

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (9): 4393-4409.doi: 10.11843/j.issn.0366-6964.2025.09.022
贺慧慧1(
), 张汉达1, 张然然1, 王天骄1, 李功腾2, 葛云花1,*(
), 邢秀梅1,*(
)
收稿日期:2025-03-04
出版日期:2025-09-23
发布日期:2025-09-30
通讯作者:
葛云花,邢秀梅
E-mail:18317278873@163.com;325828629@qq.com;xingxiumei2004@126.com
作者简介:贺慧慧(1998-), 女, 河南焦作人,硕士生,主要从事鹿茸蛋白质组学研究,E-mail: 18317278873@163.com
基金资助:
HE Huihui1(
), ZHANG Handa1, ZHANG Ranran1, WANG Tianjiao1, LI Gongteng2, GE Yunhua1,*(
), XING Xiumei1,*(
)
Received:2025-03-04
Online:2025-09-23
Published:2025-09-30
Contact:
GE Yunhua, XING Xiumei
E-mail:18317278873@163.com;325828629@qq.com;xingxiumei2004@126.com
摘要:
旨在从差异蛋白质组学角度探究梅花鹿茸、马鹿茸和赤鹿茸的组分和肽段序列差异,为鹿茸的鉴别和质量评价提供精准的科学依据。本研究以成年健康公鹿采收的梅花鹿茸、马鹿茸和赤鹿茸组织为试验材料,共分为3个组,二杠梅花鹿茸10个,三杈马鹿茸10个,三杈赤鹿茸7个,样品处理后利用4D-DIA蛋白质组学技术,结合生物信息学方法对差异表达蛋白和差异肽段进行分析。结果,共鉴定到7 377个蛋白质和56 739个肽段,共有蛋白6 486个,共有肽段41 878个,共鉴定到640个差异表达蛋白。梅花鹿茸与马鹿茸比较组共筛选出461个差异表达蛋白,其中270个上调表达,191个下调表达。梅花鹿茸与赤鹿茸比较组共筛选出391个差异表达蛋白,其中246个上调表达,145个下调表达。马鹿茸与赤鹿茸比较组共筛选出96个差异表达蛋白,其中50个上调表达,46个下调表达。差异表达蛋白主要参与肽酶活性的负调控、急性炎症反应的调节、蛋白质激活级联的调控等生物过程和产生IgA的肠道免疫网络、补体与凝血级联等通路。梅花鹿茸、马鹿茸和赤鹿茸分别筛选到5个、1个和3个候选特征肽段。梅花鹿茸、马鹿茸和赤鹿茸的蛋白质表达量和肽段序列存在一定差异,该研究可为梅花鹿茸、马鹿茸与赤鹿茸的鉴别提供依据,也可为阐明梅花鹿茸、马鹿茸与赤鹿茸的生物学差异提供一定的理论支撑。
中图分类号:
贺慧慧, 张汉达, 张然然, 王天骄, 李功腾, 葛云花, 邢秀梅. 梅花鹿茸、马鹿茸和赤鹿茸的差异蛋白质组学分析及候选特征肽段的筛选[J]. 畜牧兽医学报, 2025, 56(9): 4393-4409.
HE Huihui, ZHANG Handa, ZHANG Ranran, WANG Tianjiao, LI Gongteng, GE Yunhua, XING Xiumei. Comparative Proteomics Analysis and Screening of Candidate Characteristic Peptides of Sika Deer Velvet Antler, Red Deer Velvet Antler and New Zealand Red Deer Velvet Antler[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4393-4409.
