

畜牧兽医学报 ›› 2026, Vol. 57 ›› Issue (1): 80-95.doi: 10.11843/j.issn.0366-6964.2026.01.008
邓雯心(
), 李怡涵, 王倩, 朱娆希, 李函亭, 张姣姣(
)
收稿日期:2025-02-18
出版日期:2026-01-23
发布日期:2026-01-26
通讯作者:
张姣姣
E-mail:18183063113@163.com;zhangjjff@126.com
作者简介:邓雯心,本科生,主要从事动物生殖生理调控研究,E-mail:18183063113@163.com
基金资助:
DENG Wenxin(
), LI Yihan, WANG Qian, ZHU Raoxi, LI Hanting, ZHANG Jiaojiao(
)
Received:2025-02-18
Online:2026-01-23
Published:2026-01-26
Contact:
ZHANG Jiaojiao
E-mail:18183063113@163.com;zhangjjff@126.com
摘要:
N6-甲基腺嘌呤(N6-methyladenosine,m6A)修饰和微RNAs(microRNAs,miRNAs)是基因表达调控的重要因子,在细胞的能量代谢中发挥着关键作用。m6A修饰通过调节RNA的稳定性、剪接、翻译等过程参与了多种生理和病理进程。miRNAs作为一种小分子RNAs,通过靶向调节基因的表达,直接影响细胞的代谢途径。m6A修饰介导miRNAs在细胞能量代谢中具有重要意义,特别是在糖酵解、线粒体功能等代谢过程中起着关键的调节作用。通过讨论m6A修饰对miRNAs的调控作用及其对能量代谢的影响,本文详细阐述m6A修饰通过调控miRNAs影响细胞能量代谢的机制,揭示了m6A修饰调控的miRNAs作为调节细胞能量代谢靶点的可能性,旨在为调控动物生长发育和治疗能量代谢相关疾病提供一定的理论参考。
中图分类号:
邓雯心, 李怡涵, 王倩, 朱娆希, 李函亭, 张姣姣. m6A修饰调控miRNAs影响细胞能量代谢的研究进展[J]. 畜牧兽医学报, 2026, 57(1): 80-95.
DENG Wenxin, LI Yihan, WANG Qian, ZHU Raoxi, LI Hanting, ZHANG Jiaojiao. Research Progress on m6A Modification Regulation of miRNAs Affecting Cellular Energy Metabolism[J]. Acta Veterinaria et Zootechnica Sinica, 2026, 57(1): 80-95.
表1
m6A修饰在调节能量代谢中的作用"
m6A调控因子 m6A regulators | m6A中的角色 Roles in m6A | 机制 Mechanism | 功能 Function | 参考文献 Reference |
|---|---|---|---|---|
| METTL3 | Writer | ACLY-SLC25A1 | 影响牙髓干细胞糖酵解 | [ |
| METTL3↓ | Writer | Bcl-2↓,Bax↑,Caspaes-3↑ | 促进肺癌细胞的线粒体凋亡 | [ |
| METTL3↓ | Writer | mTORC1↓ | 抑制肝癌细胞的糖酵解 | [ |
| METTL3 | Writer | Wnt/β-catenin/c-Myc | 促进成骨细胞的ATP合成 | [ |
| METTL3↑ | Writer | HK2↑ | 促进子宫颈癌细胞的糖酵解 | [ |
| METTL3 | Writer | lncRNA SNHG7/SRSF1/c-Myc | 促进前列腺癌细胞的糖酵解 | [ |
| METTL14↑ | Writer | GLUT3↑ | 促进成骨细胞的糖酵解 | [ |
| METTL14↑ | Writer | AMPK↑ | 促进子宫颈癌细胞的糖酵解 | [ |
| WTAP↑ | Writer | HK2↑ | 促进胃癌细胞的糖酵解 | [ |
| KIAA1429 | Writer | lncRNA LINC00958/GLUT1 | 促进胃癌细胞的糖酵解 | [ |
| FTO↑ | Eraser | FOXO1↑ | 影响2型糖尿病葡萄糖代谢 | [ |
| FTO↑ | Eraser | G6PC↑ | 影响2型糖尿病葡萄糖代谢 | [ |
| FTO↓ | Eraser | ATG16L1↑ | 抑制半月板细胞的ATP合成 | [ |
| FTO↑ | Eraser | GLUT1-PKM2↑ | 促进肝癌细胞的糖酵解 | [ |
| FTO | Eraser | LINK-A/MCM3/HIF-1α | 促进食管鳞状细胞癌细胞的糖酵解 | [ |
| ALKBH5↓ | Eraser | PI3K/AKT↑ | 促进急性髓系白血病细胞能量代谢 | [ |
| ALKBH5↓ | Eraser | CK2α↑ | 促进膀胱癌细胞的ATP合成 | [ |
| ALKBH5↓ | Eraser | circNPIP1/miR-541-5P/PKM2↑ | 促进甲状腺乳头状癌细胞的糖酵解 | [ |
| ALKBH5↓ | Eraser | circNPIP1/miR-3064-5P/PKM2↑ | 促进甲状腺乳头状癌细胞的糖酵解 | [ |
| YTHDF1 | Reader | GLS1 | 促进结肠癌细胞的三羧酸循环 | [ |
| YTHDF1 | Reader | LDHA | 促进结肠癌细胞的糖酵解 | [ |
| YTHDF1 | Reader | ENO1 | 促进肺腺癌细胞的糖酵解 | [ |
| YTHDF2 | Reader | LATS1 | 促进乳腺癌细胞的糖酵解 | [ |
| YTHDF3 | Reader | PFKL | 促进肝癌细胞的糖酵解 | [ |
| YTHDC1 | Reader | PTEN/PI3K/AKT | 影响膀胱癌细胞代谢 | [ |
| IGF2BP1 | Reader | LDHA | 促进肾癌细胞的糖酵解 | [ |
| IGF2BP2 | Reader | ACLY | 影响牙髓干细胞的糖酵解 | [ |
| IGF2BP2/3 | Reader | SLC25A1 | 影响牙髓干细胞的糖酵解 | [ |
| IGF2BP2 | Reader | MYC | 促进子宫颈癌细胞的糖酵解 | [ |
表2
miRNAs在调节能量代谢中的作用"
miRNA名称 miRNA name | 靶基因通路 Target gene pathway | 功能 Function | 参考文献 Reference |
|---|---|---|---|
| miR-494-3p↑ | PGC1-α↓ | 抑制脂肪细胞的能量代谢 | [ |
| miR-125a↑ | HK2↓ | 抑制肝癌细胞的糖酵解 | [ |
| miR-125a↓ | MFN2↑ | 抑制胰腺癌细胞的线粒体分裂 | [ |
| miR-125b↑ | HK2↓ | 降低心肌细胞的糖代谢速率 | [ |
| miR-214↓ | PTEN/AKT/mTOR/HK2↓ | 抑制非小细胞肺癌细胞的糖酵解 | [ |
