畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2451-2465.doi: 10.11843/j.issn.0366-6964.2025.05.041
梁莉雯1,2(), 李军星2, 袁秀芳2, 余斌2, 叶十一2, 徐丽华2, 苏菲2,*(
), 刘璨颖1,*(
)
收稿日期:
2024-05-15
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
苏菲,刘璨颖
E-mail:331668280@qq.com;sufei6986@outlook.com;liucy3032@163.com
作者简介:
梁莉雯(1999-),女,广东江门人,硕士生,主要从事动物疫病防控研究,E-mail: 331668280@qq.com
基金资助:
LIANG Liwen1,2(), LI Junxing2, YUAN Xiufang2, YU Bin2, YE Shiyi2, XU Lihua2, SU Fei2,*(
), LIU Canying1,*(
)
Received:
2024-05-15
Online:
2025-05-23
Published:
2025-05-27
Contact:
SU Fei, LIU Canying
E-mail:331668280@qq.com;sufei6986@outlook.com;liucy3032@163.com
摘要:
本研究旨在探索茶皂素对猪源多重耐药性产肠毒素大肠杆菌(enterotoxigenic E.coli, ETEC)的抑菌效果,并解析其抑菌机制,为防控ETEC感染引起的仔猪腹泻提供新思路。本研究首先采用标准的纸片扩散法,评估所选取的猪源ETEC菌株对一系列抗生素的敏感性,并利用96孔微量肉汤稀释法测定抗生素及茶皂素对该ETEC菌株的最小抑菌浓度(MIC)。通过对比有无茶皂素处理条件下,该ETEC菌株的生长曲线变化、超微结构变化,以及胞内核酸、蛋白质和碱性磷酸酶等物质的泄漏情况,明确茶皂素对猪源多重耐药性ETEC的抑菌作用。此外,还采用转录组学技术分析有无茶皂素处理条件下细菌基因表达谱的差异,揭示茶皂素对该猪源ETEC的抑菌作用机制。此外,利用CCK-8方法评估茶皂素在猪小肠上皮细胞(IPEC-J2)上的安全性和有效性。药敏试验结果显示,该猪源ETEC菌株对临床常用的14种抗生素中的9种具有耐药性,属于多重耐药菌株。而茶皂素的MIC为50 mg·mL-1,在1×MIC和2×MIC的浓度下,它对猪源多重耐药ETEC菌株展现出较强的抑菌活性,能在12 h的作用时间内有效抑制该ETEC菌株的生长和繁殖。经过1×MIC和2×MIC浓度的茶皂素处理后,细菌的形态结构发生显著变化。具体表现为细菌细胞结构受到严重破坏,导致细菌胞外的核酸、可溶性蛋白质以及碱性磷酸酶的浓度在最初的2 h内显著性上升,并且在整个12 h的观察期内,这些物质的浓度均显著高于对照组,最终导致细菌的死亡。SDS-PAGE电泳结果显示,经过茶皂素处理的ETEC菌株,在相对分子质量15~25 ku的蛋白质条带明显减少。转录组分析进一步揭示,茶皂素的抑菌机制可能涉及多个层面,包括抑制脂多糖的生物合成、影响核糖体的功能以及干扰细菌蛋白质的合成过程等相关通路。此外,研究还发现,在0.781~12.5 μg·mL-1的浓度,茶皂素对IPEC-J2细胞无明显的毒副作用。特别地,在12.5 μg·mL-1的浓度下,茶皂素能显著提高IPEC-J2细胞在受到ETEC感染后的存活率。综上所述,茶皂素对猪源多重耐药性ETEC菌株具有显著的抑菌活性,其抑菌机制复杂且多层面。研究结果为茶皂素作为天然抑菌剂在畜牧业中的应用提供了理论支持。
中图分类号:
梁莉雯, 李军星, 袁秀芳, 余斌, 叶十一, 徐丽华, 苏菲, 刘璨颖. 从油茶籽提取的茶皂素对猪源多重耐药产肠毒素大肠杆菌的体外抑菌效果[J]. 畜牧兽医学报, 2025, 56(5): 2451-2465.
