畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3812-3823.doi: 10.11843/j.issn.0366-6964.2024.09.007
收稿日期:
2023-10-13
出版日期:
2024-09-23
发布日期:
2024-09-27
通讯作者:
麻慧
E-mail:gaoyuxin214@163.com;caumah@163.com
作者简介:
高语馨(2000-),女,四川邛崃人,硕士,主要从事家禽遗传育种与繁育研究,E-mail: gaoyuxin214@163.com
基金资助:
Yuxin GAO1,2(), Qing LIU2, Jilan CHEN1, Hui MA1,*(
)
Received:
2023-10-13
Online:
2024-09-23
Published:
2024-09-27
Contact:
Hui MA
E-mail:gaoyuxin214@163.com;caumah@163.com
摘要:
寄生虫病流行范围广泛,严重威胁人类健康并影响畜牧业发展。miRNAs是一类长度约19~24 nt的高度保守的内源性非编码单链小分子RNAs,寄生虫会表达大量的miRNAs介导其感染宿主,同时宿主miRNAs的表达谱也会发生改变,这些miRNAs将影响宿主的抗性或易感性,miRNAs已成为研究寄生虫和宿主互作机制的热点方向之一。本文综述了不同种类寄生虫表达的miRNAs在其感染宿主中的作用及宿主miRNAs对寄生虫的调控,旨在为研发基于miRNAs的抗寄生虫感染的治疗措施提供参考。
中图分类号:
高语馨, 刘青, 陈继兰, 麻慧. miRNAs介导寄生虫和宿主互作机制的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3812-3823.
Yuxin GAO, Qing LIU, Jilan CHEN, Hui MA. Research Advances in the Mechanism of Parasite-host Interaction Mediated by miRNAs[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3812-3823.
表 1
不同来源miRNAs的作用"
寄生虫 Parasites | miRNAs名称 The name of miRNAs | 来源 Sources | 产生细胞 Producing cells | 作用 Functions | 机制 Mechanisms | 参考文献 References |
寄生虫来源 Sources of parasites | ||||||
弓形虫 Toxoplasma | miR-60a | 弓形虫 | 虫体细胞 | 辅助功能丧失分析,推进神经病理学过程 | 下调靶标基因TgHoDI和TgLDH1的表达 | Crater等[ |
多房棘球绦虫 Echinococcus multilocular | miR-71 | 多房棘球绦虫 | 虫体细胞 | 可作为潜在的选择性药物靶标 | 调节虫体发育初期相关靶点;下调miRNA功能所必需的蛋白质的表达 | Pérez等[ |
miR-4989-3p | 多房棘球绦虫 | 虫体细胞 | 在寄生虫发病机制中发挥调节作用 | 抑制巨噬细胞产生NO,调节细胞因子和LPS/TLR4信号通路中主要成分的表达 | 郭宝平[ | |
克氏锥虫 Trypanosoma cruzi | miR-190b | 克氏锥虫 | 虫体细胞 | 抑制感染细胞的存活 | 抑制PTEN蛋白表达,抑制磷脂酰肌醇3激酶(PI3K)/Akt通路的激活 | Monteiro等[ |
曼氏血吸虫 Schistosoma mansoni | miR-277/4989 | 曼氏血吸虫 | 虫体细胞 | 调节幼虫发育过程 | 在不同发育时期表达量会发生变化 | Protasio等[ |
日本血吸虫 Schistosoma japonicum | miR-7-5p | 日本血吸虫 | 虫体细胞 | 选择性影响人和小鼠肿瘤细胞的生长和迁移过程,增强宿主对癌症的抵抗力 | 靶向肝细胞的SKP2基因 | Hu等[ |
miR-3096 | 日本血吸虫 | 虫体细胞 | 抑制肿瘤细胞的生长和迁移 | 靶向PIK3C2A基因,下调mTORC1信号通路的表达 | Lin等[ | |
宿主来源 Sources of hosts | ||||||
利什曼原虫 Leishmania | miR-let-7e | 小鼠 | 巨噬细胞 | 调节抗炎因子的表达;破坏宿主免疫应答 | 调节T细胞受体通路中基因的表达,影响NOS2的表达及NO的产生 | Muxel等[ |
miR-346 | 人 | 巨噬细胞 | 抗寄生虫药物靶点;调节免疫反应和内质网(ER)应激下的细胞存活 | 靶向相关基因 | Diotallevi等[ | |
miR-294, miR-721 | 小鼠 | 巨噬细胞 | 被诱导表达后可控制基因的表达和增加,调控免疫反应 | 靶向NOS2和L-精氨酸代谢诱导巨噬细胞 | Muxel等[ | |
miR-6540 | 小鼠 | 巨噬细胞 | 影响寄生虫在巨噬细胞内的感染 | 靶向作用于磷脂酰丝氨酸,具体互作机制尚待阐明 | Tiwari等[ | |
miR-3620, miR-6385 | 小鼠 | 巨噬细胞 | 使宿主合成大量铁,满足寄生虫对铁的需求;增强巨噬细胞对寄生虫的清除 | 调控铁稳态相关基因的表达;下调缺氧诱导基因的表达 | Tiwari等[ | |