表 1
梅花鹿茸、马鹿茸和赤鹿茸蛋白浓度"
| 样品序号 Sample number | 蛋白质浓度/(μg·μL-1) Protein concentration | 终体积/μL Volume | 蛋白总量/μg Total protein |
| H1 | 7.37 | 100 | 737 |
| H2 | 7.19 | 100 | 719 |
| H3 | 7.23 | 100 | 723 |
| H4 | 7.03 | 100 | 703 |
| H5 | 5.26 | 100 | 526 |
| H6 | 5.56 | 100 | 556 |
| H7 | 7.81 | 100 | 781 |
| H8 | 7.42 | 100 | 742 |
| H9 | 7.66 | 100 | 766 |
| H10 | 7.13 | 100 | 713 |
| M1 | 5.69 | 100 | 569 |
| M2 | 6.41 | 100 | 641 |
| M3 | 7.67 | 100 | 767 |
| M4 | 7.18 | 100 | 718 |
| M5 | 7.33 | 100 | 733 |
| M6 | 7.46 | 100 | 746 |
| M7 | 7.00 | 100 | 700 |
| M8 | 6.46 | 100 | 646 |
| M9 | 6.55 | 100 | 655 |
| M10 | 6.35 | 100 | 635 |
| X1 | 5.09 | 100 | 509 |
| X2 | 6.04 | 100 | 604 |
| X3 | 6.56 | 100 | 656 |
| X4 | 6.25 | 100 | 625 |
| X5 | 6.34 | 100 | 634 |
| X6 | 7.52 | 100 | 752 |
| X7 | 7.74 | 100 | 774 |
表 2
梅花鹿茸、马鹿茸和赤鹿茸的特异性肽段"
| 编号 No. | 序列 Sequence | 缩写 Abbreviation | 蛋白名称 Protein name | 物种 Species | H vs. M变化倍数 Fold change | H vs. X变化倍数 Fold change | M vs. X变化倍数 Fold change |
| 1 | PGGDTIFGR | HINT1 | 组氨酸三联体核苷酸结合蛋白1 | 梅花鹿茸 | 0.80 | — | — |
| 2 | ASSSSAAAAAASSSASCSR | CKAP4 | 细胞骨架相关蛋白4 | 梅花鹿茸 | — | — | — |
| 3 | SLAEVAEQLLDR | B3AT | 阴离子转运蛋白(带3) | 梅花鹿茸 | 0.52 | 0.56 | — |
| 4 | DNLLPVLLLK | B3AT | 阴离子转运蛋白(带3) | 梅花鹿茸 | 0.52 | 0.56 | — |
| 5 | ACTILLR | CCT3 | T复合物蛋白1亚基γ | 梅花鹿茸 | 0.80 | — | — |
| 6 | TSTGSTSASTTVAATGSK | CLIP2 | 含CAP-Gly结构域的接头蛋白2 | 梅花鹿茸 | 0.85 | — | — |
| 7 | AFEPYFEILEAYSTK | SGPL1 | 鞘氨醇-1-磷酸裂解酶1 | 梅花鹿茸 | — | — | — |
| 8 | GLGAGAGAGEESPAACLPR | PGRMC2 | 膜相关孕激素受体2 | 马鹿茸 | — | 1.47 | — |
| 9 | NNVDSVSQTSSSTFQYITLLK | FGB | 纤维蛋白原β链 | 赤鹿茸 | 0.69 | — | — |
| 10 | GVLIDTSR | HEXB | 氨基己糖苷酶B | 赤鹿茸 | 1.20 | 1.15 | — |
| 11 | ALDELLQASHDAGR | PTX3 | 五聚蛋白3 | 赤鹿茸 | — | — | — |
| 12 | QVTPQHTFR | CFH | 补体因子H | 赤鹿茸 | 0.72 | 0.67 | — |
| 13 | GIPDDVDAALALPAHNYNSR | VTN | 玻连蛋白 | 赤鹿茸 | — | — | — |
| 14 | MELLAYLLGEK | GSTK1 | 谷胱甘肽S转移酶K1 | 赤鹿茸 | — | 1.33 | — |
| 15 | VQASTAMGSPK | TN | 腱生蛋白 | 赤鹿茸 | 1.14 | — | — |