| miR-214↓ | PTEN/AKT/mTOR/PKM2↓ | 抑制非小细胞肺癌细胞的糖酵解 | [ |
| miR-150 | SLC2A4/GLUT4 | 减弱心肌细胞的葡萄糖摄取 | [ |
| miR-223↑ | GLUT4↑ | 增强心肌细胞的葡萄糖摄取 | [ |
| miR-34a-5p↑ | LDHA↓,HK2↓,PKM2↓ | 抑制多囊卵巢综合征细胞的糖酵解 | [ |
| miR-486-5p↑ | 有丝分裂基因A相关激酶2↓ | 抑制结肠癌细胞的糖酵解 | [ |
| miR-195↑ | Sirtuin 3/丙酮酸脱氢酶-ATP合酶↓ | 抑制心肌细胞有氧代谢及ATP合成 | [ |
| miR-152,miR-494,miR-19a | HIF-1α/柠檬酸合酶 | 影响肿瘤细胞的三羧酸循环 | [ |
| [1] | FU Y,DOMINISSINI D,RECHAVI G,et al.Gene expression regulation mediated through reversible m⁶A RNA methylation[J].Nat Rev Genet,2014,15(5):293-306. |
| [2] | WANG X,ZHAO B S,ROUNDTREE I A,et al.N(6)-methyladenosine modulates messenger RNA translation efficiency[J].Cell,2015,161(6):1388-1399. |
| [3] | SHI H,WEI J,HE C.Where,when,and how:context-dependent functions of RNA methylation writers,readers,and erasers[J].Mol Cell,2019,74(4):640-650. |
| [4] | NOMBELA P,MIGUEL-LÓPEZ B,BLANCO S.The role of m6A,m5C and Ψ RNA modifications in cancer:novel therapeutic opportunities[J].Mol Cancer,2021,20(1):18. |
| [5] | ZACCARA S,RIES R.J,JAFFREY S R.Reading,writing and erasing mRNA methylation[J].Nat Rev Mol Cell Biol,2019,20(10):608-624. |
| [6] | CHEN X,ZHANG J,ZHU J.The role of m6A RNA methylation in human cancer[J].Mol Cancer,2019,18(1):103. |
| [7] | WEI W,HUO B,SHI X.MiR-600 inhibits lung cancer via downregulating the expression of METTL3[J].Cancer Manag Res,2019,11:1177-1187. |
| [8] | BOULIAS K,GREER E L.Biological roles of adenine methylation in RNA[J].Nat Rev Genet,2023,24(3):143-160. |
| [9] | SHEN C,XUAN B,YAN T,et al.m6A-dependent glycolysis enhances colorectal cancer progression[J].Mol Cancer,2020,19(1):72. |
| [10] | WU H,JIAO Y,GUO X,et al.METTL14/miR-29c-3p axis drives aerobic glycolysis to promote triple-negative breast cancer progression though TRIM9-mediated PKM2 ubiquitination[J].J Cell Mol Med,2024,28(3):e18112. |
| [11] | LYU Y,ZHANG Y,WANG Y,et al.HIF-1α regulated WTAP overexpression promoting the Warburg effect of ovarian cancer by m6A-dependent manner[J].J Immunol Res,2022,2022:6130806. |
| [12] | BARTEL D P.Metazoan microRNAs[J].Cell,2018,173(1):20-51. |
| [13] | O'BRIEN J,HAYDER H,ZAYED Y,et al.Overview of microRNA biogenesis,mechanisms of actions,and circulation[J].Front Endocrinol (Lausanne),2018,9:402. |
| [14] | AGBU P,CARTHEW R W.MicroRNA-mediated regulation of glucose and lipid metabolism[J].Nat Rev Mol Cell Biol,2021,22(6):425-438. |
| [15] | BERULAVA T,RAHMANN S,RADEMACHER K,et al.N6-adenosine methylation in miRNAs[J].PLoS One,2015,10(2):e0118438. |
| [16] | ALARCÓN C R,LEE H,GOODARZI H,et al.N6-methyladenosine marks primary microRNAs for processing[J].Nature,2015,519(7544):482-485. |
| [17] | ZHONG S,LI X,LI C,et al.SERRATE drives phase separation behaviours to regulate m6A modification and miRNA biogenesis[J].Nat Cell Biol,2024,26(12):2129-2143. |
| [18] | HAN J,WANG J,YANG X,et al.METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner[J].Mol Cancer,2019,18(1):110. |
| [19] | JIN D,GUO J,WU Y,et al.m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis[J].J Hematol Oncol,2021,14(1):32. |
| [20] | 伍义文,曹健斌,黄维佳,等.m6A甲基转移酶METTL3介导miR-127调控非小细胞肺癌细胞系自噬的机制研究[J].现代检验医学杂志,2022,37(2):12-16,32. |
