胞增殖分化的影响[J]. 畜牧兽医学报, 2024, 55(10): 4360-4376.
Xiaoyu MAO, Jiawei DU, Jiayu TANG, Jinhai PAN, Lei JIANG, Xiaolei SUN, Linsen ZAN, Hongbao WANG. Effects of CHRNG Gene on Proliferation and Differentiation of Bovine Myoblasts and Its Mechanism[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4360-4376.
表 1
引物信息"
基因 Gene | 转录本号 Transcript ID | 引物名称 Primer name | 引物序列(5'→3') Primer sequence | 产物长度/bp Product length |
CHRNG | NM_174273.2 | CHRNG-F | CAGTCCCAGACCTACAGCAC | 115 |
CHRNG-R | CCCACTCCCCATTTTCTGTGA | |||
GAPDH | NM_001034034.2 | GAPDH-F | AGTTCAACGGCACAGTCAAGG | 124 |
GAPDH-R | ACCACATACTCAGCACCAGCA | |||
PCNA | NM_001034494.1 | PCNA-F | CCTTGGTGCAGCTAACCCTT | 94 |
PCNA-R | TTGGACATGCTGGTGAGGTT | |||
CCNB1 | NM_001045872.1 | CCNB1-F | TACCCATTCACCATTATCAA | 103 |
CCNB1-R | ACTAACTATGCTGGACTACGA | |||
CCND2 | NM_001076372.1 | CCND2-F | CGCCAGGTTCCATTTCA | 77 |
CCND2-R | CCGACAACTCCATCAAGC | |||
CDKN1A | NM_001098958.2 | CDKN1A-F | GACCAGCATGACAGATTTCTACCA | 144 |
CDKN1A-R | TGAAGGCCCAAGGCAAAAG | |||
MYOD1 | NM_001040478.2 | MYOD1-F | AACCCCAACCCGATTTACC | 196 |
MYOD1-R | CACAACAGTTCCTTCGCCTCT | |||
MYOG | NM_001111325.1 | MYOG-F | GGCGTGTAAGGTGTGTAAG | 85 |
MYOG-R | CTTCTTGAGTCTGCGCTTCT | |||
MYH3 | NM_001101835.1 | MYH3-F | TGAACGCCCTCTCCAAATCC | 101 |
MYH3-R | AATGAAGTGCTGTCTCGGCA | |||
ANGPTL2 | NM_001109814.1 | ANGPTL2-F | GGGCACGATGAAGGTGTAGGT | 114 |
ANGPTL2-R | AAGGATGGCTTGGAGGGC | |||
HSPA1A | NM_203322.3 | HSPA1A-F | CTTCCGCAGACCCGCTAT | 120 |
HSPA1A-R | CGGTGCCCTGCCTTTT | |||
APOD | NM_001076301.3 | APOD-F | ACTCGCAAGGTAACAGAA | 127 |
APOD-R | CAAACCACCAGAGCAAC | |||
CYGB | NM_001206720.2 | CYGB-F | TTGAGCAGAAGGCCGAGTT | 81 |
CYGB-R | CCAGGAAGATGAGTCAGGGAT | |||
PI16 | NM_001024487.1 | PI16-F | CGAGCGTGAGCACTACAAC | 110 |
PI16-R | GGGAGCCACAGCCAAT | |||
TTR | NM_173967.3 | TTR-F | GCATCCAGGACCTTGACC | 115 |
TTR-R | TGGCTTCCTTCCGTCTG |
表 2
过表达组和干扰组中共有的上调基因"
基因 Gene | 基因ID Gene ID | 差异倍数(OE) Fold change(OE) | 差异倍数(sh) Fold change(sh) |
TFAP2A | 505849 | 3.44 | 3.44 |
IL36A | 523429 | 3.57 | 7.29 |
ESM1 | 539571 | 2.30 | 2.62 |
EREG | 100295476 | 2.20 | 2.61 |
COL13A1 | 613849 | 2.97 | 3.90 |
MYBL1 | 338034 | 2.54 | 2.18 |
NDP | 511596 | 2.09 | 2.47 |
GPR65 | 788507 | 2.87 | 2.65 |
HSPA4L | 506096 | 2.73 | 2.04 |
DEPDC1B | 540874 | 2.08 | 2.46 |
