畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (10): 4050-4060.doi: 10.11843/j.issn.0366-6964.2023.10.005
冯肖艺1,2, 郝海生1, 杜卫华1, 朱化彬1, 崔凯2, 赵学明1*
收稿日期:
2022-12-26
出版日期:
2023-10-23
发布日期:
2023-10-26
通讯作者:
赵学明,主要从事家畜胚胎生物技术研究,E-mail:zhaoxueming@caas.cn
作者简介:
冯肖艺(1999-),女,山东济南人,硕士生,主要从事动物繁殖研究,E-mail:17806257712@163.com
基金资助:
FENG Xiaoyi1,2, HAO Haisheng1, DU Weihua1, ZHU Huabin1, CUI Kai2, ZHAO Xueming1*
Received:
2022-12-26
Online:
2023-10-23
Published:
2023-10-26
摘要: 随着牛奶生产的强化,奶牛生产效率大幅提高,牛奶产量不断增加,高产奶牛的繁殖力却在不断下降,这与奶牛产后能量不平衡相关。当奶牛产后所需能量超过摄入能量时,会出现能量负平衡。研究表明,能量负平衡通过多种机制影响奶牛的繁殖力,其中包括能量负平衡引起奶牛内分泌和代谢机制的改变。因此,本文概述了能量负平衡对奶牛繁殖力的影响,以及能量负平衡导致奶牛繁殖力下降的内分泌和代谢机制,旨在为制定缓解能量负平衡的方法提供参考,以期降低能量负平衡对畜牧业造成的损失。
中图分类号:
冯肖艺, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 能量负平衡导致奶牛繁殖力下降的机制进展[J]. 畜牧兽医学报, 2023, 54(10): 4050-4060.
FENG Xiaoyi, HAO Haisheng, DU Weihua, ZHU Huabin, CUI Kai, ZHAO Xueming. Progress in Mechanism of Reduced Fertility in Dairy Cows due to Negative Energy Balance[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4050-4060.
[1] | GRUMMER R R, WILTBANK M C, FRICKE P M, et al.Management of dry and transition cows to improve energy balance and reproduction[J].J Reprod Dev, 2010, 56 Suppl:S22-S28. |
[2] | GUTIERREZ C G, GONG J G, BRAMLEY T A, et al.Selection on predicted breeding value for milk production delays ovulation independently of changes in follicular development, milk production and body weight[J].Anim Reprod Sci, 2006, 95(3-4):193-205. |
[3] | OMARI M, LANGE A, PLÖNTZKE J, et al.Model-based exploration of the impact of glucose metabolism on the estrous cycle dynamics in dairy cows[J].Biol Direct, 2020, 15(1):2. |
[4] | NTALLARIS T, HUMBLOT P, BÅGE R, et al.Effect of energy balance profiles on metabolic and reproductive response in Holstein and Swedish Red cows[J].Theriogenology, 2017, 90:276-283. |
[5] | PATTON J, KENNY D A, MCNAMARA S, et al.Relationships among milk production, energy balance, plasma analytes, and reproduction in Holstein-Friesian cows[J].J Dairy Sci, 2007, 90(2):649-658. |
[6] | ROCHE J R, BURKE C R, CROOKENDEN M A, et al.Fertility and the transition dairy cow[J].Reprod Fertil Dev, 2017, 30(1):85-100. |
[7] | BECKER C A, COLLIER R J, STONE A E.Invited review:physiological and behavioral effects of heat stress in dairy cows[J].J Dairy Sci, 2020, 103(8):6751-6770. |
[8] | LEROY J L M R, OPSOMER G, VAN SOOM A, et al.Reduced fertility in high-yielding dairy cows:are the oocyte and embryo in danger?Part I.The importance of negative energy balance and altered corpus luteum function to the reduction of oocyte and embryo quality in high-yielding dairy cows[J].Reprod Domest Anim, 2008, 43(5):612-622. |
[9] | LEROY J L M R, VANHOLDER T, OPSOMER G, et al.The in vitro development of bovine oocytes after maturation in glucose and β-hydroxybutyrate concentrations associated with negative energy balance in dairy cows[J].Reprod Domest Anim, 2006, 41(2):119-123. |
[10] | DISKIN M G, MACKEY D R, ROCHE J F, et al.Effects of nutrition and metabolic status on circulating hormones and ovarian follicle development in cattle[J].Anim Reprod Sci, 2003, 78(3-4):345-370. |
[11] | WATHES D C, CHENG Z R, CHOWDHURY W, et al.Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows[J].Physiol Genomics, 2009, 39(1):1-13. |
[12] | MELLOUK N, RAME C, NAQUIN D, et al.Impact of the severity of negative energy balance on gene expression in the subcutaneous adipose tissue of periparturient primiparous Holstein dairy cows:Identification of potential novel metabolic signals for the reproductive system[J].PLoS One, 2019, 14(9):e0222954. |
[13] | WATHES D C, FENWICK M, CHENG Z, et al.Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow[J].Theriogenology, 2007, 68 Suppl 1:S232-S241. |