| WU Y W,CAO J B,HUANG W J,et al.Mechanism of m6A methyltransferase METTL3 mediates miR-127 to regulate autophagy in non-small cell lung cancer cell lines[J].Journal of Modern Laboratory Medicine,2022,37(2):12-16,32. | |
| [21] | DENG K,SU Y,LIU Z,et al.YTHDF2 facilitates precursor miR-378/miR-378-5p maturation to support myogenic differentiation[J].Cell Mol Life Sci,2024,81(1):445. |
| [22] | LIU J,YUE Y,HAN D,et al.A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J].Nat Chem Biol,2014,10(2):93-95. |
| [23] | ZHANG Y,CHEN W,ZHENG X,et al.Regulatory role and mechanism of m6A RNA modification in human metabolic diseases[J].Mol Ther Oncolytics,2021,22:52-63. |
| [24] | MA H,WANG X,CAI J,et al.N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation[J].Nat Chem Biol,2019,15(1):88-94. |
| [25] | VAN T N,ERNST F G M,HAWLEY B R,et al.The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112[J].Nucleic Acids Res,2019,47(15):7719-7733. |
| [26] | SU N,YU X,DUAN M,et al.Recent advances in methylation modifications of microRNA[J].Genes Dis,2023,12(1):101201. |
| [27] | ZHANG J,BAI R,LI M,et al.Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression[J].Nat Commun,2019,10(1):1858. |
| [28] | FU Y,JIA G,PANG X,et al.FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA[J].Nat Commun,2013,4:1798. |
| [29] | PENG Q,DENG Y,XU Z,et al.Fat mass and obesity-associated protein alleviates cerebral ischemia/reperfusion injury by inhibiting ferroptosis via miR-320-3p/SLC7A11 axis[J].Biochem Pharmacol,2024,230(Pt 2):116603. |
| [30] | XUE J,XIAO P,YU X,et al.A positive feedback loop between ALKB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma[J].Hum Cell,2021,34(2):502-514. |
| [31] | TUOHETI M,LI J,ZHANG C,et al.miR-124-3p inhibits cell stemness in glioblastoma via targeting EPHA2 through ALKBH5-mediated m6A modification[J].Hum Cell,2024,38(1):10. |
| [32] | DENG L,DENG W,FAN S,et al.m6A modification:recent advances,anticancer targeted drug discovery and beyond[J].Mol Cancer,2022,21(1):52. |
| [33] | WANG X,LU Z,GOMEZ A,et al.N6-methyladenosine-dependent regulation of messenger RNA stability[J].Nature,2014,505(7481):117-120. |
| [34] | YUAN Y,YAN G,HE M,et al.ALKBH5 suppresses tumor progression via an m6A-dependent epigenetic silencing of pre-miR-181b-1/YAP signaling axis in osteosarcoma[J].Cell Death Dis,2021,12(1):60. |
| [35] | JAYASREE P,DUTTA S,KAREMORE P,et al.Crosstalk between m6A RNA methylation and miRNA biogenesis in cancer:an unholy nexus[J].Mol Biotechnol,2024,66(11):3042-3058. |
| [36] | ALARCÓN C R,GOODARZ H,LEE H,et al.HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events[J].Cell,2015,162(6):1299-1308. |
| [37] | KLINGE C M,PIELL K M,TOOLEY C S,et al.HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells[J].Sci Rep,2019,9(1):9430. |
| [38] | CAI W,JI Y,HAN L,et al.METTL3-dependent glycolysis regulates dental pulp stem cell differentiation[J].J Dent Res,2022,101(5):580-589. |
| [39] | LIN Y,WEI X,JIAN Z,et al.METTL3 expression is associated with glycolysis metabolism and sensitivity to glycolytic stress in hepatocellular carcinoma[J].Cancer Med,2020,9(8):2859-2867. |