RND1 | 508869 | 2.11 | 3.13 |
CXCL8 | 280828 | 4.91 | 3.72 |
PREX2 | 520704 | 3.22 | 2.90 |
HSPA1A | 282254 | 10.78 | 2.73 |
CXCL2 | 281214 | 4.72 | 2.14 |
GRO1 | 281212 | 2.95 | 2.52 |
HSPA6 | 539835 | 695.28 | 3.42 |
H2AC6 | 506900 | 2.52 | 3.95 |
表 3
过表达组和干扰组共有上调基因"
基因 Gene | 基因ID Gene ID | 差异倍数(OE) Fold change(OE) | 差异倍数(sh) Fold change(sh) |
PI16 | 507058 | 0.381 | 0.234 |
GFRA3 | 540009 | 0.290 | 0.497 |
CYGB | 510299 | 0.402 | 0.474 |
ABCA6 | 537351 | 0.488 | 0.463 |
ABCA10 | 504909 | 0.331 | 0.286 |
COLEC12 | 504741 | 0.333 | 0.494 |
VCAM1 | 282118 | 0.181 | 0.377 |
GALNT15 | 618078 | 0.296 | 0.471 |
HVCN1 | 616570 | 0.440 | 0.309 |
CD34 | 281051 | 0.469 | 0.189 |
DDIT4L | 510906 | 0.330 | 0.430 |
TTR | 280948 | 0.271 | 0.496 |
ANGPTL2 | 512019 | 0.461 | 0.491 |
SLC1A7 | 523673 | 0.433 | 0.238 |
PAMR1 | 513841 | 0.308 | 0.266 |
WDR17 | 783416 | 0.242 | 0.238 |
C6 | 507749 | 0.459 | 0.476 |
SH2D3C | 515820 | 0.350 | 0.433 |
C3 | 280677 | 0.352 | 0.402 |
ANGPT4 | 617915 | 0.272 | 0.220 |
APOD | 613972 | 0.344 | 0.437 |
ENTPD2 | 100126045 | 0.400 | 0.299 |
ENSBTAG-00000025258 | 515676 | 0.488 | 0.382 |
ENSBTAG-00000049395 | 100848536 | 0.220 | 0.349 |
ENSBTAG-00000052577 | 781663 | 0.438 | 0.383 |
1 |
SHAHRIYARI M , ISLAM M R , SAKIB S M , et al. Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy[J]. J Cachexia Sarcopenia Muscle, 2022, 13 (6): 3106- 3121.
doi: 10.1002/jcsm.13094 |
2 |
CHOI K H , YOON J W , KIM M , et al. Muscle stem cell isolation and in vitro culture for meat production: a methodological review[J]. Compr Rev Food Sci Food Saf, 2021, 20 (1): 429- 457.
doi: 10.1111/1541-4337.12661 |
3 |
SUN Y J , LIU K P , HUANG Y Z , et al. Differential expression of FOXO1 during development and myoblast differentiation of Qinchuan cattle and its association analysis with growth traits[J]. Sci China Life Sci, 2018, 61 (7): 826- 835.
doi: 10.1007/s11427-017-9205-1 |
4 |
YAN E F , GUO J X , YIN J D . Nutritional regulation of skeletal muscle energy metabolism, lipid accumulation and meat quality in pigs[J]. Anim Nutr, 2023, 14, 185- 192.
doi: 10.1016/j.aninu.2023.04.009 |
5 |
YU M B , FENG Y Q , YAN J M , et al. Transcriptomic regulatory analysis of skeletal muscle development in landrace pigs[J]. Gene, 2024, 915, 148407.