[14] | CARDOSO F C, KALSCHEUR K F, DRACKLEY J K.Symposium review:nutrition strategies for improved health, production, and fertility during the transition period[J].J Dairy Sci, 2020, 103(6):5684-5693. |
[15] | LUCY M C.Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs:implications for post-partum nutrition and reproduction[J].Reprod Domest Anim, 2008, 43 (Suppl 2):31-39. |
[16] | MOZDURI Z, BAKHTIARIZADEH M R, SALEHI A.Integrated regulatory network reveals novel candidate regulators in the development of negative energy balance in cattle[J].Animal, 2018, 12(6):1196-1207. |
[17] | CHURAKOV M, KARLSSON J, EDVARDSSON RASMUSSEN A, et al.Milk fatty acids as indicators of negative energy balance of dairy cows in early lactation[J].Animal, 2021, 15(7):100253. |
[18] | XU W, VERVOORT J, SACCENTI E, et al.Relationship between energy balance and metabolic profiles in plasma and milk of dairy cows in early lactation[J].J Dairy Sci, 2020, 103(5):4795-4805. |
[19] | MENTA P R, FERNANDES L, POIT D, et al.Association of blood calcium concentration in the first 3 days after parturition and energy balance metabolites at day 3 in milk with disease and production outcomes in multiparous Jersey cows[J].J Dairy Sci, 2021, 104(5):5854-5866. |
[20] | BECKER V A E, STAMER E, SPIEKERS H, et al.Residual energy intake, energy balance, and liability to diseases:Genetic parameters and relationships in German Holstein dairy cows[J].J Dairy Sci, 2021, 104(10):10970-10978. |
[21] | STR[XCA1.tif;S+1mm] CZEK I, MŁYNEK K, DANIELEWICZ A.The capacity of Holstein-Friesian and Simmental cows to correct a negative energy balance in relation to their performance parameters, course of lactation, and selected milk components[J].Animals (Basel), 2021, 11(6):1674. |
[22] | JORRITSMA R, WENSING T, KRUIP T A M, et al.Metabolic changes in early lactation and impaired reproductive performance in dairy cows[J].Vet Res, 2003, 34(1):11-26. |
[23] | LEDUC A, SOUCHET S, GELÉ M, et al.Effect of feed restriction on dairy cow milk production:a review[J].J Anim Sci, 2021, 99(7):skab130. |
[24] | LOPREIATO V, MEZZETTI M, CATTANEO L, et al.Role of nutraceuticals during the transition period of dairy cows:a review[J]. J Anim Sci Biotechnol, 2020, 11:96. |
[25] | MOORE S M, DEVRIES T J.Effect of diet-induced negative energy balance on the feeding behavior of dairy cows[J].J Dairy Sci, 2020, 103(8):7288-7301. |
[26] | KOK A, CHEN J, KEMP B, et al.Review:dry period length in dairy cows and consequences for metabolism and welfare and customised management strategies[J].Animal, 2019, 13(S1):s42-s51. |
[27] | POIRIER M, TESFAYE D, HAILAY T, et al.Metabolism-associated genome-wide epigenetic changes in bovine oocytes during early lactation[J].Sci Rep, 2020, 10(1):2345. |
[28] | BUTLER W R.Nutritional interactions with reproductive performance in dairy cattle[J].Anim Reprod Sci, 2000, 60-61:449-457. |
[29] | PUSHPAKUMARA P G A, GARDNER N H, REYNOLDS C K, et al.Relationships between transition period diet, metabolic parameters and fertility in lactating dairy cows[J].Theriogenology, 2003, 60(6):1165-1185. |
[30] | BUTLER W R.Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows[J].Livest Prod Sci, 2003, 83(2-3):211-218. |
[31] | SANTOS J E P, BISINOTTO R S, RIBEIRO E S.Mechanisms underlying reduced fertility in anovular dairy cows[J]. Theriogenology, 2016, 86(1):254-262. |
[32] | NOYA A, CASASÚS I, RODRÍGUEZ-SÁNCHEZ J A, et al.A negative energy balance during the peri-implantational period reduces dam IGF-1 but does not alter progesterone or pregnancy-specific protein B (PSPB) or fertility in suckled cows[J].Domest Anim Endocrinol, 2020, 72:106418. |
