1 |
潘玉艳. 硫普罗宁致脂肪肝患者肝酶水平升高[J]. 药物不良反应杂志, 2009, 11 (3): 209- 210.
doi: 10.3969/j.issn.1008-5734.2009.03.019
|
|
PAN Y Y . Increased liver enzyme levels after Tiopronin administration in a patient with fatty liver[J]. Adverse Drug Reactions Journal, 2009, 11 (3): 209- 210.
doi: 10.3969/j.issn.1008-5734.2009.03.019
|
2 |
张丽红, 张盈盈, 吴玄光. 犬糖尿病研究进展[J]. 中国兽医杂志, 2008, 44 (8): 64- 65.
doi: 10.3969/j.issn.0529-6005.2008.08.033
|
|
ZHANG L H , ZHANG Y Y , WU X G . Research progress of dog diabetes[J]. Chinese Journal of Veterinary Medicine, 2008, 44 (8): 64- 65.
doi: 10.3969/j.issn.0529-6005.2008.08.033
|
3 |
SAMUEL V T , SHULMAN G I . Mechanisms for insulin resistance: common threads and missing links[J]. Cell, 2012, 148 (5): 852- 871.
doi: 10.1016/j.cell.2012.02.017
|
4 |
KADOWAKI T , YAMAUCHI T , KUBOTA N , et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome[J]. J Clin Invest, 2006, 116 (7): 1784- 1792.
doi: 10.1172/JCI29126
|
5 |
张治国. 犬猫肥胖病防治探究[J]. 中兽医学杂志, 2020, (10): 82- 83.
|
|
ZHANG Z G . Exploration of prevention and treatment of obesity in dogs and cats[J]. Chinese Journal of Traditional Veterinary Science, 2020, (10): 82- 83.
|
6 |
范禧胜, 温贤章, 江从芳. 犬的肥胖症[C]//第十五次全国养犬学术研讨会暨第七次全国小动物医学学术研讨会论文集. 南昌: 中国畜牧兽医学会, 2013.
|
|
FAN X S, WEN X Z, JIANG C F. Obesity in dogs[C]//Proceedings of the 15th National Academic Symposium on Dog Breeding and the 7th National Academic Symposium on Small Animal Medicine. Nanchang: Chinese Society of Animal Husbandry and Veterinary Medicine, 2013. (in Chinese)
|
7 |
KUBOTA N , TOBE K , TERAUCHI Y , et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia[J]. Diabetes, 2000, 49 (11): 1880- 1889.
doi: 10.2337/diabetes.49.11.1880
|
8 |
王侃侃. 膳食能量和蛋氨酸限制对小鼠脂代谢和氧化应激的影响[D]. 无锡: 江南大学, 2016.
|
|
WANG K K. Effects of dietary energy and methionine restriction on lipid metabolism and oxidative stress in mice[D]. Wuxi: Jiangnan University, 2016. (in Chinese)
|
9 |
韦雪梅, 邱霓, 熊燕. 高脂饲养致小鼠胰岛素抵抗对脂肪肝形成的影响[J]. 中国病理生理杂志, 2016, 32 (10): 1875- 1880.
doi: 10.3969/j.issn.1000-4718.2016.10.022
|
|
WEI X M , QIU N , XIONG Y . Effect of insulin resistance on fatty liver in high-fat diet-fed mice[J]. Chinese Journal of Pathophysiology, 2016, 32 (10): 1875- 1880.
doi: 10.3969/j.issn.1000-4718.2016.10.022
|
10 |
KONSTANTYNOWICZ-NOWICKA K , HARASIM E , BARANOWSKI M , et al. New evidence for the role of ceramide in the development of hepatic insulin resistance[J]. PLoS One, 2015, 10 (1): e0116858.
doi: 10.1371/journal.pone.0116858
|
11 |
KAHN C R , NEVILLE D M , ROTH J . Insulin-receptor interaction in the obese-hyperglycemic mouse[J]. J Biol Chem, 1973, 248 (1): 244- 250.