LIANG Liwen, LI Junxing, YUAN Xiufang, YU Bin, YE Shiyi, XU Lihua, SU Fei, LIU Canying. In vitro Evaluation of the Bacteriostatic Efficacy of Tea Saponins Derived from Camellia oleifera Seeds against a Multidrug-resistant Enterotoxigenic Escherichia coli Strain Isolated from Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2451-2465.
表 1
抗生素药敏结果"
抗生素名称 Antibiotic name | 判定标准(抑菌圈直径/mm) Determination riterion(inhibition zones, mm) | 抑菌圈直径/mm Inhibitory zone diameter | 药物敏感性 Drug susceptibility | ||
S | I | R | |||
头孢噻肟Cefotaxime | ≥26 | 23~25 | ≤22 | 17 | R |
头孢噻吩Cefalotin | ≥18 | 15-17 | ≤14 | 12 | R |
阿莫西林Amoxicillin | ≥17 | 14~16 | ≤13 | 16 | I |
氨苄西林Ampicillin | ≥17 | 14~16 | ≤13 | 17 | S |
青霉素Penicillin | ≥17 | 14~16 | ≤13 | 8 | R |
庆大霉素Gentamicin | ≥15 | 13~14 | ≤12 | 22 | S |
卡那霉素Kanamycin | ≥18 | 14~17 | ≤13 | 6 | R |
阿米卡星Amikacin | ≥17 | 15~16 | ≤14 | 18 | S |
链霉素Streptomycin | ≥15 | 12~14 | ≤11 | 11 | R |
多西环素Doxycycline | ≥14 | 11~13 | ≤10 | 12 | I |
红霉素Erythromycin | ≥17 | 11~15 | ≤10 | 10 | R |
四环素Tetracycline | ≥15 | 12~14 | ≤11 | 8 | R |
甲氧苄啶-磺胺甲噁唑 Sulfamethoxazole-Trimethoprim | ≥16 | 11~15 | ≤10 | 6 | R |
环丙沙星Ciprofloxacin | ≥26 | 22~25 | ≤21 | 16 | R |
表 2
抗生素对ETEC菌株的MIC结果"
抗生素名称 Antibiotic name | 判定标准[MIC/(μg·mL-1)] Determination riterion(MIC, μg·mL-1) | MIC/(μg·mL-1) | 药物敏感性 Drug susceptibility | ||
S | I | R | |||
氨苄西林Ampicillin | ≤8 | 16 | ≥32 | 2 | S |
庆大霉素Gentamicin | ≤4 | 8 | ≥16 | 0.5 | S |
四环素Tetracycline | ≤4 | 8 | ≥16 | 32 | R |
甲氧氨苄-磺胺甲噁唑 Sulfamethoxazole-Trimethoprim | ≤2/38 | - | ≥4/76 | >32/608 | R |
1 | DUBREUIL J D , ISAACSON R E , SCHIFFERLI D M . Animal enterotoxigenic Escherichia coli[J]. EcoSal Plus, 2016, 7 (1): 10. |
2 | ZENG Y , LI R , DONG Y , et al. Dietary supplementation with puerarin improves intestinal function in piglets challenged with Escherichia coli K88[J]. Animals (Basel), 2023, 13 (12): 1908. |
3 |
LAIRD T J , ABRAHAM S , JORDAN D , et al. Porcine enterotoxigenic Escherichia coli: Antimicrobial resistance and development of microbial-based alternative control strategies[J]. Vet Microbiol, 2021, 258, 109117.