doi: 10.1016/j.gene.2024.148407 |
6 | 刘媛, 李溪月, 张维娅. MMP14调控骨骼肌卫星细胞分化的分子机制研究[J]. 畜牧兽医学报, 2024, 55 (4): 1592- 1604. |
LIU Y , LI X Y , ZHANG W Y . Molecular mechanism of MMP14 regulating skeletal muscle satellite cell differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (4): 1592- 1604. | |
7 |
CAI S F , WANG X Y , XU R , et al. KLF4 regulates skeletal muscle development and regeneration by directly targeting P57 and Myomixer[J]. Cell Death Dis, 2023, 14 (9): 612.
doi: 10.1038/s41419-023-06136-w |
8 |
RAI M , KATTI P , NONGTHOMBA U . Spatio-temporal coordination of cell cycle exit, fusion and differentiation of adult muscle precursors by Drosophila erect wing (Ewg)[J]. Mech Dev, 2016, 141, 109- 118.
doi: 10.1016/j.mod.2016.03.004 |
9 |
TERRUZZI I , VACANTE F , SENESI P , et al. Effect of hazelnut oil on muscle cell signalling and differentiation[J]. J Oleo Sci, 2018, 67 (10): 1315- 1326.
doi: 10.5650/jos.ess18086 |
10 |
QUINN M E , GOH Q , KUROSAKA M , et al. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development[J]. Nat Commun, 2017, 8, 15665.
doi: 10.1038/ncomms15665 |
11 |
ABMAYR S M , PAVLATH G K . Myoblast fusion: lessons from flies and mice[J]. Development, 2012, 139 (4): 641- 656.
doi: 10.1242/dev.068353 |
12 |
PANG K T , LOO L S W , CHIA S , et al. Insight into muscle stem cell regeneration and mechanobiology[J]. Stem Cell Res Ther, 2023, 14 (1): 129.
doi: 10.1186/s13287-023-03363-y |
13 |
WANG Y J , LU J Q , LIU Y J . Skeletal muscle regeneration in cardiotoxin-induced muscle injury models[J]. Int J Mol Sci, 2022, 23 (21): 13380.
doi: 10.3390/ijms232113380 |
14 |
BELGRANO A , RAKICEVIC L , MITTEMPERGHER L , et al. Multi-tasking role of the mechanosensing protein Ankrd2 in the signaling network of striated muscle[J]. PLoS One, 2011, 6 (10): e25519.
doi: 10.1371/journal.pone.0025519 |
15 |
SANDWEISS A J , PATEL S , BADER M Y , et al. A truncating variant of CHRNG as a cause of Escobar syndrome: a multiple pterygium syndrome subtype[J]. J Pediatr Genet, 2022, 11 (2): 144- 146.
doi: 10.1055/s-0040-1715640 |
16 |
KAPUR A , DAVIES M , DRYDEN W F , et al. Activation of the Torpedo nicotinic acetylcholine receptor. The contribution of residues αArg55 and γGlu93[J]. FEBS J, 2006, 273 (5): 960- 970.
doi: 10.1111/j.1742-4658.2006.05121.x |
17 |
HOFFMANN K , MÜLLER J S , STRICKER S , et al. Escobar syndrome is a prenatal myasthenia caused by disruption of the acetylcholine receptor fetal γ subunit[J]. Am J Hum Genet, 2006, 79 (2): 303- 312.
doi: 10.1086/506257 |
18 | BUCCAFUSCO J J . The role of central cholinergic neurons in the regulation of blood pressure and in experimental hypertension[J]. Pharmacol Rev, 1996, 48 (2): 179- 211. |
19 |
MORGAN N V , BRUETON L A , COX P , et al. Mutations in the embryonal subunit of the acetylcholine receptor (CHRNG) cause lethal and Escobar variants of multiple pterygium syndrome[J]. Am J Hum Genet, 2006, 79 (2): 390- 395.
doi: 10.1086/506256 |
20 |
SEO J , CHOI I H , LEE J S , et al. Rare cases of congenital arthrogryposis multiplex caused by novel recurrent CHRNG mutations[J]. J Hum Genet, 2015, 60 (4): 213- 215.
