1 |
VESTERGAARD M , FREES D , INGMER H . Antibiotic resistance and the MRSA problem[J]. Microbiol Spectr, 2019, 7 (2): GPP3-0057-2018.
|
2 |
DE JONG N W M , VAN KESSEL K P M , VAN STRIJP J A G . Immune evasion by Staphylococcus aureus[J]. Microbiol Spectr, 2019, 7 (2): GPP3-0061-2019.
|
3 |
DEO S , TURTON K L , KAINTH T , et al. Strategies for improving antimicrobial peptide production[J]. Biotechnol Adv, 2022, 59, 107968.
doi: 10.1016/j.biotechadv.2022.107968
|
4 |
BARDAN A , NIZET V , GALLO R L . Antimicrobial peptides and the skin[J]. Expert Opin Biol Ther, 2004, 4 (4): 543- 549.
doi: 10.1517/14712598.4.4.543
|
5 |
YOKOO H , HIRANO M , MISAWA T , et al. Helical antimicrobial peptide foldamers containing non-proteinogenic amino acids[J]. ChemMedChem, 2021, 16 (8): 1226- 1233.
doi: 10.1002/cmdc.202000940
|
6 |
LUO Y , SONG Y Z . Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities[J]. Int J Mol Sci, 2021, 22 (21): 11401.
doi: 10.3390/ijms222111401
|
7 |
KUMAR P , KIZHAKKEDATHU J N , STRAUS S K . Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo[J]. Biomolecules, 2018, 8 (1): 4.
doi: 10.3390/biom8010004
|
8 |
ZHANG Q Y , YAN Z B , MENG Y M , et al. Antimicrobial peptides: mechanism of action, activity and clinical potential[J]. Mil Med Res, 2021, 8 (1): 48.
|
9 |
LI X , ZUO S Y , WANG B , et al. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides[J]. Molecules, 2022, 27 (9): 2675.
doi: 10.3390/molecules27092675
|
10 |
MIYACHIRO M M, CONTRERAS-MARTEL C, DESSEN A. Penicillin-binding proteins (PBPs) and bacterial cell wall elongation complexes[M]//HARRIS J R, MARLES-WRIGHT J. Macromolecular Protein Complexes Ⅱ: Structure and Function. Cham: Springer, 2019: 273-89.
|
11 |
CHERRAK Y , FLAUGNATTI N , DURAND E , et al. Structure and activity of the type Ⅵ secretion system[J]. Microbiol Spectr, 2019, 7 (4): PSIB-0031-2019.
|
12 |
HAYES B K , HARPER M , VENUGOPAL H , et al. Structure of a Rhs effector clade domain provides mechanistic insights into type Ⅵ secretion system toxin delivery[J]. Nat Commun, 2024, 15 (1): 8709.
doi: 10.1038/s41467-024-52950-x
|
13 |
DING J J , WANG W , FENG H , et al. Structural insights into the Pseudomonas aeruginosa type Ⅵ virulence effector Tse1 bacteriolysis and self-protection mechanisms[J]. J Biol Chem, 2012, 287 (32): 26911- 26920.
doi: 10.1074/jbc.M112.368043
|
14 |
ALLSOPP L P , WOOD T E , HOWARD S A , et al. RsmA and AmrZ orchestrate the assembly of all three type Ⅵ secretion systems in Pseudomonas aeruginosa[J]. Proc Natl Acad Sci U S A, 2017, 114 (29): 7707- 7712.
doi: 10.1073/pnas.1700286114
|
15 |
岳舒. 鳗弧菌MHK3株T6SS的功能性表达及抗菌特性[D]. 青岛: 中国海洋大学, 2015.
|
|
YUE S. Functional expression of T6SS of Vibrio anguillarum MHK3 and its antibacterial properties[D]. Qingdao: Ocean University of China, 2015. (in Chinese)
|
16 |
宋莉. 假结核耶尔森氏菌双功能效应蛋白Tce2参与细菌间竞争新机制研究[D]. 杨凌: 西北农林科技大学, 2022.
|
|
SONG L. Study on the new mechanism of bifunctional effector Tce2 in Yersinia pseudotuberculosis participating in bacterial competition[D]. Yangling: Northwest A&F University, 2022. (in Chinese)
|
17 |
傅唯轩. Tae4的原核表达及对两种革兰氏阳性菌抑菌作用研究[D]. 合肥: 安徽农业大学, 2023.