| [40] | DÜVEL K,YECIES J Y,MENON S,et al.Activation of a metabolic gene regulatory network downstream of mTOR complex 1[J].Mol Cell,2010,39(2):171-183. |
| [41] | SAXTON R A,SABATINI D M.mTOR signaling in growth,metabolism,and disease[J].Cell,2017,168(6):960-976. |
| [42] | WANG Y,YU X,SUN F,et al.METTL14 mediates GLUT3 m6A methylation to improve osteogenesis under oxidative stress condition[J].Redox Rep,2025,30(1):2435241. |
| [43] | YU H,ZHAO K,ZENG H,et al.N6-methyladenosine (m6A) methyltransferase WTAP accelerates the Warburg effect of gastric cancer through regulating HK2 stability[J].Biomed Pharmacother,2021,133:111075. |
| [44] | YANG D,CHANG S,LI F,et al.m6 A transferase KIAA1429-stabilized LINC00958 accelerates gastric cancer aerobic glycolysis through targeting GLUT1[J].IUBMB Life,2021,73(11):1325-1333. |
| [45] | LI Y,ZHANG Y,ZHANG T,et al.RNA m6A methylation regulates glycolysis of beige fat and contributes to systemic metabolic homeostasis[J].Adv Sci (Weinh),2023,10(25):e2300436. |
| [46] | LAN N,LU Y,ZHANG Y,et al.FTO-A common genetic basis for obesity and cancer[J].Front Genet,2020,11:559138. |
| [47] | MIZUNO T M.Fat mass and obesity associated (FTO) gene and hepatic glucose and lipid metabolism[J].Nutrients,2018,10(11):1600. |
| [48] | YANG Y,SHEN F,HUANG W,et al.Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes[J].J Clin Endocrinol Metab,2019,104(3):665-673. |
| [49] | YAN H,YANG W,ZHOU F,et al.Estrogen improves insulin sensitivity and suppresses gluconeogenesis via the transcription factor Foxo1[J].Diabetes,2019,68(2):291-304. |
| [50] | LI Y,MA Z,JIANG S,et al.A global perspective on FOXO1 in lipid metabolism and lipid-related diseases[J].Prog Lipid Res,2017,66:42-49. |
| [51] | JIANG Z,ZHANG C,LIU R,et al.m6A demethyltransferase FTO attenuates meniscus degeneration and osteoarthritis via orchestrating autophagy and energetic metabolism[J].Adv Sci (Weinh),2025,12(9):e2412379. |
| [52] | WANG F,HU Y,WANG H,et al.LncRNA FTO-IT1 promotes glycolysis and progression of hepatocellular carcinoma through modulating FTO-mediated N6-methyladenosine modification on GLUT1 and PKM2[J].J Exp Clin Cancer Res,2023,42(1):267. |
| [53] | WANG J,LI Y,WANG P,et al.Leukemogenic chromatin alterations promote AML leukemia stem cells via a KDM4C-ALKBH5-AXL signaling axis[J].Cell Stem Cell,2020,27(1):81-97. |
| [54] | ZHANG X,YANG X,YANG C,et al.Targeting protein kinase CK2 suppresses bladder cancer cell survival via the glucose metabolic pathway[J].Oncotarget,2016,7(52):87361-87372. |
| [55] | YU H,YANG X,TANG J,et al.ALKBH5 Inhibited cell proliferation and sensitized bladder cancer cells to cisplatin by m6A-CK2α-mediated glycolysis[J].Mol Ther Nucleic Acids,2020,23:27-41. |
| [56] | JI X,LV C,HUANG J,et al.ALKBH5-induced circular RNA NRIP1 promotes glycolysis in thyroid cancer cells by targeting PKM2[J].Cancer Sci,2023,114(6):2318-2334. |
| [57] | SHI H,WANG X,LU Z,et al.YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA[J].Cell Res,2017,27(3):315-328. |
| [58] | CHEN P,LIU X,LIN X,et al.Targeting YTHDF1 effectively re-sensitizes cisplatin-resistant colon cancer cells by modulating GLS-mediated glutamine metabolism[J].Mol Ther Oncolytics,2021,20:228-239. |