[33] | WALSH S W, WILLIAMS E J, EVANS A C O.A review of the causes of poor fertility in high milk producing dairy cows[J].Anim Reprod Sci, 2011, 123(3-4):127-138. |
[34] | MEIKLE A, KULCSAR M, CHILLIARD Y, et al.Effects of parity and body condition at parturition on endocrine and reproductive parameters of the cow[J].Reproduction, 2004, 127(6):727-737. |
[35] | CROWE M A, DISKIN M G, WILLIAMS E J.Parturition to resumption of ovarian cyclicity:comparative aspects of beef and dairy cows[J].Animal, 2014, 8(Suppl 1):40-53. |
[36] | SANTOS J E P, RUTIGLIANO H M, SÁ FILHO M F.Risk factors for resumption of postpartum estrous cycles and embryonic survival in lactating dairy cows[J].Anim Reprod Sci, 2009, 110(3-4):207-221. |
[37] | CHAPUT C, SIRARD M A.Embryonic response to high beta-hydroxybutyrate (BHB) levels in postpartum dairy cows[J].Domest Anim Endocrinol, 2020, 72:106431. |
[38] | PASCOTTINI O B, LEROY J L M R, OPSOMER G.Maladaptation to the transition period and consequences on fertility of dairy cows[J].Reprod Domest Anim, 2022, 57(Suppl 4):21-32. |
[39] | GARNSWORTHY P C, GONG J G, ARMSTRONG D G, et al.Nutrition, metabolism, and fertility in dairy cows:3.Amino acids and ovarian function[J].J Dairy Sci, 2008, 91(11):4190-4197. |
[40] | GONG J G.Influence of metabolic hormones and nutrition on ovarian follicle development in cattle:practical implications[J].Domest Anim Endocrinol, 2002, 23(1-2):229-241. |
[41] | D'OCCHIO M J, BARUSELLI P S, CAMPANILE G.Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle:a review[J].Theriogenology, 2019, 125:277-284. |
[42] | CAVESTANY D, KULCSÁR M, CRESPI D, et al.Effect of prepartum energetic supplementation on productive and reproductive characteristics, and metabolic and hormonal profiles in dairy cows under grazing conditions[J].Reprod Domest Anim, 2009, 44(4):663-671. |
[43] | MŁYNEK K, DANIELEWICZ A, STRĄCZEK I.The effect of energy metabolism up to the peak of lactation on the main fractions of fatty acids in the milk of selected dairy cow breeds[J].Animals (Basel), 2021, 11(1):112. |
[44] | LUCY M C.Mechanisms linking nutrition and reproduction in postpartum cows[J].Reprod Suppl, 2003, 61:415-427. |
[45] | WEBB R, GARNSWORTHY P C, GONG J G, et al.Control of follicular growth:local interactions and nutritional influences[J].J Anim Sci, 2004, 82(E-Suppl):E63-E74. |
[46] | ESPOSITO G, IRONS P C, WEBB E C, et al.Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows[J].Anim Reprod Sci, 2014, 144(3-4):60-71. |
[47] | CHAGAS L M, BASS J J, BLACHE D, et al.Invited review:new perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing dairy cows[J].J Dairy Sci, 2007, 90(9):4022-4032. |
[48] | BEAM S W, BUTLER W R.Effects of energy balance on follicular development and first ovulation in postpartum dairy cows[J].J Reprod Fertil Suppl, 1999, 54:411-424. |
[49] | GOFF J P.Major advances in our understanding of nutritional influences on bovine health[J].J Dairy Sci, 2006, 89(4):1292-1301. |
[50] | DISKIN M G, MACKEY D R, ROCHE J F, et al.Effects of nutrition and metabolic status on circulating hormones and ovarian follicle development in cattle[J].Anim Reprod Sci, 2003, 78(3-4):345-370. |
[51] | MCART J A A, NYDAM D V, OETZEL G R, et al.Elevated non-esterified fatty acids and β-hydroxybutyrate and their association with transition dairy cow performance[J].Vet J, 2013, 198(3):560-570. |
[52] | SWARTZ T H, MOALLEM U, KAMER H, et al.Characterization of the liver proteome in dairy cows experiencing negative energy balance at early lactation[J].J Proteomics, 2021, 246:104308. |
[53] | SONG Y X, LOOR J J, LI C Y, et al.Enhanced mitochondrial dysfunction and oxidative stress in the mammary gland of cows with clinical ketosis[J].J Dairy Sci, 2021, 104(6):6909-6918. |
