1 |
SEVASTIANOVA K , SANTOS A , KOTRONEN A , et al. Effect of short-term carbohydrate overfeeding and long-term weight loss on liver fat in overweight humans[J]. Am J Clin Nutr, 2012, 96 (4): 727- 734.
|
2 |
ZHU Y , WAN F , LIU J , et al. The critical role of lipid metabolism in health and diseases[J]. Nutrients, 2024, 16 (24): 4414.
|
3 |
SMITH K , DENNIS K , HODSON L . The ins and outs of liver fat metabolism: The effect of phenotype and diet on risk of intrahepatic triglyceride accumulation[J]. Exp Physiol, 2025,
doi: 10.1113/EP092001
|
4 |
BHAT N , MANI A . Dysregulation of lipid and glucose metabolism in nonalcoholic fatty liver disease[J]. Nutrients, 2023, 15 (10): 2323.
|
5 |
瞿浩, 王继文. 鹅肥肝形成的分子机理研究进展[J]. 四川畜牧兽医, 2003 (5): 33- 34.
|
|
QU H , WANG J W . Research progress on molecular mechanism of goose fatty liver formation[J]. Sichuan Animal Husbandry Veterinarian, 2003, 30 (5): 33- 34.
|
6 |
UEHARA T , WAKUI H , TAMURA K . Metabolic dysfunction-associated fatty liver disease reflects a significantly higher risk of hypertension than non-alcoholic fatty liver disease[J]. Hypertens Res, 2023, 46 (5): 1165- 1167.
|
7 |
YOUNOSSI Z M , GOLABI P , PAIK J M , et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review[J]. Hepatology, 2023, 77 (4): 1335- 1347.
|
8 |
GUO Z , WU D , MAO R , et al. Global burden of MAFLD, MAFLD related cirrhosis and MASH related liver cancer from 1990 to 2021[J]. Sci Rep, 2025, 15 (1): 7083.
|
9 |
VAN HERCK M A , VONGHIA L , FRANCQUE S M . Animal models of nonalcoholic fatty liver disease-a starter's guide[J]. Nutrients, 2017, 9 (10): 1072.
|
10 |
HERMIER D , ROUSSELOT-PAILLEY D , PERESSON R , et al. Influence of orotic acid and estrogen on hepatic lipid storage and secretion in the goose susceptible to liver steatosis[J]. Biochim Biophys Acta, 1994, 1211 (1): 97- 106.
|
11 |
HE H , LIU H H , WANG J W , et al. Molecular cloning of the goose ACSL3 and ACSL5 coding domain sequences and their expression characteristics during goose fatty liver development[J]. Mol Biol Rep, 2014, 41 (4): 2045- 2053.
|
12 |
LIU L , WANG Q , WANG Q , et al. Role of miR29c in goose fatty liver is mediated by its target genes that are involved in energy homeostasis and cell growth[J]. BMC Vet Res, 2018, 14 (1): 325.
|
13 |
柳序, 刘耀文, 匡佑华, 等. 鹅肥肝的形成及主要影响因素的研究进展[J]. 经济动物学报, 2019, 23 (4): 234- 239.
|
|
LIU X , LIU Y W , KUANG Y H , et al. Research progress on the formation of goose fatty liver and its main influencing factors[J]. Journal of Economic Zoology, 2019, 23 (4): 234- 239.
|
14 |
GU W , WEN K , YAN C , et al. Maintaining intestinal structural integrity is a potential protective mechanism against inflammation in goose fatty liver[J]. Poult Sci, 2020, 99 (11): 5297- 5307.
|
15 |
XING Y , XU C , LIN X , et al. Complement C3 participates in the development of goose fatty liver potentially by regulating the expression of FASN and ETNK1[J]. Anim Sci J, 2021, 92 (1): e13527.
|
16 |
PENG K Y , WATT M J , RENSEN S , et al. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression[J]. J Lipid Res, 2018, 59 (10): 1977- 1986.
|
17 |
TAUIL R B , GOLONO P T , DE LIMA E P , et al. Metabolic-associated fatty liver disease: the influence of oxidative stress, inflammation, mitochondrial dysfunctions, and the role of polyphenols[J]. Pharmaceuticals (Basel), 2024, 17 (10): 1354.
|
18 |
HU Z , YUE H , JIANG N , et al. Diet, oxidative stress and MAFLD: a mini review[J]. Front Nutr, 2025, 12, 1539578.
|
19 |
CLARE K , DILLON J F , BRENNAN P N . Reactive oxygen species and oxidative stress in the pathogenesis of MAFLD[J]. J Clin Transl Hepatol, 2022, 10 (5): 939- 946.
|
20 |
LI Z , LI Y , ZHANG H X , et al. Mitochondria-mediated pathogenesis and therapeutics for non-alcoholic fatty liver disease[J]. Mol Nutr Food Res, 2019, 63 (16): e1900043.
|
21 |
MARLAR-PAVEY M , TAPIAS-GOMEZ D , METTLEN M , et al. Compositionally unique mitochondria in filopodia support cellular migration[J]. Curr Biol, 2025, 35 (6): 1227- 1241.e6.
|
22 |
LIANG J , SHI J , SONG A , et al. Structures and mechanism of human mitochondrial pyruvate carrier[J]. Nature, 2025, 641 (8061): 258- 265.
|
23 |
WANG Y , HEKIMI S . Mitochondrial dysfunction and longevity in animals: Untangling the knot[J]. Science, 2015, 350 (6265): 1204- 1207.
|
24 |
SUN X , ALFORD J , QIU H . Structural and functional remodeling of mitochondria in cardiac diseases[J]. Int J Mol Sci, 2021, 22 (8): 4167.
|
25 |
BOUDABA N , MARION A , HUET C , et al. AMPK re-activation suppresses hepatic steatosis but its downregulation does not promote fatty liver development[J]. EBioMedicine, 2018, 28, 194- 209.
|
26 |
CAO Z , MA B , CUI C , et al. Protective effects of AdipoRon on the liver of Huoyan goose fed a high-fat diet[J]. Poult Sci, 2022, 101 (4): 101708.
|
27 |
TIAN W , GONZALES G B , WANG H , et al. Caffeic acid and chlorogenic acid mediate the ADPN-AMPK-PPARα pathway to improve fatty liver and production performance in laying hens[J]. J Anim Sci Biotechnol, 2025, 16 (1): 49.
|
28 |
HERZIG S , SHAW R J . AMPK: guardian of metabolism and mitochondrial homeostasis[J]. Nat Rev Mol Cell Biol, 2018, 19 (2): 121- 135.
|
29 |
LAKER R C , DRAKE J C , WILSON R J , et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy[J]. Nat Commun, 2017, 8 (1): 548.
|
30 |
KIM J , KUNDU M , VIOLLET B , et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13 (2): 132- 141.
|
31 |
CHEN J , WONG H S , LEONG P K , et al. Ursolic acid induces mitochondrial biogenesis through the activation of AMPK and PGC-1 in C2C12 myotubes: a possible mechanism underlying its beneficial effect on exercise endurance[J]. Food Funct, 2017, 8 (7): 2425- 2436.
|
32 |
TOYAMA E Q , HERZIG S , COURCHET J , et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress[J]. Science, 2016, 351 (6270): 275- 281.
|
33 |
REN X , ZHOU H , SUN Y , et al. MIRO-1 interacts with VDAC-1 to regulate mitochondrial membrane potential in Caenorhabditis elegans[J]. EMBO Rep, 2023, 24 (8): e56297.
|
34 |
YIN L , DAI Y , WANG Y , et al. A mitochondrial outer membrane protein TOMM20 maintains protein stability of androgen receptor and regulates AR transcriptional activity in prostate cancer cells[J]. Oncogene, 2025, 44 (21): 1567- 1577.
|
35 |
MUTHUKUMAR G , STEVENS T A , INGLIS A J , et al. Triaging of α-helical proteins to the mitochondrial outer membrane by distinct chaperone machinery based on substrate topology[J]. Mol Cell, 2024, 84 (6): 1101- 1119.e9.