doi: 10.1038/jhg.2015.2 |
21 |
TORRÃO A S , BRITTO L R G . Neurotransmitter regulation of neural development: acetylcholine and nicotinic receptors[J]. An Acad Bras Ciênc, 2002, 74 (3): 453- 461.
doi: 10.1590/S0001-37652002000300008 |
22 |
WANG Y N , YANG W C , LI P W , et al. Myocyte enhancer factor 2A promotes proliferation and its inhibition attenuates myogenic differentiation via myozenin 2 in bovine skeletal muscle myoblast[J]. PLoS One, 2018, 13 (4): e0196255.
doi: 10.1371/journal.pone.0196255 |
23 |
JUNJVLIEKE Z , KHAN R , MEI C G , et al. Effect of ELOVL6 on the lipid metabolism of bovine adipocytes[J]. Genomics, 2020, 112 (3): 2282- 2290.
doi: 10.1016/j.ygeno.2019.12.024 |
24 | 李雯茜, 闫百仪, 丁恺志, 等. 离子通道调控成肌细胞分化的研究进展[J]. 生物化工, 2022, 8 (6): 167- 169. |
LI W X , YAN B Y , DING K Z , et al. Advances in myoblast differentiation and ion channel regulation[J]. Biological Chemical Engineering, 2022, 8 (6): 167- 169. | |
25 |
SI Y F , WEN H S , DU S J . Genetic mutations in jamb, jamc, and myomaker revealed different roles on myoblast fusion and muscle growth[J]. Mar Biotechnol, 2019, 21 (1): 111- 123.
doi: 10.1007/s10126-018-9865-x |
26 | 朱燕, 罗欣, 周光宏. 钙离子处理对成肌细胞μ-calpain mRNA和蛋白表达的影响[J]. 山东农业大学学报(自然科学版), 2006, 37 (4): 561-567, 572. |
ZHU Y , LUO X , ZHOU G H . Effect of cacium IoM on the MRNA and protein level expresslon of μ-calpain in rat L6 myoblast[J]. Journal of Shandong Agricultural University (Natural Science), 2006, 37 (4): 561-567, 572. | |
27 |
ROBINSON K G , VIERECK M J , MARGIOTTA M V , et al. Neuromotor synapses in Escobar syndrome[J]. Am J Med Genet A, 2013, 161 (12): 3042- 3048.
doi: 10.1002/ajmg.a.36154 |
28 |
MUNIZ M M M , FONSECA L F S , MAGALHÃES A F B , et al. Use of gene expression profile to identify potentially relevant transcripts to myofibrillar fragmentation index trait[J]. Funct Integr Genomics, 2020, 20 (4): 609- 619.
doi: 10.1007/s10142-020-00738-9 |
29 |
CARDANO M , TRIBIOLI C , PROSPERI E . Targeting proliferating cell nuclear antigen (PCNA) as an effective strategy to inhibit tumor cell proliferation[J]. Curr Cancer Drug Targets, 2020, 20 (4): 240- 252.
doi: 10.2174/1568009620666200115162814 |
30 |
BAO B , YU X J , ZHENG W J . MiR-139-5p targeting CCNB1 modulates proliferation, migration, invasion and cell cycle in lung adenocarcinoma[J]. Mol Biotechnol, 2022, 64 (8): 852- 860.
doi: 10.1007/s12033-022-00465-5 |
31 |
RAN T F , KE S , SONG X , et al. WIPI1 promotes osteosarcoma cell proliferation by inhibiting CDKN1A[J]. Gene, 2021, 782, 145537.