doi: 10.1016/j.vetmic.2021.109117 |
4 | NTAKIYISUMBA E , LEE S , WON G . Evidence-based approaches for determining effective target antigens to develop vaccines against post-weaning diarrhea caused by enterotoxigenic Escherichia coli in pigs: A systematic review and network meta-analysis[J]. Animals (Basel), 2022, 12 (16): 2136. |
5 | 吴泽龙. 油茶4种皂素的分离鉴定及其生物活性研究[D]. 长沙: 中南林业科技大学, 2023. |
HU Z L. Isolation, structural elucidation, and bioactivities of new theasaponins from Camellia Oleifera cake[D]. Changsha: Central South University of Forestry and Technology, 2023. (in Chinese) | |
6 |
GUO N , TONG T , REN N , et al. Saponins from seeds of genus Camellia: Phytochemistry and bioactivity[J]. Phytochemistry, 2018, 149, 42- 55.
doi: 10.1016/j.phytochem.2018.02.002 |
7 | LI Y , YAN H , ZEESHAN UL HAQ M , et al. Physiological and transcriptional analysis provides insights into tea saponin biosynthesis and regulation in response to SA in Camellia vietnamensis huang[J]. Horticulturae, 2024, 10 (1): 8. |
8 | YANG H , CAI R , KONG Z , et al. Teasaponin ameliorates murine colitis by regulating gut microbiota and suppressing the immune system response[J]. Front Med (Lausanne), 2020, 7, 584369. |
9 | 赵亚鑫, 赵楠杉, 梁宗锁, 等. 茶皂素的生物活性及应用[J]. 中国粮油学报, 2024, 39 (7): 225- 234. |
ZHAO Y X , ZHAO N S , LIANG Z S , et al. Biological activity and application of tea saponin[J]. Journal of the Chinese Cereals and Oils Association, 2024, 39 (7): 225- 234. | |
10 |
YU Z , WU X , HE J . Study on the antifungal activity and mechanism of tea saponin from Camellia oleifera cake[J]. Eur Food Res Technol, 2022, 248 (3): 783- 795.
doi: 10.1007/s00217-021-03929-1 |
11 |
LI Y , SHAN M , LI S , et al. Tea saponin suppresses Candida albicans filamentation by reducing the level of intracellular camp[J]. Ann Transl Med, 2020, 8 (5): 175.
doi: 10.21037/atm.2020.01.124 |
12 | 郭海阳, 莫林兰, 谭海生, 等. 茶皂素的美白功效及其抑菌和抗氧化活性研究[J]. 中国粮油学报, 2020, 35 (06): 83- 89. |
GUO H Y , MO L L , TAN H S , et al. Whitening effect, antibacterial and antioxidant activities of tea saponin[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35 (06): 83- 89. | |
13 | 张文婷. 油茶壳中茶皂素的制备及其抑菌活性研究[D]. 海口: 海南大学, 2019. |
ZHANG W T. Preparation of tea saponin from Camellia Oleifera and its antibacterial activity[D]. Haikou: Hainan University, 2019. (in Chinese) | |
14 | SHANG F , WANG H , XUE T . Anti-biofilm effect of tea saponin on a Streptococcus agalactiae strain isolated from bovine mastitis[J]. Animals (Basel), 2020, 10 (9): 1713. |
15 | 孙国志, 梁宗锁, 杨东风, 等. 茶皂素对铜绿假单胞菌的抑菌活性及抑菌机制研究[J]. 中国粮油学报, 2024, 39 (8): 175- 183. |
SUN G Z , LIANG Z S , YANG D F , et al. Study on the bacteriostatic activity and mechanism of inhibition of Pseudomonas aeruginosa by tea saponin[J]. Journal of the Chinese Cereals and Oils Association, 2024, 39 (8): 175- 183. | |
16 |
ZHAO Y , SU R , ZHANG W , et al. Antibacterial activity of tea saponin from camellia oleifera shell by novel extraction method[J]. Ind Crop Prod, 2020, 153, 112604.