miR-30e, miR-302d, miR-294, miR-302d | 小鼠 | 巨噬细胞 | 控制利什曼原虫对宿主的感染性 | 影响Nos2 mRNA的表达和NO的产生;调节Tnf的mRNA水平,改变Ccl2/Mcp-1的mRNA | Fernandes等[ | |
伯氏疟原虫 Plasmodium berghei | miR-19a-3p, miR-19b-3p, miR-223-3p | 小鼠 | 脑细胞 | 内吞作用;黏附连接 | 靶向FoxO转录因子和TGF-β信号通路中的基因,参与其表达 | Martin-Alonso等[ |
恶性疟原虫 Plasmodium falciparum | miR-3135b, miR-6780b-5p, miR-1246, miR-6126, miR-3613-5p | 人 | 全血细胞 | 可作为治疗靶点和潜在生物标志物 | 参与TNF信号通路和T细胞受体信号通路 | Li等[ |
miR-19b-3p, miR-19a-3p, miR-223-3p, miR142-3p | 小鼠 | 脑细胞 | 通过下调通路中基因的表达引发脑型疟疾的神经综合征 | 参与调控TGF-β和内吞作用信号通路 | Martin-Alonso等[ | |
miR-146a | 人 | 红细胞 | 抑制免疫细胞的功能 | 阻碍参与IFNγ信号通路的信号转导与转录激活因子(Stat1) | Prabhu等[ | |
miR-451 | 人 | 红细胞 | 促进了寄生虫入侵、存活以及诱导配子体的生成 | 调节cAMP依赖蛋白激酶(PKA-R)的表达,使PKA的催化活性增加 | Wilde等[ | |
隐孢子虫 Cryptosporidium | miR-21 | 小鼠 | 肠道细胞 | 细胞溶解,清除寄生虫 | 靶向CCL20基因,下调趋化因子 | Guesdon等[ |
miR-98, let 7 | 人 | 胆管上皮细胞 | 介导细胞因子信号蛋白抑制剂(SOCS4)翻译抑制,调节胆管上皮细胞抗菌反应 | 诱导胆管上皮细胞中的顺势作用(CIS)表达,靶向SOCS4的3′未翻译区 | Hu等[ | |
日本血吸虫 Schistosoma japonicum | miR-155 | 小鼠 | CD4+ T细胞 | 多种免疫细胞中的多效调节因子 | 抑制转录因子c-Maf的表达,从而减弱Th2细胞反应 | Rodriguez等[ |
miR-223 | 小鼠 | 粒细胞 | 抑制免疫反应 | 阻止粒细胞的过度分化 | Johnnidis等[ | |
miR-96 | 小鼠 | 肝细胞 | 抑制肝纤维化 | 诱导转化生长因子β1的表达;与miR-21不同位点结合靶向Smad7基因的3′UTR(尾随序列) | Luo等[ |
1 |
O'DONNELL K A , WENTZEL E A , ZELLER K I , et al. c-Myc-regulated microRNAs modulate E2F1 expression[J]. Nature, 2005, 435 (7043): 839- 843.
doi: 10.1038/nature03677 |
2 |
LEE R C , FEINBAUM R L , AMBROS V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75 (5): 843- 854.
doi: 10.1016/0092-8674(93)90529-Y |
3 |
PASQUINELLI A E , REINHART B J , SLACK F , et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA[J]. Nature, 2000, 408 (6808): 86- 89.
doi: 10.1038/35040556 |
4 |
MANI V , ASSEFA A D , HAHN B S . Transcriptome analysis and miRNA target profiling at various stages of root-knot nematode Meloidogyne incognita development for identification of potential regulatory networks[J]. Int J Mol Sci, 2021, 22 (14): 7442.
doi: 10.3390/ijms22147442 |
5 | 刘可, 黄海斌, 杨桂连. miRNA在寄生虫宿主免疫调控中的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2018, 36 (4): 405- 408. |
LIU K , HUANG H B , YANG G L . miRNA functions in parasite-related immune regulation in hosts[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2018, 36 (4): 405- 408. | |
6 |
BAEK D , VILLÉN J , SHIN C , et al. The impact of microRNAs on protein output[J]. Nature, 2008, 455 (7209): 64- 71.