doi: 10.1016/S0021-9258(19)44468-2
|
12 |
KAHN S E , HULL R L , UTZSCHNEIDER K M . Mechanisms linking obesity to insulin resistance and type 2 diabetes[J]. Nature, 2006, 444 (7121): 840- 846.
doi: 10.1038/nature05482
|
13 |
SONG A , WANG C , REN L P , et al. Swimming improves high-fat induced insulin resistance by regulating lipid and energy metabolism and the insulin pathway in rats[J]. Int J Mol Med, 2014, 33 (6): 1671- 1679.
doi: 10.3892/ijmm.2014.1738
|
14 |
AL-SHARE Q Y , DEANGELIS A M , LESTER S G , et al. Forced hepatic overexpression of CEACAM1 curtails diet-induced insulin resistance[J]. Diabetes, 2015, 64 (8): 2780- 2790.
doi: 10.2337/db14-1772
|
15 |
RIBEIRO R T , LAUTT W W , LEGARE D J , et al. Insulin resistance induced by sucrose feeding in rats is due to an impairment of the hepatic parasympathetic nerves[J]. Diabetologia, 2005, 48 (5): 976- 983.
doi: 10.1007/s00125-005-1714-6
|
16 |
PARK E , GIACCA A . Mechanisms underlying fat-induced hepatic insulin resistance[J]. Future Lipidol, 2007, 2 (5): 503- 512.
doi: 10.2217/17460875.2.5.503
|
17 |
PETERSEN K F , KRSSAK M , NAVARRO V , et al. Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis[J]. Am J Physiol, 1999, 276 (3): e529- e535.
|
18 |
FARRAR C , HOUSER C R , CLARKE S . Activation of the PI3K/Akt signal transduction pathway and increased levels of insulin receptor in protein repair-deficient mice[J]. Aging Cell, 2005, 4 (1): 1- 12.
doi: 10.1111/j.1474-9728.2004.00136.x
|
19 |
LAU M T , LEUNG P C K . The PI3K/Akt/mTOR signaling pathway mediates insulin-like growth factor 1-induced E-cadherin down-regulation and cell proliferation in ovarian cancer cells[J]. Cancer Lett, 2012, 326 (2): 191- 198.
doi: 10.1016/j.canlet.2012.08.016
|
20 |
SARBASSOV D D , GUERTIN D A , ALI S M , et al. Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex[J]. Science, 2005, 307 (5712): 1098- 1101.
doi: 10.1126/science.1106148
|
21 |
CUI X B , WANG C , LI L , et al. Insulin decreases myocardial adiponectin receptor 1 expression via PI3K/Akt and FoxO1 pathway[J]. Cardiovasc Res, 2012, 93 (1): 69- 78.
doi: 10.1093/cvr/cvr273
|
22 |
HESSE D , RADLOFF K , JASCHKE A , et al. Hepatic trans-Golgi action coordinated by the GTPase ARFRP1 is crucial for lipoprotein lipidation and assembly[J]. J Lipid Res, 2014, 55 (1): 41- 52.
doi: 10.1194/jlr.M040089
|
23 |
BERGLUND E D , VIANNA C R , DONATO J , et al. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice[J]. J Clin Invest, 2012, 122 (3): 1000- 1009.
doi: 10.1172/JCI59816
|
24 |
TAN J R , XU J H , WEI G H , et al. HNF1α controls liver lipid metabolism and insulin resistance via negatively regulating the SOCS-3-STAT3 signaling pathway[J]. J Diabetes Res, 2019, 2019, 5483946.
|
25 |
LATVA-RASKU A , HONKA M J , STANČÁKOVÁ A , et al. A partial loss-of-function variant in AKT2 is associated with reduced insulin-mediated glucose uptake in multiple insulin-sensitive tissues: a genotype-based callback positron emission tomography study[J]. Diabetes, 2018, 67 (2): 334- 342.
doi: 10.2337/db17-1142
|
26 |
BEAULIEU J M , GAINETDINOV R R , CARON M G . The Akt-GSK-3 signaling cascade in the actions of dopamine[J]. Trends Pharmacol Sci, 2007, 28 (4): 166- 172.