| 16 | CTCEMETLISMLQIPR | LRRC17 | 富亮氨酸重复序列蛋白17 | 赤鹿茸 | 0.61 | 0.57 | — |
| 17 | SAGAASAADHGAPGVAPAQHSLGPGR | LAGE3 | EKC/KEOPS复合体亚基 | 赤鹿茸 | — | — | — |
| 18 | AEQVEGVINLGNTLVDR | SPTA1 | 血影蛋白α链 | 赤鹿茸 | 0.41 | 0.46 | — |
表 3
与生物学差异和药用价值相关的差异表达蛋白质"
| 蛋白质名称 Protein name | H vs. M变化倍数 H vs. M fold change | H vs. X变化倍数 H vs. X fold change | M vs. X变化倍数 M vs. X fold change |
| CYP1B1 | 0.49 | 0.55 | — |
| ATG12 | 2.22 | 2.01 | — |
| GSTA1 | 1.54 | 2.47 | 1.60 |
| GSTA2 | 1.50 | 2.90 | 1.92 |
| GSTA4 | 3.65 | 3.50 | — |
| GSTM1 | 0.43 | 0.63 | — |
| GSTM3 | 0.34 | 0.36 | — |
| FMOD | 3.00 | 2.12 | — |
| DCN | 2.15 | 1.53 | — |
| TGF-β2 | 2.91 | 2.53 | — |
| THBS1 | — | — | — |
| 1 | 潘黛安, 刘那, 王思明, 等. 鹿茸水溶性蛋白的结构表征与抗疲劳活性研究[J]. 中国医院药学杂志, 2024, 44 (21): 2470- 2476. |
| PAN D A , LIU N , WANG S M , et al. Structural characterization and anti-fatigue activity of water-soluble protein of velvet antler[J]. Chinese Journal of Hospital Pharmacy, 2024, 44 (21): 2470- 2476. | |
| 2 | 中华人民共和国药典2020年版. 一部[S]. 2020: 336. |
| Pharmacopoeia of the People 's Republic of China 2020 Edition. Part Ⅰ[S]. 2020: 336. (in Chinese) | |
| 3 |
MENG D S , LI Y R , CHEN Z , et al. Exosomes derived from antler mesenchymal stem cells promote wound healing by miR-21-5p/STAT3 Axis[J]. Int J Nanomed, 2024, 19, 11257- 11273.
doi: 10.2147/IJN.S481044 |
| 4 |
WANG Y S , CHU W H , ZHAI J J , et al. High quality repair of osteochondral defects in rats using the extracellular matrix of antler stem cells[J]. World J Stem Cells, 2024, 16 (2): 176- 190.
doi: 10.4252/wjsc.v16.i2.176 |
| 5 |
LIU Z P , LI W , GENG L L , et al. Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor[J]. Cell Discov, 2022, 8 (1): 6.
doi: 10.1038/s41421-021-00361-3 |
| 6 |
LIU L Y , JIAO Y , YANG M , et al. Network pharmacology, molecular docking and molecular dynamics to explore the potential immunomodulatory mechanisms of deer antler[J]. Int J Mol Sci, 2023, 24 (12): 10370.