doi: 10.1038/nature07242 |
7 |
XIE Z X , ALLEN E , FAHLGREN N , et al. Expression of Arabidopsis MIRNA genes[J]. Plant Physiol, 2005, 138 (4): 2145- 2154.
doi: 10.1104/pp.105.062943 |
8 |
JONES-RHOADES M W , BARTEL D P . Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Mol Cell, 2004, 14 (6): 787- 799.
doi: 10.1016/j.molcel.2004.05.027 |
9 |
FALLER M , GUO F . MicroRNA biogenesis: there's more than one way to skin a cat[J]. Biochim Biophys Acta, 2008, 1779 (11): 663- 667.
doi: 10.1016/j.bbagrm.2008.08.005 |
10 |
WANG Z X , XUE X Y , SUN J , et al. An "in-depth" description of the small non-coding RNA population of Schistosoma japonicum schistosomulum[J]. PLoS Negl Trop Dis, 2010, 4 (2): e596.
doi: 10.1371/journal.pntd.0000596 |
11 |
RUBY J G , JAN C H , BARTEL D P . Intronic microRNA precursors that bypass Drosha processing[J]. Nature, 2007, 448 (7149): 83- 86.
doi: 10.1038/nature05983 |
12 | 郝大海, 龚明. miRNA作用机制研究进展[J]. 基因组学与应用生物学, 2020, 39 (8): 3647- 3657. |
HAO D H , GONG M . The progress of miRNA action mechanism[J]. Genomics and Applied Biology, 2020, 39 (8): 3647- 3657. | |
13 |
SONG X W , LI Y , CAO X F , et al. MicroRNAs and their regulatory roles in plant-environment interactions[J]. Annu Rev Plant Biol, 2019, 70, 489- 525.
doi: 10.1146/annurev-arplant-050718-100334 |
14 |
CHEKULAEVA M , FILIPOWICZ W . Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells[J]. Curr Opin Cell Biol, 2009, 21 (3): 452- 460.
doi: 10.1016/j.ceb.2009.04.009 |
15 | CAI M , KOLLURU G K , AHMED A . Small molecule, big prospects: MicroRNA in pregnancy and its complications[J]. J Pregnancy, 2017, 2017, 6972732. |
16 | 魏秀秀, 吴志豪, 黄强. miRNA在寄生虫与宿主协同进化中的作用[J]. 中国动物传染病学报, 2024, 32 (3): 193- 199. |
WEI X X , WU Z H , HUANG Q . The role of miRNA during parasite and host co-evolution[J]. Chinese Journal of Animal Infectious Diseases, 2024, 32 (3): 193- 199. | |
17 |
VAN DER POL E , BÖING A N , HARRISON P , et al. Classification, functions, and clinical relevance of extracellular vesicles[J]. Pharmacol Rev, 2012, 64 (3): 676- 705.
doi: 10.1124/pr.112.005983 |
18 |
KELLER S , SANDERSON M P , STOECK A , et al. Exosomes: from biogenesis and secretion to biological function[J]. Immunol Lett, 2006, 107 (2): 102- 108.
doi: 10.1016/j.imlet.2006.09.005 |
19 |
VALADI H , EKSTRÖM K , BOSSIOS A , et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9 (6): 654- 659.
doi: 10.1038/ncb1596 |
20 | 倪爱心, 麻慧, 陈继兰. 寄生虫来源的外泌体研究进展[J]. 畜牧兽医学报, 2019, 50 (5): 909- 917. |
NI A X , MA H , CHEN J L . Research progress of parasite-derived Exosomes[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (5): 909- 917. | |
21 |
RASHIDI S , MANSOURI R , ALI-HASSANZADEH M , et al. miRNAs in the regulation of mTOR signaling and host immune responses: the case of Leishmania infections[J]. Acta Trop, 2022, 231, 106431.
doi: 10.1016/j.actatropica.2022.106431 |
22 | 黄琳, 叶昌林, 生燕, 等. 外泌体miRNA在寄生虫中的进展[J]. 中国病原生物学杂志, 2019, 14 (9): 1115- 1118. |
HUANG L , YE C L , SHENG Y , et al. Advances in research on parasite exosomal miRNA[J]. Journal of Pathogen Biology, 2019, 14 (9): 1115- 1118. | |
23 |
ROJAS-PIRELA M , ANDRADE-ALVIÁREZ D , MEDINA L , et al. MicroRNAs: master regulators in host-parasitic protist interactions[J]. Open Biol, 2022, 12 (6): 210395.
