畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (12): 5738-5750.doi: 10.11843/j.issn.0366-6964.2024.12.036
张美雯1,2(), 王成龙1, 刘玉贞1, 赵育桐1, 朱记平1,*(
), 李毅1,*(
)
收稿日期:
2023-12-06
出版日期:
2024-12-23
发布日期:
2024-12-27
通讯作者:
朱记平,李毅
E-mail:zmw5868782222@163.com;jp_zhu732@126.com;liyi@whsw.edu.cn
作者简介:
张美雯(1997-),女,湖北武汉人,硕士,主要从事病毒致病机理及抗病毒研究,E-mail: zmw5868782222@163.com
ZHANG Meiwen1,2(), WANG Chenglong1, LIU Yuzhen1, ZHAO Yutong1, ZHU Jiping1,*(
), LI Yi1,*(
)
Received:
2023-12-06
Online:
2024-12-23
Published:
2024-12-27
Contact:
ZHU Jiping, LI Yi
E-mail:zmw5868782222@163.com;jp_zhu732@126.com;liyi@whsw.edu.cn
摘要:
旨在分析红景天苷(salidroside,SAL)对犬细小病毒(canine parvovirus,CPV)的抑制作用及其机制。对病毒感染过程的3个节点(吸附、侵入、复制)分别添加SAL进行孵育,检测细胞中病毒滴度,评价SAL对病毒的抑制作用;TUNEL (Terminal deoxynucleotidyl Transferase dUTP Nick End Labeling)试验分析细胞凋亡;实时荧光定量PCR和Western blot分别检测细胞凋亡相关蛋白和炎症因子的mRNA或蛋白表达,分析和初步验证SAL抑制病毒复制的机制。结果显示,SAL可显著抑制CPV复制,但对CPV的吸附及侵入过程没有显著影响。SAL可抑制CPV诱导的细胞凋亡,且显著抑制了caspase 8及tBID的蛋白表达。进一步研究发现,CPV可诱导IL-1β及相关炎症因子上调表达,而SAL孵育病毒感染的细胞后部分炎症因子下调表达。Caspase 1、NLRP3的激活与IL-1β密切相关,病毒感染细胞后添加SAL进行孵育可抑制caspase 1的激活,而对NLRP3无显著作用。应用siRNA-caspase 8下调细胞中caspase 8的表达再孵育病毒,结果显示,细胞中IL-1β表达被抑制,与SAL的作用效果一致,表明SAL主要通过抑制caspase 8信号通路活化从而抑制炎症因子的表达。综上所述,SAL可有效抑制CPV的复制,其通过调控caspase 8信号通路抑制了CPV诱导的细胞凋亡,且抑制了部分炎症因子的表达。本研究为有效治疗CPV提供了新的途径和方法。
中图分类号:
张美雯, 王成龙, 刘玉贞, 赵育桐, 朱记平, 李毅. 红景天苷对犬细小病毒体外复制的抑制效应分析[J]. 畜牧兽医学报, 2024, 55(12): 5738-5750.
ZHANG Meiwen, WANG Chenglong, LIU Yuzhen, ZHAO Yutong, ZHU Jiping, LI Yi. Analysis of the Inhibitory Effect of Salidroside on Canine Parvovirus Replication in vitro[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5738-5750.
表 1
qRT-PCR引物"
基因 Gene | 正向引物(5′→3′) Forword primer(5′→3′) | 反向引物(5′→3′) Reverse primer(5′→3′) |
Caspase 8 | ACAAGGGCATCATCTATGGCTCTGA | CCAGTGAAGTAAGAGGTCAGCTCAT |
Caspase 12 | GCCGTCTGGGTGACTGATG | CTGCAAGGGCTGGTCACAT |
p53 | TAACAGTTCCTGCATGGGCGGC | AGGACAGGC ACAAACACGCACC |
Bax | TTCCGAGTGGCAGCTGAGATGTTT | TGCTGGCAAAGTAGAAGAGGGCAA |
Bcl2 | CATGCCAAGAGGGAAACACCAGAAG | GTGCTTTGCATTCTTGGATGAGGG |
FasL | GAGGAGGGACCACAACACAGGTCTC | AGAGCTGAAACATCCCCAGC |
Fas | ACTGTGCAGACATCGACCTG | CGTTGATCCCGTTCTTCCGA |
FADD | TGGAGGAGACTGGCTCGTTA | CTTGTTGGCTGGCTCCAAAC |
IL-8 | TGGAAATGAGGTGTGCCTGG | GGATCTTGTTTCTCAGCCTTCTT |
IL-7 | CAGCATCAATGACTTGGACATCA | TTCAACTTGTGAGCAGCACG |
IL-6 | CTCCTGGTGATGGCTACTGC | GTGCAGAGATTTTGCCGAGG |
TNF-α | GTGCCGTCAGATGGGTTGTA | CAAGGGCTCTTGATGGCAGA |
CCL5 | GACTACCCTTCACCCACGTC | CTTTCGGGTGACAAAGACGAC |
CXCL10 | TGACTCTGAATGGTACTCAAGGA | GACACGATGGACTTGCAGGA |
IFNB | GCGAGAAATCACGCCAGTTC | TCTATTGTCCAGGCACAGATGC |
GAPDH | GCTGCCCAGAACATCATCC | GTCAGATCCACGACGGACAC |
1 | 赵航. 犬细小病毒流行病学调查及其感染F81细胞的比较蛋白质组学分析[D]. 北京: 中国农业科学院, 2016. |