doi: 10.3390/ijms241210370 |
| 7 | 邢秀梅, 张然然, 孔繁涛. 新冠疫情对中国茸鹿产业的影响分析[J]. 农业展望, 2021, 17 (4): 52- 55. |
| XING X M , ZHANG R R , KONG F T . Influence of COVID-19 pandemic on China 's velvet deer industry[J]. Agricultural Outlook, 2021, 17 (4): 52- 55. | |
| 8 | 张然然, 孙印石, 王桂武, 等. 吉林省梅花鹿产业发展的思考[J]. 特产研究, 2022, 44 (5): 151- 154. |
| ZHANG R R , SUN Y S , WANG G W , et al. Thoughts on accelerating the development of sika deer industry in Jilin Province[J]. Special Wild Economic Animal and Plant Research, 2022, 44 (5): 151- 154. | |
| 9 | 李寅博, 刘贺, 刘迪, 等. 抚顺地区清原马鹿繁育及种质资源利用现状及对策建议[J]. 畜禽业, 2024, 35 (8): 25- 28. |
| LI Y B , LIU H , LIU D , et al. Current situation of breeding and germplasm resources utilization of qingyuan wapiti in fushun area and suggestions on countermeasures[J]. Livestock and Poultry Industry, 2024, 35 (8): 25- 28. | |
| 10 | 靳梦亚, 董玲, 罗元明, 等. 利用iTRAQ技术联合2D LC-MS研究不同加工工艺鹿茸的差异蛋白质组学[J]. 药学学报, 2015, 50 (12): 1637- 1644. |
| JIN M Y , DONG L , LUO Y M , et al. Comparative proteomics study of different processing technology for pilose antler using iTRAQ technology coupled with 2D LC-MS[J]. Acta Pharmaceutica Sinica, 2015, 50 (12): 1637- 1644. | |
| 11 | 刘文媛. 基于蛋白质组学和代谢组学的鹿茸区段划分与生物活性物质的分析与鉴别[D]. 北京: 中国农业科学院, 2020: 6-19. |
| LIU W Y. Analysis and identification of bioactive compounds from four portions of velvet antlers in sika deer (Cervus nippon) based on proteomics and metabolomics[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020: 6-19. (in Chinese) | |
| 12 |
SU H , TANG X L , ZHANG X C , et al. Comparative proteomics analysis reveals the difference during antler regeneration stage between red deer and sika deer[J]. PeerJ, 2019, 7, e7299.
doi: 10.7717/peerj.7299 |
| 13 | 周秋丽, 刘永强, 王颖, 等. 梅花鹿茸和马鹿茸多肽化学性质及生物活性比较[J]. 中国中药杂志, 2001 (10): 51- 54. |
| ZHOU Q L , LIU Y Q , WANG Y , et al. A compaison of chemical composition and bioactivity of polvpeptides from velvet antlers of Cervus nippon Temminck and Cervus elaphus Linnaeus[J]. China Journal of Chinese Materia Medica, 2001 (10): 51- 54. | |
| 14 | 阳洪波, 王韦达, 李意, 等. 基于特征肽段的液相色谱-质谱技术鉴定胶原蛋白的物种来源[J]. 分析测试学报, 2018, 37 (11): 1279- 1286. |
| YANG H B , WANG W D , LI Y , et al. Identification of species origin of collagen based on liquid chromatography-mass spectrometry with peptide markers[J]. Journal of Instrumental Analysis, 2018, 37 (11): 1279- 1286. | |
| 15 |
JOHNSON P E , BAUMGARTNER S , ALDICK T , et al. Current perspectives and recommendations for the development of mass spectrometry methods for the determination of allergens in foods[J]. J AOAC Int, 2011, 94 (4): 1026- 1033.
doi: 10.1093/jaoac/94.4.1026 |
| 16 | 张淑霞, 祝伟霞, 刘胜男, 等. 基于HPLC-Q-Exactive的PRM技术检测核桃露中核桃、杏仁、花生、大豆源性成分[J]. 食品科技, 2020, 45 (9): 273- 280. |
| ZHANG S X , ZHU W X , LIU S N , et al. Detection of walnut, almond, peanut and soybean derived ingredients in walnut drink based on HPLC-Q-Exactive with parallel reaction monitoring mode[J]. Food Science and Technology, 2020, 45 (9): 273- 280. | |
| 17 | 张九凯, 马聪聪, 邢冉冉, 等. 基于鸟枪蛋白组学与质谱多反应监测技术的三文鱼物种鉴别研究[J]. 食品安全质量检测学报, 2022, 13 (16): 5271- 5278. |
| ZHANG J K , MA C C , XING R R , et al. Authentication of salmon species based on shotgun proteomics and mass spectrometry multiple reaction monitoring techniques[J]. Journal of Food Safety & Quality, 2022, 13 (16): 5271- 5278. | |
| 18 |
王磊, 张然然, 刘华淼, 等. 马鹿鹿茸不同部位差异蛋白质组学分析[J]. 畜牧兽医学报, 2017, 48 (8): 1401- 1415.
doi: 10.11843/j.issn.0366-6964.2017.08.004 |
|
WANG L , ZHANG R R , LIU H M , et al. Comparative proteomics analysis on different parts of Cervus elaphus songaricus velvet antler[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48 (8): 1401- 1415.