doi: 10.1098/rsob.210395 |
24 | BAYER-SANTOS E , MARINI M M , DA SILVEIRA J F . Non-coding RNAs in host-pathogen interactions: subversion of mammalian cell functions by protozoan parasites[J]. Front Microbiol, 2017, 8, 474. |
25 |
CRATER A K , MANNI E , ANANVORANICH S . Utilization of inherent miRNAs in functional analyses of Toxoplasma gondii genes[J]. J Microbiol Methods, 2015, 108, 92- 102.
doi: 10.1016/j.mimet.2014.11.014 |
26 |
PÉREZ M G , SPILIOTIS M , REGO N , et al. Deciphering the role of miR-71 in Echinococcus multilocularis early development in vitro[J]. PLoS Negl Trop Dis, 2019, 13 (12): e0007932.
doi: 10.1371/journal.pntd.0007932 |
27 | 郭宝平. 多房棘球绦虫致病差异与线粒体遗传标志相关性的研究[D]. 石河子: 石河子大学, 2019. |
GUO B P. Study on correlation between pathogenic differences and mitochondrial genetic markers in Echinococcus multilocularis[D]. Shihezi: Shihezi University, 2019. (in Chinese) | |
28 |
MONTEIRO C J , MOTA S L A , DINIZ L D F , et al. Mir-190b negatively contributes to the Trypanosoma cruzi-infected cell survival by repressing PTEN protein expression[J]. Mem Inst Oswaldo Cruz, 2015, 110 (8): 996- 1002.
doi: 10.1590/0074-02760150184 |
29 |
PROTASIO A V , VAN DONGEN S , COLLINS J , et al. Correction: MiR-277/4989 regulate transcriptional landscape during juvenile to adult transition in the parasitic helminth Schistosoma mansoni[J]. PLoS Negl Trop Dis, 2022, 16 (6): e0010521.
doi: 10.1371/journal.pntd.0010521 |
30 |
HU C , ZHU S L , WANG J , et al. Schistosoma japonicum MiRNA-7-5p inhibits the growth and migration of hepatoma cells via cross-species regulation of S-phase kinase-associated protein 2[J]. Front Oncol, 2019, 9, 175.
doi: 10.3389/fonc.2019.00175 |
31 |
LIN Y , ZHU S L , HU C , et al. Cross-species suppression of hepatoma cell growth and migration by a Schistosoma japonicum MicroRNA[J]. Mol Ther Nucleic Acids, 2019, 18, 400- 412.
doi: 10.1016/j.omtn.2019.09.006 |
32 |
MUXEL S M , ACUÑA S M , AOKI J I , et al. Toll-like receptor and miRNA-let-7e expression alter the inflammatory response in Leishmania amazonensis-infected macrophages[J]. Front Immunol, 2018, 9, 2792.
doi: 10.3389/fimmu.2018.02792 |
33 |
DIOTALLEVI A , DE SANTI M , BUFFI G , et al. Leishmania infection induces MicroRNA hsa-miR-346 in human cell line-derived macrophages[J]. Front Microbiol, 2018, 9, 1019.
doi: 10.3389/fmicb.2018.01019 |
34 |
MUXEL S M , LARANJEIRA-SILVA M F , ZAMPIERI R A , et al. Leishmania (Leishmania) amazonensis induces macrophage miR-294 and miR-721 expression and modulates infection by targeting NOS2 and L-arginine metabolism[J]. Sci Rep, 2017, 7, 44141.
doi: 10.1038/srep44141 |
35 | TIWARI N , KUMAR V , GEDDA M R , et al. Corrigendum: identification and characterization of miRNAs in response to Leishmania donovani infection: delineation of their roles in macrophage dysfunction[J]. Front Microbiol, 2017, 8, 1190. |
36 |
FERNANDES J C R , AOKI J I , MAIA ACUÑA S , et al. Melatonin and Leishmania amazonensis infection altered miR-294, miR-30e, and miR-302d Impacting on Tnf, Mcp-1, and Nos2 expression[J]. Front Cell Infect Microbiol, 2019, 9, 60.
doi: 10.3389/fcimb.2019.00060 |
37 |
MARTIN-ALONSO A , COHEN A , QUISPE-RICALDE M A , et al. Differentially expressed microRNAs in experimental cerebral malaria and their involvement in endocytosis, adherens junctions, FoxO and TGF-β signalling pathways[J]. Sci Rep, 2018, 8 (1): 11277.
doi: 10.1038/s41598-018-29721-y |
38 |
LI J J , HUANG M J , LI Z , et al. Identification of potential whole blood MicroRNA biomarkers for the blood stage of adult imported falciparum malaria through integrated mRNA and miRNA expression profiling[J]. Biochem Biophys Res Commun, 2018, 506 (3): 471- 477.
