[1] 潘黛安, 刘 那, 王思明, 等. 鹿茸水溶性蛋白的结构表征与抗疲劳活性研究[J]. 中国医院药学杂志, 2024, 44(21): 2470-2476. PAN D A, LIU N, WANG S M, et al. Structural characterization and anti-fatigue activity of water-soluble protein of velvet antler[J]. Chinese Journal of Hospital Pharmacy, 2024, 44(21): 2470-2476. (in Chinese) [2] 中华人民共和国药典2020年版. 一部[S]. 2020: 336. Pharmacopoeia of the People’s Republic of China 2020 Edition. Part I[S]. 2020: 336.(in Chinese) [3] MENG D S, LI Y R, CHEN Z, et al. Exosomes derived from antler mesenchymal stem cells promote wound healing by miR-21-5p/STAT3 Axis[J]. Int J Nanomed, 2024, 19: 11257-11273. [4] WANG Y S, CHU W H, ZHAI J J, et al. High quality repair of osteochondral defects in rats using the extracellular matrix of antler stem cells[J]. World J Stem Cells, 2024, 16(2): 176-190. [5] LIU Z P, LI W, GENG L L, et al. Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor[J]. Cell Discov, 2022, 8(1): 6. [6] LIU L Y, JIAO Y, YANG M, et al. Network pharmacology, molecular docking and molecular dynamics to explore the potential immunomodulatory mechanisms of deer antler[J]. Int J Mol Sci, 2023, 24(12): 10370. [7] 邢秀梅, 张然然, 孔繁涛. 新冠疫情对中国茸鹿产业的影响分析[J]. 农业展望, 2021, 17(4): 52-55. XING X M, ZHANG R R, KONG F T, Influence of COVID-19 pandemic on China’s velvet deer industry[J]. Agricultural Outlook, 2021, 17(4): 52-55. (in Chinese) [8] 张然然, 孙印石, 王桂武, 等. 吉林省梅花鹿产业发展的思考[J]. 特产研究, 2022, 44(5): 151-154. ZHANG R R, SUN Y S, WANG G W, et al. Thoughts on accelerating the development of sika deer industry in Jilin Province[J]. Special Wild Economic Animal and Plant Research, 2022, 44(5): 151-154. (in Chinese) [9] 李寅博, 刘 贺, 刘 迪, 等. 抚顺地区清原马鹿繁育及种质资源利用现状及对策建议[J]. 畜禽业, 2024, 35(8): 25-28. LI Y B, LIU H, LIU D, et al. Current situation of breeding and germplasm resources utilization of qingyuan wapiti in fushun area and suggestions on countermeasures[J]. Livestock and Poultry Industry, 2024, 35(8): 25-28. (in Chinese) [10] 靳梦亚, 董 玲, 罗元明, 等. 利用iTRAQ技术联合2D LC-MS研究不同加工工艺鹿茸的差异蛋白质组学[J]. 药学学报, 2015, 50(12): 1637-1644. JIN M Y, DONG L, LUO Y M, et al. Comparative proteomics study of different processing technology for pilose antler using iTRAQ technology coupled with 2D LC-MS[J]. Acta Pharmaceutica Sinica, 2015, 50(12): 1637-1644. (in Chinese) [11] 刘文媛. 基于蛋白质组学和代谢组学的鹿茸区段划分与生物活性物质的分析与鉴别[D]. 北京:中国农业科学院, 2020: 6-19. LIU W Y. Analysis and identification of bioactive compounds from four portions of velvet antlers in sika deer (Cervus nippon) based on proteomics and metabolomics[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020: 6-19. (in Chinese) [12] SU H, TANG X L, ZHANG X C, et al. Comparative proteomics analysis reveals the difference during antler regeneration stage between red deer and sika deer[J]. PeerJ, 2019, 7: e7299. [13] 周秋丽, 刘永强, 王 颖, 等. 梅花鹿茸和马鹿茸多肽化学性质及生物活性比较[J]. 