ZHAO H. Canine parvovirus epidemiological investigation and comparative proteomics analysis of CPV infected F81 cells[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese) | |
2 | 周宏专, 苏霞, 徐福洲, 等. 犬细小病毒研究进展[J]. 动物医学进展, 2019, 40 (12): 79- 84. |
ZHOU H Z , SU X , XU F Z , et al. Progress on canine parvovirus[J]. Progress in Veterinary Medicine, 2019, 40 (12): 79- 84. | |
3 |
HOELZER K , PARRISH C R . The emergence of parvoviruses of carnivores[J]. Vet Res, 2010, 41 (6): 39.
doi: 10.1051/vetres/2010011 |
4 |
胡楠, 邹翔宇, 蔡锦顺. 犬细小病毒研究进展[J]. 吉林畜牧兽医, 2016, 37 (8): 13- 15.
doi: 10.3969/j.issn.1672-2078.2016.08.005 |
HU N , ZOU X Y , CAI J S . The research progress of canine parvovirus[J]. Jilin Animal Husbandry and Veterinary Medicine, 2016, 37 (8): 13- 15.
doi: 10.3969/j.issn.1672-2078.2016.08.005 |
|
5 |
孙梅, 吴建华, 白文军. 犬细小病毒研究进展[J]. 北京农业, 2013, (36): 175- 179.
doi: 10.3969/j.issn.1000-6966.2013.36.146 |
SUN M , WU J H , BAI W J . Research progress on canine parvovirus[J]. Beijing Agriculture, 2013, (36): 175- 179.
doi: 10.3969/j.issn.1000-6966.2013.36.146 |
|
6 |
史才兴, 梁水菁, 李建璋, 等. 红景天苷药理作用及其机制研究进展[J]. 菏泽医学专科学校学报, 2021, 33 (4): 67-70, 84.
doi: 10.3969/j.issn.1008-4118.2021.04.020 |
SHI C X , LIANG S J , LI J Z , et al. Research progress on the pharmacological effects and mechanisms of astragalus polysaccharide[J]. Journal of Heze Medical College, 2021, 33 (4): 67-70, 84.
doi: 10.3969/j.issn.1008-4118.2021.04.020 |
|
7 |
崔晋龙, 付少彬, 王梦亮. 红景天苷生物、化学和生物催化合成的分子理论及应用[J]. 天然产物研究与开发, 2013, 25 (6): 851-855, 840.
doi: 10.3969/j.issn.1001-6880.2013.06.028 |
CUI J L , FU S B , WANG M L . Advance in studies on biosynthesis, chemical synthesis and biocatalysis synthesis of salidroside[J]. Natural Product Research and Development, 2013, 25 (6): 851-855, 840.
doi: 10.3969/j.issn.1001-6880.2013.06.028 |
|
8 |
LI Y T , ZHAO Y Y , LI X T , et al. Characterization of global metabolic profile of Rhodiola crenulata after oral administration in rat plasma, urine, bile and feces based on UHPLC-FT-ICR MS[J]. J Pharm Biomed Anal, 2018, 149, 318- 328.
doi: 10.1016/j.jpba.2017.10.032 |
9 |
GUAN S , FENG H H , SONG B C , et al. Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia[J]. Int Immunopharmacol, 2011, 11 (12): 2194- 2199.
doi: 10.1016/j.intimp.2011.09.018 |
10 |
GAO J , ZHOU R , YOU X T , et al. Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer's disease via SIRT1/NF-κB pathway[J]. Metab Brain Dis, 2016, 31 (4): 771- 778.
doi: 10.1007/s11011-016-9813-2 |
11 |
WANG H B , DING Y Y , ZHOU J , et al. The in vitro and in vivo antiviral effects of salidroside from Rhodiola rosea L. against coxsackievirus B3[J]. Phytomedicine, 2009, 16 (2-3): 146- 155.