doi: 10.1016/j.bbrc.2018.10.072 |
39 |
PRABHU S R , WARE A P , SAADI A V . Erythrocyte miRNA regulators and malarial pathophysiology[J]. Infect Genet Evol, 2021, 93, 105000.
doi: 10.1016/j.meegid.2021.105000 |
40 | WILDE M L , TRIGLIA T , MARAPANA D , et al. Protein kinase A is essential for invasion of Plasmodium falciparum into human erythrocytes[J]. mBio, 2019, 10 (5): e01972- 19. |
41 |
GUESDON W , AURAY G , PEZIER T , et al. CCL20 displays antimicrobial activity against Cryptosporidium parvum, but its expression is reduced during infection in the intestine of neonatal mice[J]. J Infect Dis, 2015, 212 (8): 1332- 1340.
doi: 10.1093/infdis/jiv206 |
42 |
HU G K , ZHOU R , LIU J , et al. MicroRNA-98 and let-7 regulate expression of suppressor of cytokine signaling 4 in biliary epithelial cells in response to Cryptosporidium parvum infection[J]. J Infect Dis, 2010, 202 (1): 125- 135.
doi: 10.1086/653212 |
43 |
RODRIGUEZ A , VIGORITO E , CLARE S , et al. Requirement of bic/microRNA-155 for normal immune function[J]. Science, 2007, 316 (5824): 608- 611.
doi: 10.1126/science.1139253 |
44 |
JOHNNIDIS J B , HARRIS M H , WHEELER R T , et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223[J]. Nature, 2008, 451 (7182): 1125- 1129.
doi: 10.1038/nature06607 |
45 |
LUO X F , ZHANG D M , XIE J , et al. MicroRNA-96 promotes schistosomiasis hepatic fibrosis in mice by suppressing Smad7[J]. Mol Ther Methods Clin Dev, 2018, 11, 73- 82.
doi: 10.1016/j.omtm.2018.10.002 |
46 |
FERGUSON D J P . Toxoplasma gondii: 1908-2008, homage to Nicolle, Manceaux and Splendore[J]. Mem Inst Oswaldo Cruz, 2009, 104 (2): 133- 148.
doi: 10.1590/S0074-02762009000200003 |
47 |
XIAO J , LI Y , PRANDOVSZKY E , et al. MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway[J]. Neuroscience, 2014, 268, 128- 138.
doi: 10.1016/j.neuroscience.2014.03.015 |
48 |
DUBEY J P , LINDSAY D S , SPEER C A . Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts[J]. Clin Microbiol Rev, 1998, 11 (2): 267- 299.
doi: 10.1128/CMR.11.2.267 |
49 |
CANNELLA D , BRENIER-PINCHART M P , BRAUN L , et al. miR-146a and miR-155 delineate a MicroRNA fingerprint associated with Toxoplasma persistence in the host brain[J]. Cell Rep, 2014, 6 (5): 928- 937.
doi: 10.1016/j.celrep.2014.02.002 |
50 |
LAO K Q , XU N L , YEUNG V , et al. Multiplexing RT-PCR for the detection of multiple miRNA species in small samples[J]. Biochem Biophys Res Commun, 2006, 343 (1): 85- 89.
doi: 10.1016/j.bbrc.2006.02.106 |
51 |
SILVA V O , MAIA M M , TORRECILHAS A C , et al. Extracellular vesicles isolated from Toxoplasma gondii induce host immune response[J]. Parasite Immunol, 2018, 40 (9): e12571.
doi: 10.1111/pim.12571 |
52 |
温福利, 郑和平, 党源, 等. 弓形虫生物检测靶标miR-191的鉴定[J]. 实验动物与比较医学, 2018, 38 (5): 350- 355.
doi: 10.3969/j.issn.1674-5817.2018.05.005 |
WEN F L , ZHENG H P , DANG Y , et al. Identification of the target miR-191 for the biological detection of Toxoplasma gondii[J]. Laboratory Animal and Comparative Medicine, 2018, 38 (5): 350- 355.
doi: 10.3969/j.issn.1674-5817.2018.05.005 |
|
53 |
GRUSZKA R , ZAKRZEWSKA M . The oncogenic relevance of miR-17-92 cluster and its paralogous miR-106b-25 and miR-106a-363 clusters in brain tumors[J]. Int J Mol Sci, 2018, 19 (3): 879.
doi: 10.3390/ijms19030879 |
54 |
FRANCO M , SHASTRI A J , BOOTHROYD J C . Infection by Toxoplasma gondii specifically induces host c-Myc and the genes this pivotal transcription factor regulates[J]. Eukaryot Cell, 2014, 13 (4): 483- 493.
