1 |
MURRAY C J L , IKUTA K S , SHARARA F , et al. Global burden of bacterial antimicrobial resistance in 2019:a systematic analysis[J]. Lancet, 2022, 399 (10325): 629- 655.
doi: 10.1016/S0140-6736(21)02724-0
|
2 |
EL-SAYED AHMED M A E G , ZHONG L L , SHEN C , et al. Colistin and its role in the Era of antibiotic resistance: an extended review (2000-2019)[J]. Emerg Microbes Infections, 2020, 9 (1): 868- 885.
doi: 10.1080/22221751.2020.1754133
|
3 |
LI Q L , QIAN C R , ZHANG X Y , et al. Colistin resistance and molecular characterization of the genomes of mcr-1-positive Escherichia coli clinical isolates[J]. Front Cell Infect Microbiol, 2022, 12, 854534.
doi: 10.3389/fcimb.2022.854534
|
4 |
LIU Y Y , WANG Y , WALSH T R , et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study[J]. Lancet Infect Dis, 2016, 16 (2): 161- 168.
doi: 10.1016/S1473-3099(15)00424-7
|
5 |
LING Z R , YIN W J , SHEN Z Q , et al. Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9[J]. J Antimicrob Chemother, 2020, 75 (11): 3087- 3095.
doi: 10.1093/jac/dkaa205
|
6 |
SHAFIQ M , HUANG J H , RAHMAN S U , et al. High incidence of multidrug-resistant Escherichia coli coharboring mcr-1 and blaCTX-M-15 recovered from pigs[J]. Infect Drug Resist, 2019, 12, 2135- 2149.
doi: 10.2147/IDR.S209473
|
7 |
LUJAN S A , GUOGAS L M , RAGONESE H , et al. Disrupting antibiotic resistance propagation by inhibiting the conjugative DNA relaxase[J]. