[1] SCHAEFFER L R. Strategy for applying genome-wide selection in dairy cattle[J]. J Anim Breed Genet, 2006, 123: 218-223. [2] WIGGANS G R,CARRILLO J A. Genomic selection in United States dairy cattle[J]. Front Genet, 2022, 13: 994466. [3] GARCÍA-RUIZ A, COLE J B, VANRADEN P M, et al. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection[J]. Proc Natl Acad Sci U S A, 2016, 113: E3995-4004. [4] WIGGANS G R, COLE J B, HUBBARD S M, et al. Genomic selection in dairy cattle: The USDA experience[J]. Annu Rev Anim Biosci, 2017, 5: 309-327. [5] CAMPOS G S, CARDOSO F F, GOMES C C G, et al. Development of genomic predictions for Angus cattle in Brazil incorporating genotypes from related American sires[J]. J Anim Sci, 2022, 1:100. [6] ZHANG Z, LIU J, DING X, et al. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix[J]. PLoS One, 2010, 5(9); E12648. [7] EDWARDS S M, SØRENSEN I F, SARUP P, et al. Genomic prediction for quantitative traits is improved by mapping variants to gene ontology categories in Drosophila melanogaster[J]. Genetics, 2016, 203: 1871-1883. [8] MEUWISSEN T, EIKJE L S,GJUVSLAND A B. GWABLUP: genome-wide association assisted best linear unbiased prediction of genetic values[J]. Genet Sel Evol, 2024, 56: 17. [9] LOPES M S, BOVENHUIS H, VAN SON M, et al. Using markers with large effect in genetic and genomic predictions[J]. J Anim Sci, 2017, 95: 59-71. [10] MISZTAL I, LEGARRA A,AGUILAR I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information[J]. J Dairy Sci, 2009, 92: 4648-4655. [11] MÄNTYSAARI E A, EVANS R D,STRANDÉN I. Efficient single-step genomic evaluation for a multibreed beef cattle population having many genotyped animals[J]. J Anim Sci, 2017, 95: 4728-4737. [12] XU Y, ZHANG Y, CUI Y, et al. GA-GBLUP: leveraging the genetic algorithm to improve the predictability of genomic selection[J]. Brief Bioinform, 2024, 25(5):385. [13] WU B, XIONG H, ZHUO L, et al. Multi-view BLUP: a promising solution for post-omics data integrative prediction[J]. J Genet Genomics, 2025, 52: 839-847. [14] GESTEIRO N, MALVAR R A, BUTRÓN A, et al. Genome-wide association study and genomic predictions for hydroxycinnamate concentrations in maize stover[J]. J Agric Food Chem, 2025, 73: 2289-2298. [15] XU H, WANG Z, WANG F, et al. Genome-wide association study and genomic selection of spike-related traits in bread wheat[J]. Theor Appl Genet, 2024, 137: 131. [16] XU R, YANG Q, LIU Z, et al. Genome-wide association analysis and genomic prediction of salt tolerance trait in soybean germplasm[J]. Front Plant Sci, 2024, 15: 1494551. [17] LIU K, YIN Y, WANG B, et al. Integrating significant SNPs identified by GWAS for genomic prediction of the number of ribs and carcass length in Suhuai pigs[J]. Animals (Basel), 2025, 15(3): 412. [18] ZHAO Z, NIU Q, WU T, et al. Comparative analysis of genomic prediction for production traits using genomic annotation and a genome-wide association study at sequencing levels in beef cattle[J]. Agriculture, 2024, 14: 2255. [19] TU T C, LIN C J, LIU M C, et al. Genomic prediction and genome-wide association study for growth-related traits in Taiwan Country chicken[J]. Animals (Basel), 2025, 15(3): 376. [20] CRICK F. Central dogma of molecular biology[J]. Nature, 1970, 227: 561-563. [21] DE LOS CAMPOS G, HICKEY J M, PON WONG R, et al. Whole-genome regression and prediction methods applied to plant and animal breeding[J]. Genetics, 2013, 193: 327-345. [22] KANG M, KO E,MERSHA T B. A roadmap for multi-omics data integration using deep learning[J]. Brief Bioinform, 2022, 23(1): bbab454. [23] FRISCH M, THIEMANN A, FU J, et al. Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize[J]. Theor Appl Genet, 2010, 120: 441-450. [24] ZENKE-PHILIPPI C, THIEMANN A, SEIFERT F, et al. Prediction of hybrid performance in maize with a ridge regression model employed to DNA markers and mRNA transcription profiles[J]. BMC Genomics, 2016, 17: 262. [25] RITCHIE M D, HOLZINGER E R, LI R, et al. Methods of integrating data to uncover genotype-phenotype interactions[J]. Nat Rev Genet, 2015, 16: 85-97. [26] ZHU J, SOVA P, XU Q, et al. Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation[J]. PLoS Biol, 2012, 10: e1001301. [27] AN B, LIANG M, CHANG T, et al. KCRR: a nonlinear machine learning with a modified genomic similarity matrix improved the genomic prediction efficiency[J]. Brief Bioinform, 2021, 22(6): bbab132. [28] LI M, HALL T, MACHUGH D E, et al. KPRR: a novel machine learning approach for effectively capturing nonadditive effects in genomic prediction[J]. Brief Bioinform, 2024, 26(1): bbae683. [29] WANG J, ZONG W, SHI L, et al. Using mixed kernel support vector machine to improve the predictive accuracy of genome selection[J]. Journal of Integrative Agriculture, 2024, 3: 083. [30] THORSRUD J A, EVANS K M, QUIGLEY K C, et al. Performance comparison of genomic best linear unbiased prediction and four machine learning models for estimating genomic breeding values in working dogs[J]. Animals (Basel), 2025, 15(3): 408. [31] VAN DER LAAN L, PARMLEY K, SAADATI M, et al. Genomic and phenomic prediction for soybean seed yield, protein, and oil[J]. Plant Genome, 2025, 18: e70002. [32] HANSEN P B, RUUD A K, DE LOS CAMPOS G, et al. Integration of DNA methylation and transcriptome data improves complex trait prediction in Hordeum vulgare[J]. Plants (Basel), 2022, 11(17): 2190. [33] KNOCH D, WERNER C R, MEYER R C, et al. Multi-omics-based prediction of hybrid performance in canola[J]. Theor Appl Genet, 2021, 134: 1147-1165. [34] XU F, CHE Z, QIAO J, et al. Integrating gene expression data into single-step method (ssBLUP) improves genomic prediction accuracy for complex traits of Duroc×Erhualian F(2) pig population[J]. Curr Issues Mol Biol, 2024, 46: 13713-13724. [35] ZHAO L, TANG P, LUO J, et al. Genomic prediction with NetGP based on gene network and multi-omics data in plants[J]. Plant Biotechnol J, 2025, 23: 1190-1201. [36] WANG K, ABID M A, RASHEED A, et al. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants[J]. Mol Plant, 2023, 16: 279-293. [37] MA W, QIU Z, SONG J, et al. A deep convolutional neural network approach for predicting phenotypes from genotypes[J]. Planta, 2018, 248: 1307-1318. [38] WU C, ZHANG Y, YING Z, et al. A transformer-based genomic prediction method fused with knowledge-guided module[J]. Brief Bioinform, 2023, 25(1): bbad438. [39] ZOU Q, TAI S, YUAN Q, et al. Large-scale crop dataset and deep learning-based multi-modal fusion framework for more accurate G×E genomic prediction[J]. Computers and Electronics in Agriculture, 2025, 230: 109833. [40] HUA J, XING Y, WU W, et al. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid[J]. Proc Natl Acad Sci U S A, 2003, 100: 2574-2579. [41] YU H, XIE W, WANG J, et al. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers[J]. PLoS One, 2011, 6: e17595. [42] WANG J, YU H, WENG X, et al. An expression quantitative trait loci-guided co-expression analysis for constructing regulatory network using a rice recombinant inbred line population[J]. J Exp Bot, 2014, 65: 1069-1079. [43] HU X, XIE W, WU C, et al. A directed learning strategy integrating multiple omic data improves genomic prediction[J]. Plant Biotechnol J, 2019, 17: 2011-2020. [44] HUMPHREYS R K, PUTH M T, NEUHÄUSER M, et al. Underestimation of Pearson’s product moment correlation statistic[J]. Oecologia, 2019, 189: 1-7. [45] TRIPATHI Y M, CHATLA S B, CHANG Y I, et al. A nonlinear correlation measure with applications to gene expression data[J]. PLoS One, 2022, 17: e0270270. [46] WANG X, SHI S, WANG G, et al. Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs[J]. J Anim Sci Biotechnol, 2022, 13: 60. [47] GONDRO C, VAN DER WERF J,HAYES B. Genome-wide association studies and genomic prediction[M]. Springer, 2013. DOI:10.1007/978-1-62703-447-0. [48] XIA P P, ZHANG L,LI F Z. Learning similarity with cosine similarity ensemble[J]. Inform Sci, 2015, 307: 39-52. [49] AZODI C B, PARDO J, VANBUREN R, et al. Transcriptome-based prediction of complex traits in maize[J]. Plant Cell, 2020, 32: 139-151. [50] XIE Z, XU X, LI L, et al. Residual networks without pooling layers improve the accuracy of genomic predictions[J]. Theor Appl Genet, 2024, 137: 138. [51] AZODI C B, BOLGER E, MCCARREN A, et al. Benchmarking parametric and machine learning models for genomic prediction of complex traits[J]. G3 (Bethesda), 2019, 9: 3691-3702. [52] ZHANG H, XI Q, ZHANG F, et al. Application of deep learning in cancer prognosis prediction model[J]. Technol Cancer Res Treat, 2023, 22: 15330338231199287. [53] WANG P, LEHTI-SHIU M D, LOTRECK S, et al. Prediction of plant complex traits via integration of multi-omics data[J]. Nat Commun, 2024, 15: 6856. [54] CUI Y, LI R, LI G, et al. Hybrid breeding of rice via genomic selection[J]. Plant Biotechnol J, 2020, 18: 57-67. [55] VABALAS A, GOWEN E, POLIAKOFF E, et al. Machine learning algorithm validation with a limited sample size[J]. PLoS One, 2019, 14: e0224365. [56] VAN SMEDEN M, MOONS K G, DE GROOT J A, et al. Sample size for binary logistic prediction models: Beyond events per variable criteria[J]. Stat Methods Med Res, 2019, 28: 2455-2474. [57] ALWOSHEEL A, VAN CRANENBURGH S,CHORUS C G. Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis[J]. J Choice Modell, 2018, 28: 167-182. |