doi: 10.1128/EC.00316-13 |
55 |
CAI Y , CHEN H , MO X , et al. Toxoplasma gondii inhibits apoptosis via a novel STAT3-miR-17-92-Bim pathway in macrophages[J]. Cell Signal, 2014, 26 (6): 1204- 1212.
doi: 10.1016/j.cellsig.2014.02.013 |
56 | WHO. Control and surveillance of African trypanosomiasis: report of a WHO expert committee[R]. Geneva: WHO, 1998. |
57 | PONTE-SUCRE A . An overview of Trypanosoma brucei infections: an intense host-parasite interaction[J]. Front Microbiol, 2016, 7, 2126. |
58 |
CHUENKOVA M V , FURNARI F B , CAVENEE W K , et al. Trypanosoma cruzi trans-sialidase: a potent and specific survival factor for human Schwann cells by means of phosphatidylinositol 3-kinase/Akt signaling[J]. Proc Natl Acad Sci U S A, 2001, 98 (17): 9936- 9941.
doi: 10.1073/pnas.161298398 |
59 |
AOKI M P , GUIÑAZÚ N L , PELLEGRINI A V , et al. Cruzipain, a major Trypanosoma cruzi antigen, promotes arginase-2 expression and survival of neonatal mouse cardiomyocytes[J]. Am J Physiol Cell Physiol, 2004, 286 (2): C206- C212.
doi: 10.1152/ajpcell.00282.2003 |
60 |
MAEHAMA T , DIXON J E . The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate[J]. J Biol Chem, 1998, 273 (22): 13375- 13378.
doi: 10.1074/jbc.273.22.13375 |
61 | OUDIT G Y , PENNINGER J M . Cardiac regulation by phosphoinositide 3-kinases and PTEN[J]. Cardiovasc Res, 2009, 82 (2): 250- 260. |
62 |
BAYER-SANTOS E , LIMA F M , RUIZ J C , et al. Characterization of the small RNA content of Trypanosoma cruzi extracellular vesicles[J]. Mol Biochem Parasitol, 2014, 193 (2): 71- 74.
doi: 10.1016/j.molbiopara.2014.02.004 |
63 |
JACKSON A P , SANDERS M , BERRY A , et al. The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis[J]. PLoS Negl Trop Dis, 2010, 4 (4): e658.
doi: 10.1371/journal.pntd.0000658 |
64 |
YU J , YU Y , LI Q , et al. Comprehensive analysis of miRNA profiles reveals the role of Schistosoma japonicum miRNAs at different developmental stages[J]. Vet Res, 2019, 50 (1): 23.
doi: 10.1186/s13567-019-0642-2 |
65 | 杨瑞冰, 李云珍, 苏坤华, 等. 细胞外囊泡介导的血吸虫-宿主相互作用研究进展[J]. 中国血吸虫病防治杂志, 2022, 34 (3): 318- 321. |
YANG R B , LI Y Z , SU K H , et al. Advances in studies on schistosome-host interactions mediated by extracellular vesicles[J]. Chinese Journal of Schistosomiasis Control, 2022, 34 (3): 318- 321. | |
66 |
LU Z G , SESSLER F , HOLROYD N , et al. Schistosome sex matters: a deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay[J]. Sci Rep, 2016, 6, 31150.
doi: 10.1038/srep31150 |
67 |
GUPTA B C , BASCH P F . The role of Schistosoma mansoni males in feeding and development of female worms[J]. J Parasitol, 1987, 73 (3): 481- 486.
doi: 10.2307/3282125 |
68 |
SUN J , WANG S W , LI C , et al. Novel expression profiles of microRNAs suggest that specific miRNAs regulate gene expression for the sexual maturation of female Schistosoma japonicum after pairing[J]. Parasit Vectors, 2014, 7, 177.
doi: 10.1186/1756-3305-7-177 |
69 |
ZHU S L , WANG S , LIN Y , et al. Release of extracellular vesicles containing small RNAs from the eggs of Schistosoma japonicum[J]. Parasit Vectors, 2016, 9 (1): 574.
doi: 10.1186/s13071-016-1845-2 |
70 |
DING J T , HE G T , WU J E , et al. miRNA-seq of Echinococcus multilocularis extracellular vesicles and immunomodulatory effects of miR-4989[J]. Front Microbiol, 2019, 10, 2707.
doi: 10.3389/fmicb.2019.02707 |
71 |
BUCK A H , COAKLEY G , SIMBARI F , et al. Erratum: exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity[J]. Nat Commun, 2015, 6, 8772.