doi: 10.1016/j.phymed.2008.07.013 |
12 |
张霞, 任秋生, 王海鹏, 等. 红景天苷体外抗EV71病毒的作用[J]. 湖北农业科学, 2013, 52 (15): 3605- 3608.
doi: 10.3969/j.issn.0439-8114.2013.15.038 |
ZHANG X , REN Q S , WANG H P , et al. Inhibitory effect of salidroside against enterovirus 71 in vitro[J]. Hubei Agricultural Sciences, 2013, 52 (15): 3605- 3608.
doi: 10.3969/j.issn.0439-8114.2013.15.038 |
|
13 |
ZHAO X J , LU Y , TAO Y , et al. Salidroside liposome formulation enhances the activity of dendritic cells and immune responses[J]. Int Immunopharmacol, 2013, 17 (4): 1134- 1140.
doi: 10.1016/j.intimp.2013.10.016 |
14 | LIU K , XU P , LI Y C , et al. Inhibition of canine parvovirus 2 (CPV-2) replication by TAT-scFv through targeting of the viral structural protein VP2 of CPV-2[J]. New Microbiol, 2024, 46 (4): 381- 389. |
15 |
SHARMA N , MISHRA K P , GANJU L . Correction to: salidroside exhibits anti-dengue virus activity by upregulating host innate immune factors[J]. Arch Virol, 2022, 167 (3): 1011.
doi: 10.1007/s00705-021-05321-6 |
16 |
ELLIS R E , JACOBSON D M , HORVITZ H R . Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans[J]. Genetics, 1991, 129 (1): 79- 94.
doi: 10.1093/genetics/129.1.79 |
17 |
GALLUZZI L , BRENNER C , MORSELLI E , et al. Viral control of mitochondrial apoptosis[J]. PLoS Pathog, 2008, 4 (5): e1000018.
doi: 10.1371/journal.ppat.1000018 |
18 |
ANGELOVA A L , APRAHAMIAN M , GREKOVA S P , et al. Improvement of gemcitabine-based therapy of pancreatic carcinoma by means of oncolytic parvovirus H-1PV[J]. Clin Cancer Res, 2009, 15 (2): 511- 519.
doi: 10.1158/1078-0432.CCR-08-1088 |
19 |
DOLEY J , SINGH L V , KUMAR G R , et al. Canine parvovirus type 2a (CPV-2a)-induced apoptosis in MDCK involves both extrinsic and intrinsic pathways[J]. Appl Biochem Biotechnol, 2014, 172 (1): 497- 508.
doi: 10.1007/s12010-013-0538-y |
20 | 张传鹏. 犬细小病毒SH15株的分离鉴定及其诱导MDCK细胞凋亡的探究[D]. 上海: 上海交通大学, 2017. |
ZHANG C P. Isoaltion and identification of canine parvovirus SH15 and studies on apoptosis induced by canine parvovirus in MDCK cells[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese) | |
21 | MVLLER D N , BINGER K J , RIEDIGER F . Prorenin receptor regulates more than the renin-angiotensin system[J]. Ann Med, 2012, 44 (Suppl 1): S43- S48. |
22 |
LI S F , ZHANG Y L , GUAN Z Q , et al. SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation[J]. Signal Transduct Target Ther, 2020, 5 (1): 235.
doi: 10.1038/s41392-020-00334-0 |
23 |
GURUNG P , KANNEGANTI T D . Novel roles for caspase-8 in IL-1β and inflammasome regulation[J]. Am J Pathol, 2015, 185 (1): 17- 25.
doi: 10.1016/j.ajpath.2014.08.025 |
24 |
MAELFAIT J , VERCAMMEN E , JANSSENS S , et al. Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by caspase-8[J]. J Exp Med, 2008, 205 (9): 1967- 1973.
doi: 10.1084/jem.20071632 |
25 |
WANG Q H , KUANG H X , SU Y , et al. Naturally derived anti-inflammatory compounds from Chinese medicinal plants[J]. J Ethnopharmacol, 2013, 146 (1): 9- 39.
doi: 10.1016/j.jep.2012.12.013 |
26 |
SONG D , ZHAO M , FENG L X , et al. Salidroside attenuates acute lung injury via inhibition of inflammatory cytokine production[J]. Biomed Pharmacother, 2021, 142, 111949.
doi: 10.1016/j.biopha.2021.111949 |
27 |
GURUNG P , ANAND P K , MALIREDDI R K S , et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes[J]. J Immunol, 2014, 192 (4): 1835- 1846.
doi: 10.4049/jimmunol.1302839 |
28 |
MAN S M , TOURLOMOUSIS P , HOPKINS L , et al. Salmonella infection induces recruitment of caspase-8 to the inflammasome to modulate IL-1β production[J]. J Immunol, 2013, 191 (10): 5239- 5246.