中国中药杂志, 2001(10): 51-54. ZHOU Q L, LIU Y Q, WANG Y, et al. A compaison of chemical composition and bioactivity of polvpeptides from velvet antlers of Cervus nippon Temminck and Cervus elaphus Linnaeus[J]. China Journal of Chinese Materia Medica, 2001(10): 51-54. (in Chinese) [14] 阳洪波, 王韦达, 李 意, 等. 基于特征肽段的液相色谱-质谱技术鉴定胶原蛋白的物种来源[J]. 分析测试学报, 2018, 37(11): 1279-1286. YANG H B, WANG W D, LI Y, et al. Identification of species origin of collagen based on liquid chromatography-mass spectrometry with peptide markers[J]. Journal of Instrumental Analysis, 2018, 37(11): 1279-1286. (in Chinese) [15] JOHNSON P E, BAUMGARTNER S, ALDICK T, et al. Current perspectives and recommendations for the development of mass spectrometry methods for the determination of allergens in foods[J]. J AOAC Int, 2011, 94(4): 1026-1033. [16] 张淑霞, 祝伟霞, 刘胜男, 等. 基于HPLC-Q-Exactive的PRM技术检测核桃露中核桃、杏仁、花生、大豆源性成分[J]. 食品科技, 2020, 45(9): 273-280. ZHANG S X, ZHU W X, LIU S N, et al. Detection of walnut, almond, peanut and soybean derived ingredients in walnut drink based on HPLC-Q-Exactive with parallel reaction monitoring mode[J]. Food Science and Technology, 2020, 45(9): 273-280. (in Chinese) [17] 张九凯, 马聪聪, 邢冉冉, 等. 基于鸟枪蛋白组学与质谱多反应监测技术的三文鱼物种鉴别研究[J]. 食品安全质量检测学报, 2022, 13(16): 5271-5278. ZHANG J K, MA C C, XING R R, et al. Authentication of salmon species based on shotgun proteomics and mass spectrometry multiple reaction monitoring techniques[J]. Journal of Food Safety & Quality, 2022, 13(16): 5271-5278. (in Chinese) [18] 王 磊, 张然然, 刘华淼, 等. 马鹿鹿茸不同部位差异蛋白质组学分析[J]. 畜牧兽医学报, 2017, 48(8): 1401-1415. WANG L, ZHANG R R, LIU H M, et al. Comparative proteomics analysis on different parts of Cervus elaphus songaricus velvet antler[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(8): 1401-1415. (in Chinese) [19] 张然然, 刘华淼, 邵元臣, 等. 不同生长时期梅花鹿鹿茸差异蛋白质组学分析[J]. 畜牧兽医学报, 2016, 47(3): 493-501. ZHANG R R, LIU H M, SHAO Y C, Comparative proteomic analysis in different growth stages of sika deer velvet antler[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(3): 493-501. (in Chinese) [20] LOU R, SHUI W. Acquisition and analysis of DIA-based proteomic data: a comprehensive survey in 2023[J]. Mol Cell Proteomics, 2024, 23(2):100712. [21] VITKO D, CHOU W F, NOURI GOLMAEI S, et al. timsTOF HT improves protein identification and quantitative reproducibility for deep unbiased plasma protein biomarker discovery[J]. J Proteome Res, 2024, 23(3): 929-938. [22] ALSUBAIT A, ALDOSSARY W, RASHID M, et al. CYP1B1 gene: implications in glaucoma and cancer[J]. J Cancer, 2020, 11(16): 4652-4661. [23] KWON Y J, BAEK H S, YE D J, et al. CYP1B1 enhances cell proliferation and metastasis through induction of EMT and activation of Wnt/β-catenin signaling via Sp1 upregulation[J]. PLoS One, 2016, 11(3): e0151598. [24] LI F, ZHU W F, GONZALEZ F J. Potential role of CYP1B1 in the development and treatment of metabolic diseases[J]. Pharm Ther, 2017, 178: 18-30. [25] ALLEN S P, MADEN M, PRICE J S. A role for retinoic acid in regulating the regeneration of deer antlers[J]. Dev Biol, 2002, 251(2): 409-423. [26] LAZZERI G, LENZI P, SIGNORINI G, et al. Retinoic acid promotes neuronal differentiation while increasing proteins and organelles related to autophagy[J]. Int J Mol Sci, 2025, 26(4): 1691. [27] RUBINSTEIN A D, EISENSTEIN M, BER Y, et al. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis[J]. Mol Cell, 2011, 44(5): 698-709. [28] ALOKE C, ONISURU O O, ACHILONU I. Glutathione S-transferase: a versatile and dynamic enzyme[J]. Biochem Biophys Res Commun, 2024, 734: 150774. [29] AWASTHI Y C, RAMANA K V, CHAUDHARY P, et al. Regulatory roles of glutathione-S-transferases and 4-hydroxynonenal in stress-mediated signaling and toxicity[J]. Free Radic Biol Med, 2017, 111: 235-243. [30] 张然然, 荣 敏, 董依萌, 等. 不同生长时期梅花鹿鹿茸代谢组分析[J]. 畜牧兽医学报, 2022, 53(12): 4518-4526. ZHANG R R, RONG M, DONG Y M, et al. Metabolomic analysis of sika deer antler in different growth stages[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4518-4526. (in Chinese) [31] 邬慧慧. 高低产鹿茸软骨层RNA-seq分析及花生四烯酸对鹿茸软骨细胞增殖影响的研究[D]. 武汉:华中农业大学, 2023: 38-40. WU H H. RNA-seq analysis of high and low yielding deer antlercartilage layer and effects of arachidonic acid on theproliferation of deer antler chondrocytes[D]. Wuhan: Huazhong Agricultural University, 2023: 38-40. (in Chinese) [32] SCIAN M, PAÇO L, MURPHREE T A, et al. Reversibility and low commitment to forward catalysis in the conjugation of lipid alkenals by glutathione transferase A4-4[J]. Biomolecules, 2023, 13(2): 329. [33] PETIT F M, SERRES C, BOURGEON F, et al. Identification of sperm head proteins involved in zona pellucida binding[J]. Hum Reprod, 2013, 28(4): 852-865. [34] AYDEMIR B, ONARAN I, KIZILER A R, et al. Increased oxidative damage of sperm and seminal plasma in men with idiopathic infertility is higher in patients with glutathione S-transferase Mu-1 null genotype[J]. Asian J Androl, 2007, 9(1): 108-115. [35] RUBES J, SELEVAN S G, SRAM R J, et al. GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution[J]. Mutat Res, 2007, 625(1-2): 20-28. [36] LLAVANERA M, MATEO-OTERO Y, BONET S, et al. The triple role of glutathione S-transferases in mammalian male fertility[J]. Cell Mol Life Sci, 2020, 77(12): 2331-2342. [37] 房 磊, 吴 瑕, 杨 晨, 等. 鹿茸对昆明小鼠精子质量的影响[J]. 畜禽业, 2011(6): 42-43. FANG L, WU X, YANG C, et al. The effects of pilose on sperm quality of Kunming mice[J]. Livestock and Poultry Industry, 2011(6): 42-43. (in Chinese) [38] BENEŠ H, VUONG M K, BOERMA M, et al. Protection from oxidative and electrophilic stress in the Gsta4-null mouse heart[J]. Cardiovasc Toxicol, 2013, 13(4): 347-356. [39] ZHENG Z, GRANADO H S, LI C. Fibromodulin, a multifunctional matricellular modulator[J]. J Dent Res, 2023 Feb;102(2):125-134. [40] ZHAO F, BAI Y, XIANG X R, et al. The role of fibromodulin in inflammatory responses and diseases associated with inflammation[J]. Front Immunol, 2023, 14: 1191787. [41] ALCAIDE-RUGGIERO L, CUGAT R, DOMÍNGUEZ J M. Proteoglycans in articular cartilage and their