doi: 10.11843/j.issn.0366-6964.2017.08.004 |
|
| 19 |
张然然, 刘华淼, 邵元臣, 等. 不同生长时期梅花鹿鹿茸差异蛋白质组学分析[J]. 畜牧兽医学报, 2016, 47 (3): 493- 501.
doi: 10.11843/j.issn.0366-6964.2016.03.010 |
|
ZHANG R R , LIU H M , SHAO Y C . Comparative proteomic analysis in different growth stages of sika deer velvet antler[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47 (3): 493- 501.
doi: 10.11843/j.issn.0366-6964.2016.03.010 |
|
| 20 |
LOU R , SHUI W . Acquisition and analysis of DIA-based proteomic data: a comprehensive survey in 2023[J]. Mol Cell Proteomics, 2024, 23 (2): 100712.
doi: 10.1016/j.mcpro.2024.100712 |
| 21 |
VITKO D , CHOU W F , NOURI GOLMAEI S , et al. timsTOF HT improves protein identification and quantitative reproducibility for deep unbiased plasma protein biomarker discovery[J]. J Proteome Res, 2024, 23 (3): 929- 938.
doi: 10.1021/acs.jproteome.3c00646 |
| 22 |
ALSUBAIT A , ALDOSSARY W , RASHID M , et al. CYP1B1 gene: implications in glaucoma and cancer[J]. J Cancer, 2020, 11 (16): 4652- 4661.
doi: 10.7150/jca.42669 |
| 23 |
KWON Y J , BAEK H S , YE D J , et al. CYP1B1 enhances cell proliferation and metastasis through induction of EMT and activation of Wnt/β-catenin signaling via Sp1 upregulation[J]. PLoS One, 2016, 11 (3): e0151598.
doi: 10.1371/journal.pone.0151598 |
| 24 |
LI F , ZHU W F , GONZALEZ F J . Potential role of CYP1B1 in the development and treatment of metabolic diseases[J]. Pharm Ther, 2017, 178, 18- 30.
doi: 10.1016/j.pharmthera.2017.03.007 |
| 25 |
ALLEN S P , MADEN M , PRICE J S . A role for retinoic acid in regulating the regeneration of deer antlers[J]. Dev Biol, 2002, 251 (2): 409- 423.
doi: 10.1006/dbio.2002.0816 |
| 26 |
LAZZERI G , LENZI P , SIGNORINI G , et al. Retinoic acid promotes neuronal differentiation while increasing proteins and organelles related to autophagy[J]. Int J Mol Sci, 2025, 26 (4): 1691.
doi: 10.3390/ijms26041691 |
| 27 |
RUBINSTEIN A D , EISENSTEIN M , BER Y , et al. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis[J]. Mol Cell, 2011, 44 (5): 698- 709.
doi: 10.1016/j.molcel.2011.10.014 |
| 28 |
ALOKE C , ONISURU O O , ACHILONU I . Glutathione S-transferase: a versatile and dynamic enzyme[J]. Biochem Biophys Res Commun, 2024, 734, 150774.
doi: 10.1016/j.bbrc.2024.150774 |
| 29 |
AWASTHI Y C , RAMANA K V , CHAUDHARY P , et al. Regulatory roles of glutathione-S-transferases and 4-hydroxynonenal in stress-mediated signaling and toxicity[J]. Free Radic Biol Med, 2017, 111, 235- 243.
doi: 10.1016/j.freeradbiomed.2016.10.493 |
| 30 |
张然然, 荣敏, 董依萌, 等. 不同生长时期梅花鹿鹿茸代谢组分析[J]. 畜牧兽医学报, 2022, 53 (12): 4518- 4526.
doi: 10.11843/j.issn.0366-6964.2022.12.037 |
|
ZHANG R R , RONG M , DONG Y M , et al. Metabolomic analysis of sika deer antler in different growth stages[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (12): 4518- 4526.
