1 |
PILESM,BERGSMAR,GIANOLAD,et al.Feature selection stability and accuracy of prediction models for genomic prediction of residual feed intake in pigs using machine learning[J].Front Genet,2021,12,611506.
doi: 10.3389/fgene.2021.611506
|
2 |
MUÑOZM,BOZZIR,GARCÍA-CASCOJ,et al.Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip[J].Sci Rep,2019,9(1):13546.
doi: 10.1038/s41598-019-49830-6
|
3 |
WELLMANNR,PREUSSS,THOLENE,et al.Genomic selection using low density marker panels with application to a sire line in pigs[J].Genet Sel Evol,2013,45(1):28.
doi: 10.1186/1297-9686-45-28
|
4 |
MEUWISSENT H,HAYESB J,GODDARDM E.Prediction of total genetic value using genome-wide dense marker maps[J].Genetics,2001,157(4):1819-1829.
doi: 10.1093/genetics/157.4.1819
|
5 |
VANRADENP M.Efficient methods to compute genomic predictions[J].J Dairy Sci,2008,91(11):4414-4423.
doi: 10.3168/jds.2007-0980
|
6 |
LEGARRAA,AGUILARI,MISZTALI.A relationship matrix including full pedigree and genomic information[J].J Dairy Sci,2009,92(9):4656-4663.
doi: 10.3168/jds.2009-2061
|
7 |
MONTESINOS-LÓPEZO A,MONTESINOS-LÓPEZA,PÉREZ-RODRÍGUEZP,et al.A review of deep learning applications for genomic selection[J].BMC Genomics,2021,22(1):19.
doi: 10.1186/s12864-020-07319-x
|
8 |
WANGZ Z,MAH R,LIH W,et al.Multi-trait genomic predictions using GBLUP and Bayesian mixture prior model in beef cattle[J].Anim Res One Health,2023,1(1):17-29.
doi: 10.1002/aro2.13
|
9 |
VARONAL,LEGARRAA,TOROM A,et al.Non-additive effects in genomic selection[J].Front Genet,2018,9,78.
doi: 10.3389/fgene.2018.00078
|
10 |
GIANOLAD,OKUTH,WEIGELK A,et al.Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat[J].BMC Genet,2011,12(1):87.
doi: 10.1186/1471-2156-12-87
|
11 |
YINL L,ZHANGH H,ZHOUX,et al.KAML: improving genomic prediction accuracy of complex traits using machine learning determined parameters[J].Genome Biol,2020,21(1):146.
doi: 10.1186/s13059-020-02052-w
|
12 |
WANGX,SHIS L,WANGG J,et al.Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs[J].J Anim Sci Biotechnol,2022,13(1):60.
doi: 10.1186/s40104-022-00708-0
|
13 |
ABDOLLAHI-ARPANAHIR,GIANOLAD,PEÑAGARICANOF.Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes[J].Genet Sel Evol,2020,52(1):12.
doi: 10.1186/s12711-020-00531-z
|
14 |
SANDHUK S,AOUNM,MORRISC F,et al.Genomic selection for end-use quality and processing traits in soft white winter wheat breeding program with machine and deep learning models[J].Biology (Basel),2021,10(7):689.
|
15 |
GONZÁLEZ-RECIOO,ROSAG J M,GIANOLAD.Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits[J].Livest Sci,2014,166,217-231.
doi: 10.1016/j.livsci.2014.05.036
|
16 |
KASNAVIS A,AMINAFSHARM,SHARIATIM M,et al.The effect of kernel selection on genome wide prediction of discrete traits by Support Vector Machine[J].Gene Rep,2018,11,279-282.
doi: 10.1016/j.genrep.2018.04.006
|
17 |
GHAFOURI-KESBIF,RAHIMI-MIANJIG,HONARVARM,et al.Predictive ability of Random Forests, Boosting, Support Vector Machines and Genomic Best Linear Unbiased Prediction in different scenarios of genomic evaluation[J].Anim Prod Sci,2016,57(2):229-236.
|
18 |
SCHÖLKOPFB,SMOLAA J,WILLIAMSONR C,et al.New support vector algorithms[J].Neural Comput,2000,12(5):1207-1245.
doi: 10.1162/089976600300015565
|
19 |
NOBLEW S.What is a support vector machine?[J].Nat Biotechnol,2006,24(12):1565-1567.
doi: 10.1038/nbt1206-1565
|
20 |
GIANOLAD,WEIGELK A,KRÄMERN,et al.Enhancing genome-enabled prediction by bagging genomic BLUP[J].PLoS One,2014,9(4):e91693.
doi: 10.1371/journal.pone.0091693
|
21 |
WALTERSR,LAURINC,LUBKEG H.An integrated approach to reduce the impact of minor allele frequency and linkage disequilibrium on variable importance measures for genome-wide data[J].Bioinformatics,2012,28(20):2615-2623.