doi: 10.1038/ncomms9772 |
72 |
QUINTANA J F , MAKEPEACE B L , BABAYAN S A , et al. Extracellular Onchocerca-derived small RNAs in host nodules and blood[J]. Parasit Vectors, 2015, 8, 58.
doi: 10.1186/s13071-015-0656-1 |
73 |
JAFARZADEH A , NEMATI M , AMINIZADEH N , et al. Bidirectional cytokine-microRNA control: a novel immunoregulatory framework in leishmaniasis[J]. PLoS Pathog, 2022, 18 (8): e1010696.
doi: 10.1371/journal.ppat.1010696 |
74 |
KATARIA P , SURELA N , CHAUDHARY A , et al. MiRNA: biological regulator in host-parasite interaction during malaria infection[J]. Int J Environ Res Public Health, 2022, 19 (4): 2395.
doi: 10.3390/ijerph19042395 |
75 |
DANDEWAD V , VINDU A , JOSEPH J , et al. Import of human miRNA-RISC complex into Plasmodium falciparum and regulation of the parasite gene expression[J]. J Biosci, 2019, 44 (2): 50.
doi: 10.1007/s12038-019-9870-x |
76 | WANG Z S , XI J M , HAO X , et al. Red blood cells release microparticles containing human argonaute 2 and miRNAs to target genes of Plasmodium falciparum[J]. Emerg Microbes Infect, 2017, 6 (8): e75. |
77 | BARKER K R , LU Z Y , KIM H , et al. miR-155 modifies inflammation, endothelial activation and blood-brain barrier dysfunction in cerebral malaria[J]. Mol Med, 2017, 23, 24- 33. |
78 |
EL-ASSAAD F , HEMPEL C , COMBES V , et al. Differential microRNA expression in experimental cerebral and noncerebral malaria[J]. Infect Immun, 2011, 79 (6): 2379- 2384.
doi: 10.1128/IAI.01136-10 |
79 |
MORISHITA A , OURA K , TADOKORO T , et al. MicroRNA interference in hepatic host-pathogen interactions[J]. Int J Mol Sci, 2021, 22 (7): 3554.
doi: 10.3390/ijms22073554 |
80 |
CAI P F , PIAO X Y , LIU S , et al. MicroRNA-gene expression network in murine liver during Schistosoma japonicum infection[J]. PLoS One, 2013, 8 (6): e67037.
doi: 10.1371/journal.pone.0067037 |
81 |
HAKIMI M A , CANNELLA D . Apicomplexan parasites and subversion of the host cell microRNA pathway[J]. Trends Parasitol, 2011, 27 (11): 481- 486.
doi: 10.1016/j.pt.2011.07.001 |
82 |
ZEINER G M , NORMAN K L , THOMSON J M , et al. Toxoplasma gondii infection specifically increases the levels of key host microRNAs[J]. PLoS One, 2010, 5 (1): e8742.
doi: 10.1371/journal.pone.0008742 |
83 |
ZOU Y , MENG J X , WEI X Y , et al. CircRNA and miRNA expression analysis in livers of mice with Toxoplasma gondii infection[J]. Front Cell Infect Microbiol, 2022, 12, 1037586.
doi: 10.3389/fcimb.2022.1037586 |
84 |
ZHOU C X , AI K , HUANG C Q , et al. miRNA and circRNA expression patterns in mouse brain during toxoplasmosis development[J]. BMC Genomics, 2020, 21 (1): 46.
doi: 10.1186/s12864-020-6464-9 |
85 |
POPE S M , LÄSSER C . Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation[J]. J Extracell Vesicles, 2013, 2 (1): 22484.
doi: 10.3402/jev.v2i0.22484 |
86 |
DIAZ J H , WARREN R J , OSTER M J . The disease ecology, epidemiology, clinical manifestations, and management of trichinellosis linked to consumption of wild animal meat[J]. Wilderness Environ Med, 2020, 31 (2): 235- 244.
doi: 10.1016/j.wem.2019.12.003 |
87 |
LIU X L , SONG Y X , LU H J , et al. Transcriptome of small regulatory RNAs in the development of the zoonotic parasite Trichinella spiralis[J]. PLoS One, 2011, 6 (11): e26448.
doi: 10.1371/journal.pone.0026448 |
88 | 马小涵. 旋毛虫感染宿主血清中差异miRNA的功能及诊断价值研究[D]. 郑州: 郑州大学, 2020. |
MA X H. Research on the functions and diagnostic values of altered miRNA in the serum of hosts infected with Trichinella spiralis[D]. Zhengzhou: Zhengzhou University, 2020. (in Chinese) | |
89 |
YANG S F , ABDULLA R , LU C , et al. Inhibition of microRNA-376b protects against renal interstitial fibrosis via inducing macrophage autophagy by upregulating Atg5 in mice with chronic kidney disease[J]. Kidney Blood Press Res, 2018, 43 (6): 1749- 1764.
