1 |
ARCHER G . Staphylococcus aureus: a well-armed pathogen[J]. Clin Infect Dis, 1998, 26 (5): 1179- 1181.
|
2 |
VAUTOR E , MAGNONE V , RIOS G , et al. Genetic differences among Staphylococcus aureus isolates from dairy ruminant species: a single-dye DNA microarray approach[J]. Vet Microbiol, 2009, 133, 105- 114.
|
3 |
MOHAMMAD M , ALI A , NGUYEN M T , et al. Staphylococcus aureus lipoproteins in infectious diseases[J]. Front Microbiol, 2022, 13, 1006765.
|
4 |
CILOGLU F U , CALISKAN A , SARIDAG A M , et al. Drug-resistant Staphylococcus aureus bacteria detection by combining surface-enhanced Raman spectroscopy (SERS) and deep learning techniques[J]. Sci Rep, 2021, 11 (1): 18444.
|
5 |
LIAO Z , LIN K , LIAO W , et al. Transcriptomic analyses reveal the potential antibacterial mechanism of citral against Staphylococcus aureus[J]. Front Microbiol, 2023, 14, 1171339.
|
6 |
ULLAH N , DAR H A , NAZ K , et al. Genomic investigation of methicillin-resistant Staphylococcus aureus ST113 strains isolated from tertiary care hospitals in Pakistan[J]. Antibiotics, 2021, 10 (9): 1121.
|
7 |
BUBECK WARDENBURG J , WILLIAMS W , MISSIAKAS D . Host defenses against Staphylococcus aureus infection require recognition of bacterial lipoproteins[J]. Proc Natl Acad Sci U S A, 2006, 103 (37): 13831- 13836.
|
8 |
THOMAS C , LI Y , KODAMA T , et al. Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis[J]. J Exp Med, 2000, 191 (1): 147- 156.
|
9 |
KAWAI T , AKIRA S . The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat Immunol, 2010, 11 (5): 373- 384.
|
10 |
AKIRA S , TAKEDA K . Toll-like receptor signalling[J]. Nat Rev Immunol, 2004, 4 (7): 499- 511.
|
11 |
DÍAZ-MUÑOZ M , OSMA-GARCÍA I , FRESNO M , et al. Involvement of PGE2 and the cAMP signalling pathway in the up-regulation of COX-2 and mPGES-1 expression in LPS-activated macrophages[J]. Biochem J, 2012, 443 (2): 451- 461.
|
12 |
WåNGGREN K , LALITKUMAR P , STAVREUS-EVERS A , et al. Prostaglandin E2 and F2alpha receptors in the human Fallopian tube before and after mifepristone treatment[J]. Mol Hum Reproduct, 2006, 12 (9): 577- 585.
|
13 |
SERHAN C , LEVY B . Success of prostaglandin E2 in structure-function is a challenge for structure-based therapeutics[J]. Proc Natl Acad Sci U S A, 2003, 100 (15): 8609- 8611.
|
14 |
PARK J Y , PILLINGER M H , ABRAMSON S B . Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases[J]. Clin Immunol, 2006, 119 (3): 229- 240.
|
15 |
VANE J R , BOTTING R M . The mechanism of action of aspirin[J]. Thromb Res, 2003, 110 (5-6): 255- 258.
|
16 |
刘博, 巩志国, 赵佳敏, 等. MLKL对金黄色葡萄球菌感染所致小鼠肝脏和肾脏损伤的调控作用[J]. 中国兽医学报, 2024, 44 (4): 670- 676.
|
|
LIU B , GONG Z , ZHAO J , et al. MLKL-mediated regulation against Staphylococcus aureus infection-induced liver and kidney damage in mice[J]. Chinese Journal of Veterinary Science, 2024, 44 (4): 670- 676.
|
17 |
吴金迪. 金黄色葡萄球菌感染小鼠腹腔巨噬细胞的分子机制及前列腺素E2对其影响的研究[D]. 呼和浩特: 内蒙古农业大学, 2019.
|
|
WU J. Molecular mechanism and the effect of prostaglandin E2 regulate activation of mouse peritoneal macrophages by Staphylococcus aureus [D]. Hohhot: Inner Mongolia Agricultural University, 2019. (in Chinese)
|
18 |
WU J , LIU B , MAO W , et al. Prostaglandin E2 regulates activation of mouse peritoneal macrophages by Staphylococcus aureus through toll-like receptor 2, toll-like receptor 4, and NLRP3 inflammasome signaling[J]. J Innate Immun, 2020, 12 (2): 154- 169.
|
19 |
WANG M , FAN Z , HAN H . Autophagy in Staphylococcus aureus infection[J]. Front Cell Infect Microbiol, 2021, 11, 750222.
|
20 |
MCADOW M , DEDENT A C , EMOLO C , et al. Coagulases as determinants of protective immune responses against Staphylococcus aureus[J]. Infect Immun, 2012, 80 (10): 3389- 3398.
|
21 |
FOSTER T J , GEOGHEGAN J A , GANESH V K , et al. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus[J]. Nat Rev Microbiol, 2013, 12 (1): 49- 62.
|
22 |
KIELIAN T , MOHAMMAD M , NGUYEN M-T , et al. The YIN and YANG of lipoproteins in developing and preventing infectious arthritis by Staphylococcus aureus[J]. PLOS Pathog, 2019, 15 (6): e1007877.
|
23 |
ZLOTNIK A , YOSHIE O . The chemokine superfamily revisited[J]. Immunity, 2012, 36 (5): 705- 716.
|
24 |
GEERT V L , MATHIEU J M B . Death by TNF: a road to inflammation[J]. Nat Rev Immunol, 2022, 23 (5): 289- 303.
|
25 |
SARAIVA M , O 'GARRA A . The regulation of IL-10 production by immune cells[J]. Nat Rev Immunol, 2010, 10 (3): 170- 181.
|
26 |
SCHMALER M , JANN N J , GÖTZ F , et al. Staphylococcal lipoproteins and their role in bacterial survival in mice[J]. Int J Med Microbiol, 2010, 300 (2-3): 155- 160.
|
27 |
MOHAMMAD M , NA M , HU Z , et al. Staphylococcus aureus lipoproteins promote abscess formation in mice, shielding bacteria from immune killing[J]. Commun Biol, 2021, 4 (1): 432.
|
28 |
VIOLA A , MUNARI F , SÁNCHEZ-RODRÍGUEZ R , et al. The Metabolic Signature of Macrophage Responses[J]. Front Immunol, 2019, 10, 1462.
|
29 |
MAMILOS A , WINTER L , SCHMITT V H , et al. Macrophages: From simple phagocyte to an integrative regulatory cell for inflammation and tissue regeneration-A review of the literature[J]. Cells, 2023, 12 (2): 276.
|
30 |
IKUO M . Distinct functions of COX-1 and COX-2[J]. Prostaglandins Other Lipid Mediat, 2002, 68-69, 165- 175.
|