doi: 10.11843/j.issn.0366-6964.2022.12.037 |
|
| 31 | 邬慧慧. 高低产鹿茸软骨层RNA-seq分析及花生四烯酸对鹿茸软骨细胞增殖影响的研究[D]. 武汉: 华中农业大学, 2023: 38-40. |
| WU H H. RNA-seq analysis of high and low yielding deer antlercartilage layer and effects of arachidonic acid on theproliferation of deer antler chondrocytes[D]. Wuhan: Huazhong Agricultural University, 2023: 38-40. (in Chinese) | |
| 32 |
SCIAN M , PAÇO L , MURPHREE T A , et al. Reversibility and low commitment to forward catalysis in the conjugation of lipid alkenals by glutathione transferase A4-4[J]. Biomolecules, 2023, 13 (2): 329.
doi: 10.3390/biom13020329 |
| 33 |
PETIT F M , SERRES C , BOURGEON F , et al. Identification of sperm head proteins involved in zona pellucida binding[J]. Hum Reprod, 2013, 28 (4): 852- 865.
doi: 10.1093/humrep/des452 |
| 34 |
AYDEMIR B , ONARAN I , KIZILER A R , et al. Increased oxidative damage of sperm and seminal plasma in men with idiopathic infertility is higher in patients with glutathione S-transferase Mu-1 null genotype[J]. Asian J Androl, 2007, 9 (1): 108- 115.
doi: 10.1111/j.1745-7262.2007.00237.x |
| 35 |
RUBES J , SELEVAN S G , SRAM R J , et al. GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution[J]. Mutat Res, 2007, 625 (1-2): 20- 28.
doi: 10.1016/j.mrfmmm.2007.05.012 |
| 36 |
LLAVANERA M , MATEO-OTERO Y , BONET S , et al. The triple role of glutathione S-transferases in mammalian male fertility[J]. Cell Mol Life Sci, 2020, 77 (12): 2331- 2342.
doi: 10.1007/s00018-019-03405-w |
| 37 | 房磊, 吴瑕, 杨晨, 等. 鹿茸对昆明小鼠精子质量的影响[J]. 畜禽业, 2011 (6): 42- 43. |
| FANG L , WU X , YANG C , et al. The effects of pilose on sperm quality of Kunming mice[J]. Livestock and Poultry Industry, 2011 (6): 42- 43. | |
| 38 |
BENEŠ H , VUONG M K , BOERMA M , et al. Protection from oxidative and electrophilic stress in the Gsta4-null mouse heart[J]. Cardiovasc Toxicol, 2013, 13 (4): 347- 356.
doi: 10.1007/s12012-013-9215-1 |
| 39 | ZHENG Z, GRANADO H S, LI C. Fibromodulin, a multifunctional matricellular modulator[J]. J Dent Res, 2023 Feb; 102(2): 125-134. |
| 40 |
ZHAO F , BAI Y , XIANG X R , et al. The role of fibromodulin in inflammatory responses and diseases associated with inflammation[J]. Front Immunol, 2023, 14, 1191787.
doi: 10.3389/fimmu.2023.1191787 |
| 41 |
ALCAIDE-RUGGIERO L , CUGAT R , DOMÍNGUEZ J M . Proteoglycans in articular cartilage and their contribution to chondral injury and repair mechanisms[J]. Int J Mol Sci, 2023, 24 (13): 10824.
doi: 10.3390/ijms241310824 |
| 42 | BOSKEY A L , ROBEY P G , LEIKIN S . The regulatory role of matrix proteins in mineralization of bone[M]. Massachusetts: Avademic Press, 2013: 235- 255. |
| 43 |
ZHENG Z , JAMES A W , LI C S , et al. Fibromodulin reduces scar formation in adult cutaneous wounds by eliciting a fetal-like phenotype[J]. Signal Transduct Target Ther, 2017, 2 (1): 17050.
doi: 10.1038/sigtrans.2017.50 |
| 44 |
XU X , HA P , YEN E , et al. Small leucine-rich proteoglycans in tendon wound healing[J]. Adv Wound Care, 2022, 11 (4): 202- 214.