| [59] | ZHANG K,ZHANG T,YANG Y,et al.N6-methyladenosine-mediated LDHA induction potentiates chemoresistance of colorectal cancer cells through metabolic reprogramming[J].Theranostics,2022,12(10):4802-4817. |
| [60] | XU Y,SONG M,HONG Z,et al.The N6-methyladenosine METTL3 regulates tumorigenesis and glycolysis by mediating m6A methylation of the tumor suppressor LATS1 in breast cancer[J].J Exp Clin Cancer Res,2023,42(1):10. |
| [61] | ZHOU R,NI W,QIN C,et al.A functional loop between YTH domain family protein YTHDF3 mediated m6A modification and phosphofructokinase PFKL in glycolysis of hepatocellular carcinoma[J].J Exp Clin Cancer Res,2022,41(1):334. |
| [62] | LAHIRI V,HAWKINS W D,KLIONSKY D J.Watch what you (self-) eat:Autophagic mechanisms that modulate metabolism[J].Cell Metab,2019,29(4):803-826. |
| [63] | HAO W,DIAN M,ZHOU Y,et al.Autophagy induction promoted by m6A reader YTHDF3 through translation upregulation of FOXO3 mRNA[J].Nat Commun,2022,13(1):5845. |
| [64] | HUANG H,WENG H,SUN W,et al.Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J].Nat Cell Biol,2018,20(3):285-295. |
| [65] | YUAN B,ZHOU J.N6-methyladenosine (m6A) reader IGF2BP1 facilitates clear-cell renal cell carcinoma aerobic glycolysis[J].PeerJ,2023,11:e14591. |
| [66] | ZHANG Y,KONG Y,ZHANG W,et al.METTL3 promotes osteoblast ribosome biogenesis and alleviates periodontitis[J].Clin Epigenetics,2024,16(1):18. |
| [67] | WANG Q,GUO X,LI L,et al.N6-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification[J].Cell Death Dis,2020,11(10):911. |
| [68] | LIU J,YUAN J,WANG Y.METTL3-stabilized lncRNA SNHG7 accelerates glycolysis in prostate cancer via SRSF1/c-Myc axis[J].Exp Cell Res,2022,416(1):113149. |
| [69] | WANG B,MAO Z,YE J,et al.Glycolysis induced by METTL14 is essential for macrophage phagocytosis and phenotype in cervical cancer[J].J Immunol,2024,212(4):723-736. |
| [70] | NAN Y,LIU S,LUO Q,et al.m6A demethylase FTO stabilizes LINK-A to exert oncogenic roles via MCM3-mediated cell-cycle progression and HIF-1α activation[J].Cell Rep,2023,42(10):113273. |
| [71] | MA L,XUE X,ZHANG X,et al.The essential roles of m6A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma[J].J Exp Clin Cancer Res,2022,41(1):36. |
| [72] | SU Y,WANG B,HUANG J,et al.YTHDC1 positively regulates PTEN expression and plays a critical role in cisplatin resistance of bladder cancer[J].Cell Prolif,2023,56(7):e13404. |
| [73] | HU C,LIU T,HAN C,et al.HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m(6)A-MYC expression[J].Int J Biol Sci,2022,18(2):507-521. |
| [74] | LEMECHA M,MORINO K,IMAMURA T,et al.MiR-494-3p regulates mitochondrial biogenesis and thermogenesis through PGC1-α signalling in beige adipocytes[J].Sci Rep,2018,8(1):15096. |
| [75] | JIN F,WANG Y,ZHU Y,et al.The miR-125a/HK2 axis regulates cancer cell energy metabolism reprogramming in hepatocellular carcinoma[J].Sci Rep,2017,7(1):3089. |
| [76] | PAN L,ZHOU L,YIN W,et al.MiR-125a induces apoptosis,metabolism disorder and migrationimpairment in pancreatic cancer cells by targeting Mfn2-related mitochondrial fission[J].Int J Oncol,2018,53(1):124-136. |