doi: 10.1016/j.indcrop.2020.112604 |
17 | 刘静, 谢朋飞, 蔡延渠. 茶皂素对临床常见致病菌的抗菌活性及作用机制研究[J]. 广东药科大学学报, 2021, 37 (5): 35- 41. |
LIU J , XIE P F , CAI Y Q . Study on the antibacterial activity and mechanism of tea saponin against common clinical pathogens[J]. Journal of Guangdong Pharmaceutical University, 2021, 37 (5): 35- 41. | |
18 | 王承瑞, 刘思思, 易有金, 等. 不同来源皂素对常见食源性致病菌的抑菌效果研究[J]. 食品工业科技, 2022, 43 (3): 120- 127. |
WANG C R , LIU S S , YI Y J , et al. Study on the antibacterial effects of saponin from different sources on common food-borne pathogens[J]. Science and Technology of Food Industry, 2022, 43 (3): 120- 127. | |
19 | 鲍妮娜, 丁富成, 胡巧缘. 油茶籽粕中茶皂素的优化提取及抑菌活性的研究[J]. 天然产物研究与开发, 2018, 30 (01): 127- 133. |
BAO N N , DING F C , HU Q Y . Extraction and bacteriostasis effect of tea saponin in Oil-tea Camellia seed cake[J]. Nat Prod Res Dev, 2018, 30 (01): 127- 133. | |
20 | CLSI. CLSI M100 Performance standards for antimicrobial susceptibility testing[S]. 32nd ed. Wayne: Clinical and Laboratory Standards Institute, 2022. |
21 |
ALTAN G , BUDAK F . Investigation of the antibacterial effect of Taraxacum officinale extracts extracted in different solvents on bacteroides fragilis ATCC 25285 standard strain by broth microdilution method[J]. Mikrobiyol Bul, 2024, 58 (1): 63- 70.
doi: 10.5578/mb.20249906 |
22 |
DAS D J , BORUAH J L H , FAMHAWITE V , et al. Antibacterial potential of an ethnic probiotic containing food, akhuni/axone and its chemical characterization[J]. Food Chem Adv, 2023, 2, 100221.
doi: 10.1016/j.focha.2023.100221 |
23 |
FELIFEL N T , SLIEM M A , KAMEL Z , et al. Antimicrobial photodynamic therapy against Escherichia coli and Staphylococcus aureus using nanoemulsion-encapsulated zinc phthalocyanine[J]. Microorganisms, 2023, 11 (5): 1143.
doi: 10.3390/microorganisms11051143 |
24 |
CHEN P , LIU Y , LI C , et al. Antibacterial mechanism of vanillin against Escherichia coli o157: H7[J]. Heliyon, 2023, 9 (9): e19280.
doi: 10.1016/j.heliyon.2023.e19280 |
25 |
GUO L , SUN Y , ZHU Y , et al. The antibacterial mechanism of ultrasound in combination with sodium hypochlorite in the control of Escherichia coli[J]. Food Res Int, 2020, 129, 108887.
doi: 10.1016/j.foodres.2019.108887 |
26 |
CHEN Y , GAO Y , YUAN M , et al. Anti-candida albicans effects and mechanisms of theasaponin E1 and assamsaponin A[J]. Int J Mol Sci, 2023, 24 (11): 9350.
doi: 10.3390/ijms24119350 |
27 |
HE N , WANG P , WANG P , et al. Antibacterial mechanism of chelerythrine isolated from root of Toddalia asiatica (Linn) Lam[J]. BMC Complement Altern Med, 2018, 18 (1): 261.
doi: 10.1186/s12906-018-2317-3 |
28 |
ZHANG Y , ZHANG Y , MA R , et al. Antibacterial activity of epigallocatechin gallate (EGCG) against Shigella flexneri[J]. Int J Environ Res Public Health, 2023, 20 (6): 4676.