doi: 10.1159/000495394 |
90 | XING Q W , XIE H Y , ZHU B Y , et al. MiR-455-5p suppresses the progression of prostate cancer by targeting CCR5[J]. BioMed Res Int, 2019, 2019, 6394784. |
[1] | 李京宇, 陈金铭, 张明一, 赵姗姗, 陶德良, 宋军科, 杨新, 樊莹莹, 赵光辉. 犬新孢子虫miRNAs的鉴定与分析[J]. 畜牧兽医学报, 2024, 55(7): 3085-3093. |
[2] | 杨富升, 古小彬. 近十年PCR技术在寄生虫病诊断中的应用[J]. 畜牧兽医学报, 2023, 54(8): 3183-3194. |
[3] | 龙琴琴, 魏敏, 王雨婷, 文明, 庞峰. 羊口疮病毒与宿主的博弈:免疫应答与病毒免疫逃逸机制[J]. 畜牧兽医学报, 2023, 54(5): 1845-1853. |
[4] | 林梦娟, 高沙沙, 赵星辰, 仲宇欣, 吴俊, 张军忍, 郭大伟. 常山酮抗原虫作用研究进展[J]. 畜牧兽医学报, 2023, 54(3): 924-933. |
[5] | 邓敏儿, 李娜, 郭亚琼, 冯耀宇, 肖立华. CRISPR/Cas9系统在寄生原虫基因编辑中的应用[J]. 畜牧兽医学报, 2023, 54(1): 69-79. |
[6] | 吴春琳, 钟乐苗, 赵妍, 李文迹, 黄晓紫, 吴异健. 鸡毒支原体MG-HY株感染鸡气管的转录组学分析[J]. 畜牧兽医学报, 2022, 53(8): 2652-2662. |
[7] | 赵旭阳, 靳家鑫, 路闻龙, 张帅, 黄丽, 张改平, 孙爱军, 庄国庆. 非洲猪瘟病毒免疫逃逸分子机制研究进展[J]. 畜牧兽医学报, 2022, 53(7): 2074-2082. |
[8] | 张帆帆, 曾艳兵, 方绍培, 李海琴, 康昭风, 谭美芳, 谭佳, 杨群, 韦启鹏. 鸭坦布苏病毒病的研究进展[J]. 畜牧兽医学报, 2021, 52(6): 1489-1497. |
[9] | 张珂, 严继猛, 刘耀文, 李鸿辉, 陈强, 李卓, 苏艳华, 普少瑕, 王海臻, 魏红江, 贾宝瑜, 成文敏. 猪GV/MⅡ期卵母细胞miRNAs表达谱及Npm2基因相关miRNAs筛选[J]. 畜牧兽医学报, 2021, 52(4): 996-1009. |
[10] | 尹德琦, 魏子巍, 张义伟, 桑晓宇, 杨娜, 冯颖, 陈冉, 姜宁. 弓形虫蛋白质翻译后修饰研究进展[J]. 畜牧兽医学报, 2021, 52(11): 2995-3005. |
[11] | 王书博, 徐义刚, 陈秋艳, 梅朱园, 崔文, 姜艳平, 周晗, 王丽, 乔薪瑗, 李一经, 唐丽杰. 表达猪圆环病毒2型cap蛋白的重组罗伊氏乳酸杆菌在小鼠诱导的免疫应答分析[J]. 畜牧兽医学报, 2020, 51(9): 2238-2249. |
[12] | 张利环, 马悦悦, 刘文艳, 蓝吴涛, 朱芷葳. microRNA-96-5p靶向调控羊驼黑色素细胞中MITF基因的表达[J]. 畜牧兽医学报, 2020, 51(6): 1229-1237. |
[13] | 邵春荣, 黄远丕, 黄运茂, 应诗家, 奚雨萌, 施振旦. 痛风雏鹅肾组织损伤的RNA-seq分析[J]. 畜牧兽医学报, 2020, 51(3): 639-643. |
[14] | 蔡萌, 南雪梅, 熊本海, 杨亮. 脂肪酸调控奶牛乳腺microRNAs研究进展[J]. 畜牧兽医学报, 2020, 51(12): 2934-2941. |
[15] | 邓雯文, 李才武, 晋蕾, 李果, 吴虹林, 张贵权, 魏荣平, 陈锐, 王明磊, 何永果, 李倜, 李德生, 张和民, 黄炎, 邹立扣. 大熊猫粪便中微生物与寄生虫的宏转录组学分析[J]. 畜牧兽医学报, 2020, 51(11): 2812-2824. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||