| [77] | FAN J,ZHU T,XUE Z,et al.LncRNA-XIST protects the hypoxia-induced cardiomyocyte injury through regulating the miR-125b-hexokianse 2 axis[J].In Vitro Cell Dev Biol Anim,2020,56(4):349-357. |
| [78] | ZHANG K,ZHANG M,JIANG H,et al.Down-regulation of miR-214 inhibits proliferation and glycolysis in non-small-cell lung cancer cells via down-regulating the expression of hexokinase 2 and pyruvate kinase isozyme M2[J].Biomed Pharmacother,2018,105:545-552. |
| [79] | JU J,XIAO D,SHEN N,et al.miR-150 regulates glucose utilization through targeting GLUT4 in insulin-resistant cardiomyocytes[J].Acta biochimica et biophysica Sinica,2020,52(10):1111-1119. |
| [80] | LU H,BUCHAN R J,COOK S A.MicroRNA-223 regulates GLUT4 expression and cardiomyocyte glucose metabolism[J].Cardiovasc Res,2010,86(3):410-420. |
| [81] | CUI X,LEI X,HUANG T,et al.Follicular fluid-derived extracellular vesicles miR-34a-5p regulates granulosa cell glycolysis in polycystic ovary syndrome by targeting LDHA[J].J Ovarian Res,2024,17(1):223. |
| [82] | CUI F,CHEN Y,WU X,et al.Mesenchymal stem cell-derived exosomes carrying miR-486-5p inhibit glycolysis and cell stemness in colorectal cancer by targeting NEK2[J].BMC Cancer,2024,24(1):1356. |
| [83] | ZHANG X,JI R,LIAO X,et al.MicroRNA-195 regulates metabolism in failing myocardium via alterations in Sirtuin 3 expression and mitochondrial protein acetylation[J].Circulation,2018,137(19):2052-2067. |
| [84] | SUMAIYA K,PONNUSAMY T,NATARAJASEENIVASAN K,et al.Cardiac metabolism and miRNA interference[J].Int J Mol Sci,2022,24(1):50. |
| [85] | HUANG Y,GUAN Y,ZHANG X.METTL3-mediated maturation of miR-99a-5p promotes cell migration and invasion in oral squamous cell carcinoma by targeting ZBTB7A[J].Mol Biotechnol,2024,66(8):1942-1953. |
| [86] | LIU X,HAINES J E,MEHANNA E K,et al.ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis[J].Genes Dev,2014,28(17):1917-1928. |
| [87] | SUN K,LUO J,GUO J,et al.The PI3K/AKT/mTOR signaling pathway in osteoarthritis:a narrative review[J].Osteoarthritis Cartilage,2020,28(4):400-409. |
| [88] | BI X,LV X,LIU D,et al.METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway[J].Cancer Gene Ther,2021,28(3-4):335-349. |
| [89] | FAES S,DORMOND O.PI3K and AKT:unfaithful partners in cancer[J].Int J Mol Sci,2015,16(9):21138-21152. |
| [90] | CHEN L,WANG J,WANG B,et al.miR-126 inhibits vascular endothelial cell apoptosis through targeting PI3K/Akt signaling[J].Ann Hematol,2016,95(3):365-374. |
| [91] | XIAO L,ZHAO Q,HU B,et al.METTL3 promotes IL-1β-induced degeneration of endplate chondrocytes by driving m6A-dependent maturation of miR-126-5p[J].J Cell Mol Med,2020,24(23):14013-14025. |
| [92] | GONG W,LI R,DAI Q,et al.METTL3 contributes to slow transit constipation by regulating miR-30b-5p/PIK3R2/Akt/mTOR signaling cascade through DGCR8[J].J Gastroenterol Hepatol,2022,37(12):2229-2242. |
| [93] | XIA H,WU Y,ZHAO J,et al.The aberrant cross-talk of epithelium-macrophages via METTL3-regulated extracellular vesicle miR-93 in smoking-induced emphysema[J].Cell Biol Toxicol,2022,38(1):167-183. |
| [94] | KANATSU-SHINOHARA M,YAMAMOTO T,TOH H,et al.Aging of spermatogonial stem cells by JNK-mediated glycolysis activation[J].Proc Natl Acad Sci U S A,2019,116(33):16404-16409. |