|
|
FU W X. Prokaryotic expression of Tae4 and its inhibitory effect on two Gram-positive bacteria[D]. Hefei: Anhui Agricultural University, 2023. (in Chinese)
|
18 |
DVORAK P , CHRAST L , NIKEL P I , et al. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway[J]. Microb Cell Fact, 2015, 14, 201.
doi: 10.1186/s12934-015-0393-3
|
19 |
SINGH R P , KUMARI K . Bacterial type Ⅵ secretion system (T6SS): an evolved molecular weapon with diverse functionality[J]. Biotechnol Lett, 2023, 45 (3): 309- 331.
doi: 10.1007/s10529-023-03354-2
|
20 |
CHEN Z D , MAO Y K , SONG Y Z , et al. Refined egoist: the toxin-antitoxin immune system of T6SS[J]. Microb Pathog, 2024, 196, 106991.
doi: 10.1016/j.micpath.2024.106991
|
21 |
BENZ J , SENDLMEIER C , BARENDS T R M , et al. Structural insights into the effector-immunity system Tse1/Tsi1 from Pseudomonas aeruginosa[J]. PLoS One, 2012, 7 (7): e40453.
doi: 10.1371/journal.pone.0040453
|
22 |
JIANG X L , LI H Z , MA J Y , et al. Role of Type Ⅵ secretion system in pathogenic remodeling of host gut microbiota during Aeromonas veronii infection[J]. ISME J, 2024, 18 (1): wrae053.
doi: 10.1093/ismejo/wrae053
|
23 |
PÉREZ-LORENTE A I , MOLINA-SANTIAGO C , DE VICENTE A , et al. Sporulation activated via σW protects Bacillus from a tse1 peptidoglycan hydrolase type Ⅵ secretion system effector[J]. Microbiol Spectr, 2023, 11 (2): e0504522.
doi: 10.1128/spectrum.05045-22
|
24 |
SIMAS R G , PESSOA JUNIOR A , LONG P F . Mechanistic aspects of IPTG (isopropylthio-β-galactoside) transport across the cytoplasmic membrane of Escherichia coli-a rate limiting step in the induction of recombinant protein expression[J]. J Ind Microbiol Biotechnol, 2023, 50 (1): kuad034.
doi: 10.1093/jimb/kuad034
|
25 |
TOLIA N H , JOSHUA-TOR L . Strategies for protein coexpression in Escherichia coli[J]. Nat Methods, 2006, 3 (1): 55- 64.
doi: 10.1038/nmeth0106-55
|
26 |
BANEYX F , MUJACIC M . Recombinant protein folding and misfolding in Escherichia coli[J]. Nat Biotechnol, 2004, 22 (11): 1399- 1408.
doi: 10.1038/nbt1029
|
27 |
ALVAREZ L , HERNANDEZ S B , TORRENS G , et al. Control of bacterial cell wall autolysins by peptidoglycan crosslinking mode[J]. Nat Commun, 2024, 15 (1): 7937.
doi: 10.1038/s41467-024-52325-2
|
28 |
SHANG G J , LIU X H , LU D F , et al. Structural insight into how Pseudomonas aeruginosa peptidoglycanhydrolase Tse1 and its immunity protein Tsi1 function[J]. Biochem J, 2012, 448 (2): 201- 211.
doi: 10.1042/BJ20120668
|
29 |
RUSSELL A B , HOOD R D , BUI N K , et al. Type Ⅵ secretion delivers bacteriolytic effectors to target cells[J]. Nature, 2011, 475 (7356): 343- 347.
doi: 10.1038/nature10244
|
30 |
李翠翠, 马万鹏, 张毅, 等. 新疆某奶牛场奶源金黄色葡萄球菌分离鉴定、毒力基因检测和耐药性分析[J]. 动物医学进展, 2023, 44 (11): 40- 46.
|
|
LI C C , MA W P , ZHANG Y , et al. Isolation, identification, virulence gene detection and drug resistance analysis of Staphylococcus aureus from milk in a dairy farm in Xinjiang[J]. Progress In Veterinary Medicine, 2023, 44 (11): 40- 46.
|
31 |
甘卫泽, 李益涛, 曹梦园, 等. 某规模化牧场致奶牛乳房炎金黄色葡萄球菌的鉴定及耐药性分析[J]. 中国奶牛, 2020 (11): 45- 48.
|
|
GAN W Z , LI Y T , CAO M Y , et al. Identification and drug resistance analysis of Staphylococcus aureus mastitis in dairy cows from a large-scale pasture[J]. China Dairy Cattle, 2020 (11): 45- 48.
|