doi: 10.1089/wound.2021.0069 |
| 45 |
HILL L J , MOAKES R J A , VAREECHON C , et al. Sustained release of decorin to the surface of the eye enables scarless corneal regeneration[J]. NPJ Regen Med, 2018, 3 (1): 23.
doi: 10.1038/s41536-018-0061-4 |
| 46 |
GUPTA S , BUYANK F , SINHA N R , et al. Decorin regulates collagen fibrillogenesis during corneal wound healing in mouse in vivo[J]. Exp Eye Res, 2022, 216, 108933.
doi: 10.1016/j.exer.2022.108933 |
| 47 |
HUANG X K , ZHU Z Y , DU M R , et al. FMOD alleviates depression-like behaviors by targeting the PI3K/AKT/mTOR signaling after traumatic brain injury[J]. Neuromol Med, 2024, 26 (1): 24.
doi: 10.1007/s12017-024-08793-2 |
| 48 |
OSHIMA K , SIDDIQUI N , ORFILA J E , et al. A role for decorin in improving motor deficits after traumatic brain injury[J]. Matrix Biol, 2024, 125, 88- 99.
doi: 10.1016/j.matbio.2023.12.005 |
| 49 |
MOHINDRA P , ZHONG J X , FANG Q , et al. Local decorin delivery via hyaluronic acid microrods improves cardiac performance, ventricular remodeling after myocardial infarction[J]. NPJ Regen Med, 2023, 8 (1): 60.
doi: 10.1038/s41536-023-00336-w |
| 50 |
ANDENÆS K , LUNDE I G , MOHAMMADZADEH N , et al. The extracellular matrix proteoglycan fibromodulin is upregulated in clinical and experimental heart failure and affects cardiac remodeling[J]. PLoS One, 2018, 13 (7): e0201422.
doi: 10.1371/journal.pone.0201422 |
| 51 |
TU T , SHI Y , ZHOU B Y , et al. Type I collagen and fibromodulin enhance the tenogenic phenotype of hASCs and their potential for tendon regeneration[J]. NPJ Regen Med, 2023, 8 (1): 67.
doi: 10.1038/s41536-023-00341-z |
| 52 |
DELALANDE A , GOSSELIN M P , SUWALSKI A , et al. Enhanced Achilles tendon healing by fibromodulin gene transfer[J]. Nanomedicine, 2015, 11 (7): 1735- 1744.
doi: 10.1016/j.nano.2015.05.004 |
| 53 |
PECHANEC M Y , BOYD T N , BAAR K , et al. Adding exogenous biglycan or decorin improves tendon formation for equine peritenon and tendon proper cells in vitro[J]. BMC Musculoskelet Disord, 2020, 21 (1): 627.
doi: 10.1186/s12891-020-03650-2 |
| 54 |
DUNKMAN A A , BUCKLEY M R , MIENALTOWSKI M J , et al. The tendon injury response is influenced by decorin and biglycan[J]. Ann Biomed Eng, 2014, 42 (3): 619- 630.
doi: 10.1007/s10439-013-0915-2 |
| 55 |
WANG M Y , LIU W J , WU L Y , et al. The research progress in transforming growth factor-β2[J]. Cells, 2023, 12 (23): 2739.
doi: 10.3390/cells12232739 |
| 56 |
KOCH D W , SCHNABEL L V , ELLIS I M , et al. TGF-β2 enhances expression of equine bone marrow-derived mesenchymal stem cell paracrine factors with known associations to tendon healing[J]. Stem Cell Res Ther, 2022, 13 (1): 477.
doi: 10.1186/s13287-022-03172-9 |
| 57 |
HAGA M , ⅡDA K , OKADA M . Positive and negative feedback regulation of the TGF-β1 explains two equilibrium states in skin aging[J]. iScience, 2024, 27 (5): 109708.