doi: 10.1016/j.gene.2021.145537 |
32 | 宋贵兵, 贾鸿儒, 蒋蕾, 等. 秦川牛LRRN1基因表达分析及其对成肌细胞增殖分化的影响[J]. 农业生物技术学报, 2023, 31 (7): 1419- 1429. |
SONG G B , JIA H R , JIANG L , et al. Expression analysis of qinchuan cattle (Bos taurus) LRRN1 gene and its effect on proliferation and differentiation of myoblasts[J]. Journal of Agricultural Biotechnology, 2023, 31 (7): 1419- 1429. | |
33 | LI A Q , SU X T , TIAN Y , et al. Effect of actin alpha cardiac muscle 1 on the proliferation and differentiation of bovine myoblasts and preadipocytes[J]. Animals (Basel), 2021, 11 (12): 3468. |
34 |
ZHENG J H , VIACAVA FOLLIS A , KRIWACKI R W , et al. Discoveries and controversies in BCL-2 protein-mediated apoptosis[J]. FEBS J, 2016, 283 (14): 2690- 2700.
doi: 10.1111/febs.13527 |
35 |
PEÑA-BLANCO A , GARCÍA-SÁEZ A J . Bax, bak and beyond—mitochondrial performance in apoptosis[J]. FEBS J, 2018, 285 (3): 416- 431.
doi: 10.1111/febs.14186 |
36 |
TODRYK S , MELCHER A A , HARDWICK N , et al. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake[J]. J Immunol, 1999, 163 (3): 1398- 1408.
doi: 10.4049/jimmunol.163.3.1398 |
37 |
LANGEN R C J , SCHOLS A M W J , KELDERS M C J M , et al. Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-κB[J]. FASEB J, 2001, 15 (7): 1169- 1180.
doi: 10.1096/fj.00-0463 |
38 |
LONDHE P , DAVIE J K . Gamma interferon modulates myogenesis through the major histocompatibility complex class Ⅱ transactivator, CⅡTA[J]. Mol Cell Biol, 2011, 31 (14): 2854- 2866.
doi: 10.1128/MCB.05397-11 |
39 | NONG W D , HUANG F , MAO F P , et al. DCAF12 and HSPA1A may serve as potential diagnostic biomarkers for myasthenia gravis[J]. Biomed Res Int, 2022, 8587273. |
40 |
BOLUS D J , SHANMUGAM G , NARASIMHAN M , et al. Recurrent heat shock impairs the proliferation and differentiation of C2C12 myoblasts[J]. Cell Stress Chaperones, 2018, 23 (3): 399- 410.
doi: 10.1007/s12192-017-0851-4 |
41 |
ZHANG W , XUE D T , YIN H F , et al. Overexpression of HSPA1A enhances the osteogenic differentiation of bone marrow mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway[J]. Sci Rep, 2016, 6, 27622.
doi: 10.1038/srep27622 |
42 |
ZHANG G H , LIU Z L , DING H , et al. Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90[J]. Nat Commun, 2017, 8 (1): 589.
doi: 10.1038/s41467-017-00726-x |
43 | 姜勇, 罗深秋. 细胞信号转导的分子基础与功能调控[M]. 北京: 科学出版社, 2005. |
JIANG Y , LUO S Q . The molecular basis and functional regulation of cellular signal transduction[M]. Beijing: Science Publishing, 2005. | |
44 |
ACOSTA-MARTINEZ M , CABAIL M Z . The PI3K/Akt pathway in meta-inflammation[J]. Int J Mol Sci, 2022, 23 (23): 15330.