doi: 10.3390/ijerph20064676 |
29 | YANG L , YANG Y , LIU A , et al. Preparation of bispecific igy-scfvs inhibition adherences of enterotoxigenic Escherichia coli (K88 and F18) to porcine IPEC-J2 cell[J]. Int J Mol Sci, 2024, 25 (7): 3638. |
30 | 任建鸾, 张鹏, 殷晗杰, 等. 安徽部分地区猪场产肠毒素大肠杆菌的分离鉴定及其生物学特性分析[J]. 畜牧与兽医, 2020, 52 (5): 87- 91. |
REN J L , ZHANG P , YIN H J , et al. Identification and biological characteristics of ETEC isolates on large-scale pig farms in Anhui Province[J]. Animal Husbandry and Veterinary Medicine, 2020, 52 (5): 87- 91. | |
31 | 杨德鸿, 张鹏, 于沛欣, 等. 苏北地区规模化猪场产肠毒素大肠杆菌的分离鉴定及灭活疫苗效果评估[J]. 微生物学报, 2020, 60 (2): 261- 272. |
YANG D H , ZHANG P , YU P X , et al. Isolation, identification and evaluation of inactivated vaccine of enterotoxigenic Escherichia coli (ETEC) in large-scale pig farms in northern Jiangsu[J]. Acta Microbiologica Sinica, 2020, 60 (2): 261- 272. | |
32 | 赵永师, 杜娜, 杜艳. 中草药对多重耐药菌的抑制作用及机制研究进展[J]. 中国感染控制杂志, 2024, 23 (4): 530- 537. |
ZHAO Y S , DU N , DU Y . Research progress in the inhibitory effect and mechanism of Chinese herbal medicine on multidrug-resistant organism[J]. Chinese Journal of Infection Control, 2024, 23 (4): 530- 537. | |
33 | 杨植, 王煜轩, 王之文, 等. 中药防控产肠毒素大肠杆菌感染仔猪腹泻的研究进展[J]. 中国畜牧兽医, 2024, 51 (12): 5507- 5517. |
YANG Z , WANG Y X , WANG Z W , et al. Research progress on prevention and control of diarrhea of piglets infected with ETEC by traditional Chinese medicine[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51 (12): 5507- 5517. | |
34 | ZHU C , ZHANG M , TANG Q , et al. Structure and activity of the Camellia oleifera sapogenin derivatives on growth and biofilm Inhibition of Staphylococcus aureus and Escherichia coli[J]. J Agri Food Chem, 2019, 67 (51): 14143- 14151. |
35 | 何荣荣, 谭运寿, 张美虹, 等. 茶皂素对沙门氏菌的抑菌机理及对鸡胸肉的保鲜效果[J]. 热带生物学报, 2019, 10 (4): 360- 366. |
HE R R , TAN Y S , ZHANG M H , et al. Antibacterial mechanism of tea saponin against Salmonella sp. and its application in chicken breast preservation[J]. Journal of Tropical Biology, 2019, 10 (4): 360- 366. | |
36 | 汪宸卉. 大肠杆菌脂多糖对可拉酸合成的调控机制研究[D]. 无锡: 江南大学, 2021. |
WANG C H. Regulatory mechanism of lipopolysaccharide on colonic acid biosynthesis in Escherichia coli[D]. Wuxi: Jiangnan University, 2021. (in Chinese) | |
37 | ARABSKI M , WASIK S , DWORECKI K , et al. Laser interferometric and cultivation methods for measurement of colistin/ampicilin and saponin interactions with smooth and rough of Proteus mirabilis lipopolysaccharides and cells[J]. J Microbiol Methods, 2009, 77 (2): 178- 183. |