doi: 10.1016/j.tips.2007.02.006
|
27 |
PUIGSERVER P , RHEE J , DONOVAN J , et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction[J]. Nature, 2003, 423 (6939): 550- 555.
doi: 10.1038/nature01667
|
28 |
SAJAN M P , ACEVEDO-DUNCAN M E , STANDAERT M L , et al. Akt-dependent phosphorylation of hepatic FoxO1 is compartmentalized on a WD40/ProF scaffold and is selectively inhibited by aPKC in early phases of diet-induced obesity[J]. Diabetes, 2014, 63 (8): 2690- 2701.
doi: 10.2337/db13-1863
|
29 |
王春怡, 郝梦娇, 胡方利, 等. 黄芪散有效部位群对Ⅱ型糖尿病大鼠肝脏AMPK/SREBP-1c通路的影响[J]. 中药新药与临床药理, 2018, 29 (6): 679- 686.
|
|
WANG C Y , HAO M J , HU F L , et al. Effect of Huangqi San effective fractions on hepatic AMPK/SREBP-1c pathway in type 2 diabetes mellitus rats[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2018, 29 (6): 679- 686.
|
30 |
CHAN C Y , DOMINGUEZ D , PARRA K J . Regulation of vacuolar H+-ATPase (V-ATPase) reassembly by glycolysis flow in 6-phosphofructo-1-kinase (PFK-1)-deficient yeast cells[J]. J Biol Chem, 2016, 291 (30): 15820- 15829.
doi: 10.1074/jbc.M116.717488
|
31 |
ZICKERMANN V , WIRTH C , NASIRI H , et al. Mechanistic insight from the crystal structure of mitochondrial complex I[J]. Science, 2015, 347 (6217): 44- 49.
doi: 10.1126/science.1259859
|
32 |
KOZIEŁ R , PIRCHER H , KRATOCHWIL M , et al. Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4[J]. Biochem J, 2013, 452 (2): 231- 239.
doi: 10.1042/BJ20121778
|
33 |
HA B G , MOON D S , KIM H J , et al. Magnesium and calcium-enriched deep-sea water promotes mitochondrial biogenesis by AMPK-activated signals pathway in 3T3-L1 preadipocytes[J]. Biomed Pharmacother, 2016, 83, 477- 484.
doi: 10.1016/j.biopha.2016.07.009
|
34 |
SCHINNER S . AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity[J]. Yearbook Endocrinol, 2009, 2009, 22- 23.
doi: 10.1016/S0084-3741(09)79294-7
|
35 |
TURNER N , HEILBRONN L K . Is mitochondrial dysfunction a cause of insulin resistance?[J]. Trends Endocrinol Metab, 2008, 19 (9): 324- 330.
doi: 10.1016/j.tem.2008.08.001
|
36 |
WESTERMANN B . Bioenergetic role of mitochondrial fusion and fission[J]. Biochim Biophys Acta (BBA)-Bioenerg, 2012, 1817 (10): 1833- 1838.
doi: 10.1016/j.bbabio.2012.02.033
|
37 |
KARBOWSKI M. Mitochondria on guard: role of mitochondrial fusion and fission in the regulation of apoptosis[M]//HETZ C. BCL-2 Protein Family: Essential Regulators of Cell Death. New York: Springer, 2010: 131.
|
38 |
WANG W Z , ZHANG F , LI L , et al. MFN2 couples glutamate excitotoxicity and mitochondrial dysfunction in motor neurons[J]. J Biol Chem, 2015, 290 (1): 168- 182.
doi: 10.1074/jbc.M114.617167
|
39 |
SCHMITT K , GRIMM A , DALLMANN R , et al. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics[J]. Cell Metab, 2018, 27 (3): 657- 666. e5.
doi: 10.1016/j.cmet.2018.01.011
|
40 |
MENDL N , OCCHIPINTI A , MVLLER M , et al. Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2[J]. J Cell Sci, 2011, 124 (20): 1339- 1350.
|
41 |
MATSUDA N , SATO S , SHIBA K , et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy[J]. J Cell Biol, 2010, 189 (2): 211- 221.
doi: 10.1083/jcb.200910140
|