doi: 10.3390/ijms232315330 |
45 | 王亚宁. MEF2A对秦川牛骨骼肌成肌细胞增殖和分化的调控作用及机理研究[D]. 杨凌: 西北农林科技大学, 2019. |
WANG Y N. The roles of MEF2A in the regulation of skeletal muscle myoblasts proliferation and differentiation in Qinchuan beef cattle[D]. Yangling: Northwest A & F University, 2019. (in Chinese) |
[1] | 贾宇航, 郭良富, 张茹楠, 赵阿勇, 刘玉芳, 储明星. miR-127调控绵羊骨骼肌细胞增殖分化及其转录因子PAX3筛选[J]. 畜牧兽医学报, 2024, 55(9): 3864-3875. |
[2] | 王子岩, 王亚慧, 吴天弋, 高晨, 杜振伟, 葛菲, 张晓贝, 赵文轩, 张路培, 高会江, 董焕声, 李俊雅. INTS11通过介导CDK2和CYCLIND1的转录促进牛成肌细胞增殖[J]. 畜牧兽医学报, 2024, 55(7): 2927-2939. |
[3] | 谢兵红, 刘一帆, 薛夫光, 单艳菊, 屠云洁, 姬改革, 巨晓军, 束婧婷, 吴红翔. 缺氧对鸡成肌细胞肌纤维类型转化作用的机制探究[J]. 畜牧兽医学报, 2024, 55(6): 2397-2408. |
[4] | 张琰, 吴梅金, 周家豪, 刁洪秀. 阿霉素处理后对犬乳腺肿瘤细胞系CHMp lncRNAs差异表达的影响[J]. 畜牧兽医学报, 2024, 55(6): 2716-2726. |
[5] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[6] | 苗舒, 安济山, 王祚, 肖定福, 兰欣怡, 刘磊, 沈维军, 万发春. 亮氨酸通过PI3K-AKT信号通路促进牛成肌细胞的增殖[J]. 畜牧兽医学报, 2024, 55(1): 142-152. |
[7] | 钟华, 宋杉杉, 邵浣婷, 赵瑜, 康劲文, 吴瑶, 苏仁伟. 犬子宫蓄脓组织的转录组学分析[J]. 畜牧兽医学报, 2023, 54(8): 3383-3392. |
[8] | 王建东, 唐玉林, 王敏, 张宝锁, 杨富强, 高海慧, 于洋, 郭延生. 基于RNA-Seq技术研究枸杞多糖对环磷酰胺致雏鸡免疫抑制的拮抗机制[J]. 畜牧兽医学报, 2023, 54(8): 3519-3532. |
[9] | 员佳乐, 刘畅, 黄晓宇, 刘巧霞, 史明月, 李文霞, 牛瑾, 王首元, 高鹏飞, 郭晓红, 李步高, 路畅, 曹果清. miR-145-5p靶向IGF1R介导AKT通路抑制猪骨骼肌卫星细胞增殖和分化[J]. 畜牧兽医学报, 2023, 54(5): 1893-1904. |
[10] | 王开明, 喻宗岗, 徐雪莉, 艾妮妮, 李昕瞳, 何俊, 陶灯, 张硕, 马海明, 张跃博. 干扰Mtmr3基因对C2C12细胞增殖与分化的影响[J]. 畜牧兽医学报, 2023, 54(4): 1478-1489. |
[11] | 欧正淼, 周家文, 刘莉莉, 吴芸, 陈粉粉. 基于RNA-Seq的无量山乌骨鸡肝脏组织脂代谢相关基因筛选及其表达分析[J]. 畜牧兽医学报, 2023, 54(3): 976-988. |
[12] | 庞立川, 单艳菊, 刘一帆, 章明, 甘达峰, 屠云洁, 姬改革, 巨晓军, 束婧婷, 邹剑敏. METTL16在鸡不同类型肌肉中的表达规律及其对肌肉功能的调控作用[J]. 畜牧兽医学报, 2023, 54(2): 545-553. |
[13] | 孙金魁, 许厚强, 石鹏飞, 阮涌. 关岭牛MEF2A基因干扰载体构建及其转染对成肌细胞的影响[J]. 畜牧兽医学报, 2023, 54(2): 584-595. |
[14] | 张文涛, 刘晨阳, 朱炳霖, 柳丽, 田媛, 姚宇航, 成功. Snail1对牛脂肪细胞增殖分化影响及作用机制的研究[J]. 畜牧兽医学报, 2023, 54(12): 5008-5019. |
[15] | 蔡佳炜, 张琛, 靳荣帅, 鲍志远, 张希宇, 王璠, 翟频, 赵博昊, 陈阳, 汤先伟, 吴信生. 热应激下公兔睾丸组织形态和精液转录组分析[J]. 畜牧兽医学报, 2023, 54(11): 4653-4663. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||