[1] |
FAAS M M, DE VOS P. Uterine NK cells and macrophages in pregnancy[J]. Placenta, 2017, 56:44-52.
|
[2] |
REDLINE R W. Role of uterine natural killer cells and interferon γ in placental development[J]. J Exp Med, 2000, 192(2):F1-F4.
|
[3] |
丁培阳,刘艳利,曹阳坡,等.妊娠山羊子宫uNK细胞与VEGF动态分布研究[J].畜牧兽医学报, 2014, 45(5):821-826.DING P Y, LIU Y L, CAO Y P, et al. Study of the dynamic distribution of uNK cells and VEGF in the pregnant goat[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(5):821-826.(in Chinese)
|
[4] |
RAJAGOPALAN S. HLA-G-mediated NK cell senescence promotes vascular remodeling:implications for reproduction[J]. Cell Mol Immunol, 2014, 11(5):460-466.
|
[5] |
HUANG G A, LIU L L, WANG H S, et al. Tet1 deficiency leads to premature reproductive aging by reducing spermatogonia stem cells and germ cell differentiation[J]. iScience, 2020, 23(3):100908.
|
[6] |
KHOUEIRY R, SOHNI A, THIENPONT B, et al. Lineage-specific functions of TET1 in the postimplantation mouse embryo[J]. Nat Genet, 2017, 49(7):1061-1072.
|
[7] |
YAMAGUCHI S, SHEN L, LIU Y T, et al. Role of Tet1 in erasure of genomic imprinting[J]. Nature, 2013, 504(7480):460-464.
|
[8] |
RAKOCZY J, PADMANABHAN N, KRZAK A M, et al. Dynamic expression of TET1, TET2, and TET3 dioxygenases in mouse and human placentas throughout gestation[J]. Placenta, 2017, 59:46-56.
|
[9] |
JAFARPOUR F, HOSSEINI S M, OSTADHOSSEINI S, et al. Comparative dynamics of 5-methylcytosine reprogramming and TET family expression during preimplantation mammalian development in mouse and sheep[J]. Theriogenology, 2017, 89:86-96.
|
[10] |
谭强,罗南剑,张艳丽,等.山羊早期胎儿组织TET1与Wnt通路基因的表达变化及其相关性[J].中国农业科学, 2017, 50(14):2816-2825.TAN Q, LUO N J, ZHANG Y L et al. Expression patterns and correlation of Wnts and TET1 genes in early fetal tissues of Dazu black goat[J]. Scientia Agricultura Sinica, 2017, 50(14):2816-2825.(in Chinese)
|
[11] |
ZHANG H K, ZHANG X, CLARK E, et al. TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine[J]. Cell Res, 2010, 20(12):1390-1393.
|
[12] |
YANG R L, QU C Y, ZHOU Y, et al. Hydrogen sulfide promotes Tet1-and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis[J]. Immunity, 2015, 43(2):251-263.
|
[13] |
杨晓伟,赵永聚.哺乳动物子宫自然杀伤(uNK)细胞对妊娠的调控作用[J].畜牧兽医学报, 2020, 51(5):899-906.YANG X W, ZHAO Y J. The regulation role of uterine natural killer (uNK) cells during pregnancy in mammals[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5):899-906.(in Chinese)
|
[14] |
KAUFMANN P, BLACK S, HUPPERTZ B. Endovascular trophoblast invasion:implications for the pathogenesis of intrauterine growth retardation and preeclampsia[J]. Biol Reprod, 2003, 69(1):1-7.
|
[15] |
MOR G, ALDO P, ALVERO A B. The unique immunological and microbial aspects of pregnancy[J]. Nat Rev Immunol, 2017, 17(8):469-482.
|
[16] |
LASH G E, SCHIESSL B, KIRKLEY M, et al. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy[J]. J Leukoc Biol, 2006, 80(3):572-580.
|
[17] |
STOIKOS C J, HARRISON C A, SALAMONSEN L A, et al. A distinct cohort of the TGFβ superfamily members expressed in human endometrium regulate decidualization[J]. Hum Reprod, 2008, 23(6):1447-1456.
|
[18] |
张玉杰,彭景楩,卿素珠. TGF-β1对人蜕膜基质细胞中趋化因子及其受体表达的影响[J].动物学杂志, 2012, 47(2):36-45.ZHANG Y J, PENG J P, QING S Z. The Effect of TGF-β1 on expression of chemokine and its receptor in human decidual stromal cells[J]. Chinese Journal of Zoology, 2012, 47(2):36-45.(in Chinese)
|
[19] |
LIU W F, LUO M L, ZOU L, et al. uNK cell-derived TGF-β1 regulates the long noncoding RNA MEG3 to control vascular smooth muscle cell migration and apoptosis in spiral artery remodeling[J]. J Cell Biochem, 2019, 120(9):15997-16007.
|
[20] |
DONG Z J, WEI H M, SUN R, et al. Isolation of murine hepatic lymphocytes using mechanical dissection for phenotypic and functional analysis of NK1. 1+ cells[J]. World J Gastroenterol, 2004, 10(13):1928-1933.
|
[21] |
BURLESON J D, SINIARD D, YADAGIRI V K, et al. TET1 contributes to allergic airway inflammation and regulates interferon and aryl hydrocarbon receptor signaling pathways in bronchial epithelial cells[J]. Sci Rep, 2019, 9(1):7361.
|