| [95] | AZHATI B,REHEMAN A,DILIXIATI D,et al.FTO-stabilized miR-139-5p targets ZNF217 to suppress prostate cancer cell malignancies by inactivating the PI3K/Akt/mTOR signal pathway[J].Arch Biochem Biophys,2023,741:109604. |
| [96] | LIU W,JIANG T,ZHENG W,et al.FTO-mediated m6A demethylation of pri-miR-3591 alleviates osteoarthritis progression[J].Arthritis Res Ther,2023,25(1):53. |
| [97] | RINDONE G M,DASSO M E,CENTOLA C L,et al.Sertoli cell adaptation to glucose deprivation:potential role of AMPK in the regulation of lipid metabolism[J].J Cell Biochem,2023,124(5):716-730. |
| [98] | MARSIN A S,BERTRAND L,RIDER M H,et al.Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia[J].Curr Biol,2000,10(20):1247-1255. |
| [99] | LI J,WANG Z,TAN H,et al.ALKBH5-mediated m6A demethylation of pri-miR-199a-5p exacerbates myocardial ischemia/reperfusion injury by regulating TRAF3-mediated pyroptosis[J].J Biochem Mol Toxicol,2024,38(4):e23710. |
| [100] | SEMENZA G L.Hypoxia-inducible factors in physiology and medicine[J].Cell,2012,148(3):399-408. |
| [101] | HOU Y,ZHANG Q,PANG W,et al.YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect[J].Cell Death Differ,2021,28(11):3105-3124. |
| [102] | HOU Y,ZHANG X,YAO H,et al.METTL14 modulates glycolysis to inhibit colorectal tumorigenesis in p53-wild-type cells[J].EMBO Rep,2023,24(4):e56325. |
| [103] | CHAN D C.Mitochondria:dynamic organelles in disease,aging,and development[J].Cell,2006,125(7):1241-1252. |
| [104] | WANG J,ISHFAQ M,XU L,et al.METTL3/m6A/miRNA-873-5p attenuated oxidative stress and apoptosis in colistin-induced kidney injury by modulating Keap1/Nrf2 pathway[J].Front Pharmacol,2019,10:517. |
| [105] | HOLMSTRÖM K M,BAIRD L,ZHANG Y,et al.Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration[J].Biol Open,2013,2(8):761-770. |
| [106] | SUN P,WANG C,MANG G,et al.Extracellular vesicle-packaged mitochondrial disturbing miRNA exacerbates cardiac injury during acute myocardial infarction[J].Clin Transl Med,2022,12(4):e779. |
| [107] | CHENG D,WU C,LI Y,et al.METTL3 inhibition ameliorates liver damage in mouse with hepatitis B virus-associated acute-on-chronic liver failure by regulating miR-146a-5p maturation[J].Biochim Biophys Acta Gene Regul Mech,2022,1865(3):194782. |
| [108] | KRISHNAN P,BRANCO R,WEAVER S,et al.MiR-146a-5p mediates inflammation-induced β cell mitochondrial dysfunction and apoptosis[J].J Biol Chem,2024,300(11):107827. |
| [109] | WU S,WANG H,YANG Q,et al.METTL3 regulates m6A methylation-modified EBV-pri-miR-BART3-3p to promote NK/T cell lymphoma growth[J].Cancer Lett,2024,597:217058. |
| [110] | MAUER J,DENSON J L,BRÜNING J C.Versatile functions for IL-6 in metabolism and cancer[J].Trends Immunol,2015,36(2):92-101. |
| [111] | PEDERSEN B K,FEBBRAIO M A.Muscle as an endocrine organ:focus on muscle-derived interleukin-6[J].Physiol Rev,2008,88(4):1379-1406. |
| [112] | PEPPLER W T,TOWNSEND L K,MEERS G M,et al.Acute administration of IL-6 improves indices of hepatic glucose and insulin homeostasis in lean and obese mice[J].Am J Physiol Gastrointest Liver Physiol,2019,316(1):G166-G178. |