doi: 10.1093/bioinformatics/bts483
|
22 |
BROWNINGB L,ZHOUY,BROWNINGS R.A one-penny imputed genome from next-generation reference panels[J].Am J Hum Genet,2018,103(3):338-348.
doi: 10.1016/j.ajhg.2018.07.015
|
23 |
ZHENGX W,LEVINED,SHENJ,et al.A high-performance computing toolset for relatedness and principal component analysis of SNP data[J].Bioinformatics,2012,28(24):3326-3328.
doi: 10.1093/bioinformatics/bts606
|
24 |
PARKT,CASELLAG.The Bayesian lasso[J].J Am Stat Assoc,2008,103(482):681-686.
doi: 10.1198/016214508000000337
|
25 |
PÉREZP,DE LOS CAMPOSG.Genome-wide regression and prediction with the BGLR statistical package[J].Genetics,2014,198(2):483-495.
doi: 10.1534/genetics.114.164442
|
26 |
XIANGT,LIT,LIJ L,et al.Using machine learning to realize genetic site screening and genomic prediction of productive traits in pigs[J].FASEB J,2023,37(6):e22961.
doi: 10.1096/fj.202300245R
|
27 |
BARRETOC A V,DAS GRAÇAS DIASK O,DE SOUSAI C,et al.Genomic prediction in multi-environment trials in maize using statistical and machine learning methods[J].Sci Rep,2024,14(1):1062.
doi: 10.1038/s41598-024-51792-3
|
28 |
ZHANGZ,ZHANGH,PANR Y,et al.Genetic parameters and trends for production and reproduction traits of a Landrace herd in China[J].J Integr Agric,2016,15(5):1069-1075.
doi: 10.1016/S2095-3119(15)61105-4
|
29 |
ZHANGS Y,ZHANGJ X,OLASEGEB S,et al.Estimation of genetic parameters for reproductive traits in connectedness groups of Duroc, Landrace and Yorkshire pigs in China[J].J Anim Breed Genet,2020,137(2):211-222.
doi: 10.1111/jbg.12431
|
30 |
ZHAOW,LAIX S,LIUD Y,et al.Applications of support vector machine in genomic prediction in pig and maize populations[J].Front Genet,2020,11,598318.
doi: 10.3389/fgene.2020.598318
|
31 |
KASNAVIS A,AFSHARM A,SHARIATIM M,et al.Performance evaluation of support vector machine (SVM)-based predictors in genomic selection[J].Indian J Anim Sci,2017,87(10):1226-1231.
|
32 |
CHERKASSKYV,MAY Q.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Netw,2004,17(1):113-126.
doi: 10.1016/S0893-6080(03)00169-2
|
33 |
ALVESA A C,ESPIGOLANR,BRESOLINT,et al.Genome-enabled prediction of reproductive traits in Nellore cattle using parametric models and machine learning methods[J].Anim Genet,2021,52(1):32-46.
doi: 10.1111/age.13021
|
34 |
MANCINE,MOTAL F M,TULIOZIB,et al.Improvement of genomic predictions in small breeds by construction of genomic relationship matrix through variable selection[J].Front Genet,2022,13,814264.
doi: 10.3389/fgene.2022.814264
|
35 |
SARKARR K,RAOA R,MEHERP K,et al.Evaluation of random forest regression for prediction of breeding value from genomewide SNPs[J].J Genet,2015,94(2):187-192.
doi: 10.1007/s12041-015-0501-5
|
36 |
BANERJEER,MARATHIB,SINGHM.Efficient genomic selection using ensemble learning and ensemble feature reduction[J].J Crop Sci Biotechnol,2020,23(4):311-323.
doi: 10.1007/s12892-020-00039-4
|
37 |
LIANGM,MIAOJ,WANGX Q,et al.Application of ensemble learning to genomic selection in Chinese simmental beef cattle[J].J Anim Breed Genet,2021,138(3):291-299.
doi: 10.1111/jbg.12514
|
38 |
MERRICKL F,CARTERA H.Comparison of genomic selection models for exploring predictive ability of complex traits in breeding programs[J].Plant Genome,2021,14(3):e20158.
doi: 10.1002/tpg2.20158
|
39 |
WANGJ B,ZONGW C,SHIL Y,et al.Using mixed kernel support vector machine to improve the predictive accuracy of genome selection[J].J Integr Agric,2024,
doi: 10.1016/j.jia.2024.03.083
|
40 |
HEINRICHF,LANGET M,KIRCHERM,et al.Exploring the potential of incremental feature selection to improve genomic prediction accuracy[J].Genet Sel Evol,2023,55(1):78.
doi: 10.1186/s12711-023-00853-8
|