doi: 10.4049/jimmunol.1301581 |
29 |
KANG T B , YANG S H , TOTH B , et al. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome[J]. Immunity, 2013, 38 (1): 27- 40.
doi: 10.1016/j.immuni.2012.09.015 |
30 |
GHAYUR T , BANERJEE S , HUGUNIN M , et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production[J]. Nature, 1997, 386 (6625): 619- 623.
doi: 10.1038/386619a0 |
31 |
LI P , ALLEN H , BANERJEE S , et al. Mice deficient in IL-1 β-converting enzyme are defective in production of mature IL-1 β and resistant to endotoxic shock[J]. Cell, 1995, 80 (3): 401- 411.
doi: 10.1016/0092-8674(95)90490-5 |
[1] | 鲜婷婷, 刘彦, 曹忻, 冯涛. 母猪子宫内膜炎阴道菌群与血清促炎细胞因子的变化及其相关性分析[J]. 畜牧兽医学报, 2024, 55(8): 3688-3698. |
[2] | 李秋云, 田芯源, 廖文圣, 张焕容, 任玉鹏, 杨发龙, 朱江江, 向华. SOCS2对山羊鼻甲骨细胞增殖、周期及凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2226-2240. |
[3] | 罗承慧, 高江瑞, 陈俊威, 魏春洁, 韦双双, 裴业春. 尘螨诱导特应性皮炎小鼠模型和哮喘小鼠模型的构建[J]. 畜牧兽医学报, 2024, 55(3): 1257-1267. |
[4] | 霍元楠, 邱美佳, 张姣姣, 杨炜蓉, 王鲜忠. 精氨酸及其代谢物抑制热应激诱导仔猪支持细胞凋亡的机制[J]. 畜牧兽医学报, 2024, 55(2): 587-597. |
[5] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[6] | 王婉洁, 陈南珠, 邹惠影, 周心仪, 郝海生, 庞云渭, 朱化彬, 赵学明, 余大为, 杜卫华. 过表达组蛋白甲基转移酶ASH1L对牛卵丘细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2023, 54(8): 3358-3368. |
[7] | 安琪, 于嘉霖, 吴晓玲, 邓光存. 谷氨酰胺对BCG诱导小鼠传代巨噬细胞凋亡的调控作用[J]. 畜牧兽医学报, 2023, 54(7): 3054-3063. |
[8] | 邢宝瑞, 刘振, 赵海平, 马泽芳, 李勋胜, 周珏, 孙红梅. 鹿茸逆向成骨的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2231-2240. |
[9] | 但一昕, 杨璐, 向华, 张焕容, 任玉鹏, 杨发龙, 何翃闳, 朱江江. BIRC5对山羊睾丸细胞周期、凋亡的影响[J]. 畜牧兽医学报, 2023, 54(4): 1511-1524. |
[10] | 陈永平, 寇玉红, 焦文静, 侯晓昱, 范宏刚. 辅酶Q10改善LPS诱导小鼠急性肺损伤的效应分析[J]. 畜牧兽医学报, 2023, 54(4): 1730-1741. |
[11] | 杨晓伟, 赵自亮, 付雨, 于子肖, 赵永聚. TET1基因对小鼠uNK细胞增殖及IFN-γ、VEGF-C和TGF-β1转录水平的影响[J]. 畜牧兽医学报, 2023, 54(3): 1221-1228. |
[12] | 郭紫晶, 陈飞, 张志雄, 柏玲, 张志东, 李彦敏. 白细胞介素-10对口蹄疫病毒感染小鼠T细胞增殖及其表达TNF-α、IFN-γ和IL-2的影响[J]. 畜牧兽医学报, 2023, 54(2): 694-705. |
[13] | 杨成迎, 汪锴, 黄子晴, 林海烂, 王乃秀, 李雨航, 刘炎青, 刘煜萱, 朱燕, 何道领, 陈红跃, 甘玲. 壳寡糖对仔猪脑海马氧化应激的抑制作用及机制研究[J]. 畜牧兽医学报, 2023, 54(2): 744-756. |
[14] | 薛鸿雁, 杨孟雨, 杨欢, 董丽君, 蔡霞清, 赵泽民, 王鲜忠. ALOX15B-JNK在热应激诱导支持细胞氧化应激和凋亡中的作用[J]. 畜牧兽医学报, 2023, 54(12): 5056-5065. |
[15] | 李广兴, 陈阳, 陈凯婷, 武梦林, 张迪, 黄小丹. 邻苯二甲酸二-2-乙基己酯通过ROS/PTEN/PI3K/AKT轴诱导HD11细胞凋亡和程序性坏死[J]. 畜牧兽医学报, 2023, 54(12): 5240-5251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||