|
36 |
DRAKE J C , WILSON R J , LAKER R C , et al. Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy[J]. Proc Natl Acad Sci U S A, 2021, 118 (37): e2025932118.
|
37 |
OSMAN R H , LIU L , XIA L , et al. Fads1 and 2 are promoted to meet instant need for long-chain polyunsaturated fatty acids in goose fatty liver[J]. Mol Cell Biochem, 2016, 418 (1-2): 103- 117.
|
38 |
洪胜辉, 张军, 张蕊, 等. 鹅原代肝细胞的简易、高纯分离及培养[J]. 江苏农业科学, 2012, 40 (4): 56- 58.
|
|
HONG S H , ZHANG J , ZHANG R , et al. Simple, high-purity isolation and culture of goose primary hepatocytes[J]. Jiangsu Agricultural Sciences, 2012, 40 (4): 56- 58.
|
39 |
MOBIN M B , GERSTBERGER S , TEUPSER D , et al. The RNA-binding protein vigilin regulates VLDL secretion through modulation of Apob mRNA translation[J]. Nat Commun, 2016, 7, 12848.
|
40 |
孙青云. 鹅肥肝中线粒体膜电位、抗氧化能力与细胞凋亡的研究[D]. 扬州: 扬州大学, 2023.
|
|
SUN Q Y. Study on mitochondrial membrane potential, antioxidant capacity and Aapoptosis in goose fatty liver[D]. Yangzhou: Yangzhou University, 2023. (in Chinese)
|
41 |
MIYAMOTO T , RHO E , SAMPLE V , et al. Compartmentalized AMPK signaling illuminated by genetically encoded molecular sensors and actuators[J]. Cell Rep, 2015, 11 (4): 657- 670.
|
42 |
LAKER R C , XU P , RYALL K A , et al. A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo[J]. J Biol Chem, 2014, 289 (17): 12005- 12015.
|
43 |
FERREE A W , TRUDEAU K , ZIK E , et al. MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age[J]. Autophagy, 2013, 9 (11): 1887- 1896.
|
44 |
HERNANDEZ G , THORNTON C , STOTLAND A , et al. MitoTimer: a novel tool for monitoring mitochondrial turnover[J]. Autophagy, 2013, 9 (11): 1852- 1861.
|
45 |
CHALASANI N , YOUNOSSI Z , LAVINE J E , et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the american association for the study of liver diseases[J]. Hepatology, 2018, 67 (1): 328- 357.
|
46 |
STOWE D F , CAMARA A K . Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function[J]. Antioxid Redox Signal, 2009, 11 (6): 1373- 1414.
|
47 |
WANG Q , SUN J , LIU M , et al. The new role of AMP-activated protein kinase in regulating fat metabolism and energy expenditure in adipose tissue[J]. Biomolecules, 2021, 11 (12): 1757.
|
48 |
ZHONG S , CHEN W , WANG B , et al. Energy stress modulation of AMPK/FoxO3 signaling inhibits mitochondria-associated ferroptosis[J]. Redox Biol, 2023, 63, 102760.
|
49 |
HAN H , LI X , GUO Y , et al. Plant sterol ester of α-linolenic acid ameliorates high-fat diet-induced nonalcoholic fatty liver disease in mice: association with regulating mitochondrial dysfunction and oxidative stress via activating AMPK signaling[J]. Food Funct, 2021, 12 (5): 2171- 2188.
|
50 |
BIAO Y , LI D , ZHANG Y , et al. Wulingsan alleviates MAFLD by activating autophagy via regulating the AMPK/mTOR/ULK1 signaling pathway[J]. Can J Gastroenterol Hepatol, 2024, 2024, 9777866.
|
51 |
XING Y , GE J , WANG Y , et al. Mitochondrial HKDC1 suppresses oxidative stress and apoptosis by regulating mitochondrial function in goose fatty liver[J]. Int J Biol Macromol, 2024, 282 (Pt 4): 137222.
|