38 | WITZKY A , TOLLERSON R 2ND , IBBA M . Translational control of antibiotic resistance[J]. Open Biol, 2019, 9 (7): 190051. |
39 | TENSON T , MANKIN A . Antibiotics and the ribosome[J]. Mol Microbiol, 2006, 59 (6): 1664- 77. |
40 | WILSON D N . Ribosome-targeting antibiotics and mechanisms of bacterial resistance[J]. Nat Rev Microbiol, 2014, 12 (1): 35- 48. |
41 | KOHANSKI M A , DWYER D J , COLLINS J J . How antibiotics kill bacteria: From targets to networks[J]. Nat Rev Microbiol, 2010, 8 (6): 423- 435. |
42 | LIN J , ZHOU D , STEITZ T A , et al. Ribosome-targeting antibiotics: Modes of action, mechanisms of resistance, and implications for drug design[J]. Annu Rev Biochem, 2018, 87, 451- 478. |
[1] | 邱谦, 桑锐, 王巍, 刘馨蔓, 于明弘, 刘晓童, 于天, 张雪梅. 呼宁散对鸡肺源大肠杆菌抑菌活性及体外抗炎、抗氧化作用研究[J]. 畜牧兽医学报, 2025, 56(4): 1969-1980. |
[2] | 赵文悦, 杨景, 邵怡岚, 李佳璇, 姜艳平, 崔文, 王晓娜, 唐丽杰. 表达牛乳铁蛋白肽的罗伊氏乳杆菌分泌型信号肽的筛选及鉴定[J]. 畜牧兽医学报, 2025, 56(3): 1431-1440. |
[3] | 黄杰, 阮子豪, 蔡瑞. 抗菌肽在猪精液常温保存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1401-1411. |
[4] | 黄康溦, 周鹏程, 田晨宇, 兰怡, 孙志良. 首次从湖南猪源大肠杆菌中检出mcr-1阳性IncI2(Delta)质粒[J]. 畜牧兽医学报, 2024, 55(11): 5278-5286. |
[5] | 刘鑫欢, 恽佳蕾, 毛立, 李基棕, 郝飞, 何苗锋, 杨蕾蕾, 张纹纹, 程子龙, 孙敏, 刘茂军, 王少辉, 白娟, 李文良. 羊腹泻样本中大肠杆菌的分离、毒力基因与耐药性分析[J]. 畜牧兽医学报, 2023, 54(8): 3445-3454. |
[6] | 秦蕾, 吴慧敏, 徐琦琦, 陈万昭, 王东, 李宏博, 夏盼盼, 刘泽鹏, 夏利宁. 外源MDR鼠伤寒沙门菌对健康小鼠肠道菌群的影响[J]. 畜牧兽医学报, 2023, 54(5): 2158-2169. |
[7] | 武周慧, 王瑜, 杜衡, 王之文, 肖爽, 武金亮, 王真. 替拉扎明对多重耐药沙门菌抗菌增敏活性分析[J]. 畜牧兽医学报, 2023, 54(10): 4362-4371. |
[8] | 操庆国, 郭钦, 彭凯, 蔡佳惠, 任成万, 李昀庭. 盐酸小檗碱与左氧氟沙星联合抑制MRSA及其机制研究[J]. 畜牧兽医学报, 2022, 53(9): 3208-3220. |
[9] | 田薇, 李秀梅, 杨娟, 王小莹, 周炜炜, 李中媛, 戴小枫. 基于网络药理学研究板蓝根抑菌活性成分及其作用机制[J]. 畜牧兽医学报, 2022, 53(8): 2782-2793. |
[10] | 孙栋, 蔡寅川, 蒋思雨, 李璇, 郝刚. 抗菌肽Tachyplesin Ⅰ的分子设计、结构与活性分析[J]. 畜牧兽医学报, 2022, 53(6): 1905-1913. |
[11] | 张海霞, 张振彪, 代禾根, 宋昱, 李蕾, 夏兆飞. 中国部分地区犬源伪中间葡萄球菌的流行特征分析[J]. 畜牧兽医学报, 2021, 52(9): 2561-2568. |
[12] | 唐敏嘉, 何卓琳, 蒲万霞. 获得性16S rRNA甲基化酶的研究进展[J]. 畜牧兽医学报, 2021, 52(9): 2369-2383. |
[13] | 李颖, 冯自立, 白瑜, 张宇航, 任雪怡. 蛋清溶菌酶的改造及其抑菌活性[J]. 畜牧兽医学报, 2021, 52(4): 1094-1102. |
[14] | 董朕, 陈晨, 李冰, 周绪正, 张继瑜. 糖肽类抗生素的研究进展[J]. 畜牧兽医学报, 2020, 51(7): 1488-1498. |
[15] | 吴莹, 包晓玮, 陈勇, 于全平, 魏欢, 杨光. 核桃(Juglans regia L.)青皮提取物抗氧化及抑菌活性的研究[J]. 畜牧兽医学报, 2017, 48(6): 1118-1127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||