contribution to chondral injury and repair mechanisms[J]. Int J Mol Sci, 2023, 24(13): 10824. [42] BOSKEY A L, ROBEY P G, LEIKIN S. The regulatory role of matrix proteins in mineralization of bone[M]. Massachusetts: Avademic Press, 2013: 235-255. [43] ZHENG Z, JAMES A W, LI C S, et al. Fibromodulin reduces scar formation in adult cutaneous wounds by eliciting a fetal-like phenotype[J]. Signal Transduct Target Ther, 2017, 2(1): 17050. [44] XU X, HA P, YEN E, et al. Small leucine-rich proteoglycans in tendon wound healing[J]. Adv Wound Care, 2022, 11(4): 202-214. [45] HILL L J, MOAKES R J A, VAREECHON C, et al. Sustained release of decorin to the surface of the eye enables scarless corneal regeneration[J]. NPJ Regen Med, 2018, 3(1): 23. [46] GUPTA S, BUYANK F, SINHA N R, et al. Decorin regulates collagen fibrillogenesis during corneal wound healing in mouse in vivo[J]. Exp Eye Res, 2022, 216: 108933. [47] HUANG X K, ZHU Z Y, DU M R, et al. FMOD alleviates depression-like behaviors by targeting the PI3K/AKT/mTOR signaling after traumatic brain injury[J]. Neuromol Med, 2024, 26(1): 24. [48] OSHIMA K, SIDDIQUI N, ORFILA J E, et al. A role for decorin in improving motor deficits after traumatic brain injury[J]. Matrix Biol, 2024, 125: 88-99. [49] MOHINDRA P, ZHONG J X, FANG Q, et al. Local decorin delivery via hyaluronic acid microrods improves cardiac performance, ventricular remodeling after myocardial infarction[J]. NPJ Regen Med, 2023, 8(1): 60. [50] ANDENS K, LUNDE I G, MOHAMMADZADEH N, et al. The extracellular matrix proteoglycan fibromodulin is upregulated in clinical and experimental heart failure and affects cardiac remodeling[J]. PLoS One, 2018, 13(7): e0201422. [51] TU T, SHI Y, ZHOU B Y, et al. Type I collagen and fibromodulin enhance the tenogenic phenotype of hASCs and their potential for tendon regeneration[J]. NPJ Regen Med, 2023, 8(1): 67. [52] DELALANDE A, GOSSELIN M P, SUWALSKI A, et al. Enhanced Achilles tendon healing by fibromodulin gene transfer[J]. Nanomedicine, 2015, 11(7): 1735-1744. [53] PECHANEC M Y, BOYD T N, BAAR K, et al. Adding exogenous biglycan or decorin improves tendon formation for equine peritenon and tendon proper cells in vitro[J]. BMC Musculoskelet Disord, 2020, 21(1): 627. [54] DUNKMAN A A, BUCKLEY M R, MIENALTOWSKI M J, et al. The tendon injury response is influenced by decorin and biglycan[J]. Ann Biomed Eng, 2014, 42(3): 619-630. [55] WANG M Y, LIU W J, WU L Y, et al. The research progress in transforming growth factor-β2[J]. Cells, 2023, 12(23): 2739. [56] KOCH D W, SCHNABEL L V, ELLIS I M, et al. TGF-β2 enhances expression of equine bone marrow-derived mesenchymal stem cell paracrine factors with known associations to tendon healing[J]. Stem Cell Res Ther, 2022, 13(1): 477. [57] HAGA M, IIDA K, OKADA M. Positive and negative feedback regulation of the TGF-β1 explains two equilibrium states in skin aging[J]. iScience, 2024, 27(5): 109708. |