[54] | MISSIO D, FRITZEN A, CUPPER VIEIRA C, et al.Increased β-hydroxybutyrate (BHBA) concentration affect follicular growth in cattle[J].Anim Reprod Sci, 2022, 243:107033. |
[55] | AERNOUTS B, ADRIAENS I, DIAZ-OLIVARES J, et al.Mid-infrared spectroscopic analysis of raw milk to predict the blood nonesterified fatty acid concentrations in dairy cows[J].J Dairy Sci, 2020, 103(7):6422-6438. |
[56] | HUMER E, BRUGGEMAN G, ZEBELI Q.A meta-analysis on the impact of the supplementation of rumen-protected choline on the metabolic health and performance of dairy cattle[J].Animals (Basel), 2019, 9(8):566. |
[57] | SHARMA A, BADDELA V S, BECKER F, et al.Elevated free fatty acids affect bovine granulosa cell function:a molecular cue for compromised reproduction during negative energy balance[J].Endocr Connect, 2019, 8(5):493-505. |
[58] | SHEN T Y, XU F, FANG Z Y, et al.Hepatic autophagy and mitophagy status in dairy cows with subclinical and clinical ketosis[J].J Dairy Sci, 2021, 104(4):4847-4857. |
[59] | THAMMACHAROEN S, SEMSIRMBOON S, CHANPONGSANG S, et al.Seasonal effect of milk yield and blood metabolites in relation to ketosis of dairy cows fed under a high ambient temperature[J].Vet World, 2021, 14(9):2392-2396. |
[60] | HÄGGMAN J, CHRISTENSEN J M, MÄNTYSAARI E A, et al.Genetic parameters for endocrine and traditional fertility traits, hyperketonemia and milk yield in dairy cattle[J].Animal, 2019, 13(2):248-255. |
[61] | MACRAE A I, BURROUGH E, FORREST J, et al.Risk factors associated with excessive negative energy balance in commercial United Kingdom dairy herds[J].Vet J, 2019, 250:15-23. |
[62] | BADDELA V S, SHARMA A, VANSELOW J.Non-esterified fatty acids in the ovary:friends or foes?[J].Reprod Biol Endocrinol, 2020, 18(1):60. |
[63] | KARPE F, DICKMANN J R, FRAYN K N.Fatty acids, obesity, and insulin resistance:time for a reevaluation[J].Diabetes, 2011, 60(10):2441-2449. |
[64] | WATHES D C, CHENG Z, SALAVATI M, et al. Relationships between metabolic profiles and gene expression in liver and leukocytes of dairy cows in early lactation[J].J Dairy Sci, 2021, 104(3):3596-3616. |
[65] | NOGUEIRA-FERREIRA R, VITORINO R, FERREIRA-PINTO M J, et al.Exploring the role of post-translational modifications on protein-protein interactions with survivin[J].Arch Biochem Biophys, 2013, 538(2):64-70. |
[1] | 牛佳佳, 徐丹, 刘洋, 赵小玲. 鸡芦花羽性状遗传调控机制研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1883-1892. |
[2] | 余祖华, 高梦茹, 齐志颖, 张静雨, 何雷, 陈建, 丁轲. RNA结合蛋白ELAVL1的功能及其调控病毒复制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1914-1925. |
[3] | 张吉贤, 范定坤, 付域泽, 焦帅, 马涛, 毕研亮, 张乃锋. 后生素调控动物肠道健康的作用机制及应用进展[J]. 畜牧兽医学报, 2024, 55(5): 1926-1935. |
[4] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[5] | 黄杰, 阮子豪, 蔡瑞. 抗菌肽在猪精液常温保存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1401-1411. |
[6] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[7] | 和晓兰, 赵艳坤, 孟璐, 刘慧敏, 高姣姣, 郑楠. 金黄色葡萄球菌异质性耐药研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1432-1445. |
[8] | 罗通旺, 吴亚, 王书杰, 宋厚辉, 邵春艳. 镉致肝损伤机制及硒拮抗镉肝毒性的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1456-1466. |
[9] | 王潇, 张昊, 栾庆江, 李慧, 杨鼎, 王婷月, 田菁, 赵濛, 陈陆, 田如刚. 冷热应激对肉牛生理指标及基因表达影响的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 894-904. |
[10] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[11] | 高远集, 刘畅, 陈淼, 陈松彪, 张俊峰, 李静, 贾艳艳, 廖成水, 郭荣显, 丁轲, 余祖华, 尚珂. 细菌外膜囊泡结构、分泌特性及致病机制[J]. 畜牧兽医学报, 2024, 55(3): 971-983. |
[12] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[13] | 符雪珍, 李鑫灿, 钱虹宇, 吕红, 吴婵玉, 王晓涵, 王小华, 王芝英, 周作勇. 香柠檬精油抗伪结核棒状杆菌作用及机制研究[J]. 畜牧兽医学报, 2024, 55(3): 1217-1227. |
[14] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[15] | 王浩, 肖金龙, 沈珏, 赵金刚, 王帅, 刘根, 赵汝, 肖鹏, 高洪. 细胞死亡的新方式——铁死亡与铜死亡[J]. 畜牧兽医学报, 2024, 55(2): 461-470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||