doi: 10.1016/j.isci.2024.109708 |
| [1] | 刘雨欣, 陈思, 高阳, 顾德媛, 彭海涛, 张东, 张如, 许会会, 刘亚乔, 杨艳玲. 羊布鲁菌外膜囊泡蛋白质组学分析及免疫原性评价[J]. 畜牧兽医学报, 2025, 56(7): 3378-3389. |
| [2] | 侯中一, 王宝维, 张名爱, 孔敏, 张晶, 王秉翰, 岳斌, 鲁秀, 凡文磊. 基于蛋白质组学解析鹅肥肝形成的脂质代谢调控机制[J]. 畜牧兽医学报, 2025, 56(5): 2182-2193. |
| [3] | 姚颖, 周应聪, 杜培岩, 李一娟, 钱文洁, 李柳杨, 余志鹏, 崔燕, 余四九, 樊江峰. 基于TMT技术的牦牛妊娠期血清蛋白质组学分析[J]. 畜牧兽医学报, 2024, 55(1): 192-206. |
| [4] | 颜硕, 赵珊珊, 朱振东, 潘庆杰, 董焕声. 绵羊精子细胞核质转运蛋白KPNA4的研究[J]. 畜牧兽医学报, 2022, 53(7): 2194-2201. |
| [5] | 付明, 贺君君, 朱兴全, 丛伟. 弓形虫卵囊感染小鼠的急性期与慢性期的脑组织蛋白质组变化[J]. 畜牧兽医学报, 2022, 53(2): 556-566. |
| [6] | 张安荣, 吴正可, 陈志敏, 常文环, 蔡辉益, 刘国华, 郑爱娟. 蛋白质组学技术解析急性免疫应激影响肉仔鸡肉品质的机理[J]. 畜牧兽医学报, 2021, 52(8): 2138-2150. |
| [7] | 王欣悦, 赵志达, 石田培, 尚明玉, 张莉. 基于平行反应监测验证技术分析绵羊胚胎骨骼肌蛋白质组数据[J]. 畜牧兽医学报, 2020, 51(7): 1587-1596. |
| [8] | 彭梦玲, 胡文业, 李乃馨, 王菊花, 丁建平, 周杰. 组学技术分析肉鸡胚胎发育过程中肝脏蛋白表达的变化[J]. 畜牧兽医学报, 2020, 51(2): 252-259. |
| [9] | 赵畅, 张江, 白云龙, 孙书函, 宋玉锡, 夏成. 基于iTRAQ技术的卵巢静止奶牛血清差异蛋白分析[J]. 畜牧兽医学报, 2019, 50(5): 972-982. |
| [10] | 周玉成, 郭梦楠, 程世鹏, 张海威, 周曼莉, 乔连江, 杨艳玲. 布鲁菌16M感染后宿主免疫相关蛋白质泛素化修饰的差异分析[J]. 畜牧兽医学报, 2019, 50(11): 2290-2301. |
| [11] | 张然然, 刘华淼, 王洪亮, 李洋, 邢秀梅. 基于label-free技术的梅花鹿(Cervus nippon)茸角蛋白组分比较[J]. 畜牧兽医学报, 2019, 50(10): 2005-2012. |
| [12] | 徐梦飞, 卢平萍, 马勋, 张艳艳, 王炜烨, 孟季蒙, 王正荣, 薄新文. 细粒棘球绦虫蛋白质组学研究进展[J]. 畜牧兽医学报, 2018, 49(3): 466-476. |
| [13] | 王磊, 张然然, 刘华淼, 刘汇涛, 周永娜, 董世武, 邢秀梅. 马鹿鹿茸不同部位差异蛋白质组学分析[J]. 畜牧兽医学报, 2017, 48(8): 1401-1415. |
| [14] | 李华玮, 陈鑫鑫, 赵孟孟, 周恩民, 乔松林, 张改平. 猪繁殖与呼吸综合征病毒感染猪肺泡巨噬细胞天然免疫信号通路相关分子变化分析[J]. 畜牧兽医学报, 2017, 48(7): 1288-1299. |
| [15] | 刘华淼, 鞠妍, 张然然, 邢秀梅. 基于蛋白质组学技术的鹿茸不同部位差异蛋白筛选[J]. 畜牧兽医学报, 2017, 48(4): 618-626. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||