| [113] | CHEN X,WANG Y,PENG W,et al.Effects of interleukin-6 and IL-6/AMPK signaling pathway on mitochondrial biogenesis and astrocytes viability under experimental septic condition[J].Int Immunopharmacol,2018,59:287-294. |
| [114] | SUN K,CHEN L,LI Y,et al.METTL14-dependent maturation of pri-miR-17 regulates mitochondrial homeostasis and induces chemoresistance in colorectal cancer[J].Cell Death Dis,2023,14(2):148. |
| [115] | WANG W,YAN J,HAN L,et al.Silencing METTL14 alleviates liver injury in non-alcoholic fatty liver disease by regulating mitochondrial homeostasis[J].Biomol Biomed,2024,24(3):505-519. |
| [116] | MEYER K D,SALETORE Y,ZUMBO P,et al.Comprehensive analysis of mRNA methylation reveals enrichment in 3'UTRs and near stop codons[J].Cell,2012,149(7):1635-1646. |
| [117] | FENG H,YUAN X,WU S,et al.Effects of writers,erasers and readers within miRNA-related m6A modification in cancers[J].Cell Prolif,2023,56(1):e13340. |
| [118] | DU M,ZHANG Y,MAO Y,et al.miR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA[J].Biochem Biophys Res Commun,2017,482(4):582-589. |
| [119] | YANG Z,LI J,FENG G,et al.MicroRNA-145 modulates N6-Methyladenosine levels by targeting the 3'-untranslated mRNA region of the N(6)-methyladenosine binding YTH domain family 2 protein[J].J Biol Chem,2017,292(9):3614-3623. |
| [120] | SUN Y,WU J,SUN W,et al.Novel insights into the interaction between IGF2BPs and ncRNAs in cancers[J].Cancer Cell Int,2024,24(1):437. |
| [1] | 李伉, 陈思颍, 孙雅雯, 冷璇, 王栋, 崔凯, 庞云渭. 甜菜碱对猪孤雌激活胚胎体外发育的影响[J]. 畜牧兽医学报, 2025, 56(8): 3826-3836. |
| [2] | 王雨晴, 邢娅, 周小艺, 龚海洲, 赵敏孟, 刘龙, 龚道清, 葛晶, 耿拓宇. mAMPK调控线粒体功能参与鹅肥肝的形成[J]. 畜牧兽医学报, 2025, 56(7): 3210-3225. |
| [3] | 王莹, 张姣姣, 王鲜忠, 权富生. 卵巢颗粒细胞自噬研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1508-1517. |
| [4] | 梁恩堂, 李化轩, 陈帅成, 李果, 孙格格, 昝林森. 染料木素对牛精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(2): 700-710. |
| [5] | 邵嘉皓, 张艳婕, 赵永聚. N6-甲基腺苷(m6A)修饰在畜禽遗传育种与繁殖中的调控作用研究进展[J]. 畜牧兽医学报, 2025, 56(10): 4774-4786. |
| [6] | 李亚旋, 邵长亮, 高浩冉, 伍金山, 徐梦琦, 王一鹏, 刘皓君, 苏靖宇, 陈俊华, 李梦欣, 马英杰, 单文娟. 卡拉麦里山蒙古野驴遗传多样性与遗传结构分析[J]. 畜牧兽医学报, 2025, 56(10): 4973-4987. |
| [7] | 杨硕, 霍敏, 苏子轩, 石玉祥. 线粒体质量控制对畜禽氧化应激影响的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3769-3776. |
| [8] | 高语馨, 刘青, 陈继兰, 麻慧. miRNAs介导寄生虫和宿主互作机制的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3812-3823. |
| [9] | 袁紫金, 王婉昕, 邢娅, 李家惠, 薛颖, 葛晶, 赵敏孟, 刘龙, 龚道清, 耿拓宇. HDLBP通过调控氧化应激水平和炎性因子表达参与鹅肥肝的形成[J]. 畜牧兽医学报, 2024, 55(9): 3897-3913. |
| [10] | 王忆, 巩建飞, 衡诺, 胡樱凡, 王蕊, 王欢, 朱妮, 何维, 胡智辉, 郝海生, 朱化彬, 赵善江. 褪黑素通过改善线粒体动力学缓解棕榈酸诱导的牛子宫内膜上皮细胞损伤[J]. 畜牧兽医学报, 2024, 55(9): 3978-3987. |
| [11] | 王靖萱, 代立志, 王振宇, 刘滢, 禹桐, 严敏, 王瑞龙, 肖建华. 高脂饮食诱导胰岛素抵抗过程中肝脏能量代谢特征的研究[J]. 畜牧兽医学报, 2024, 55(9): 4172-4185. |
| [12] | 李亚楠, 马天文, 马玉辉, 魏成威. 白果内酯调控AMPK-SIRT3正反馈环路介导的线粒体生物发生改善ATDC5软骨细胞炎性损伤[J]. 畜牧兽医学报, 2024, 55(8): 3714-3724. |
| [13] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2825-2835. |
| [14] | 李京宇, 陈金铭, 张明一, 赵姗姗, 陶德良, 宋军科, 杨新, 樊莹莹, 赵光辉. 犬新孢子虫miRNAs的鉴定与分析[J]. 畜牧兽医学报, 2024, 55(7): 3085-3093. |
| [15] | 李媛媛, 王天玉, 李梦, 张文慧, 王英卉, 赵天瑞, 李浩洁, 赵阳飞, 王金明. 硒代蛋氨酸通过PINK1/Parkin介导的线粒体自噬缓解氟诱导的抑郁样行为[J]. 畜牧兽医学报, 2024, 55(7): 3213-3224. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||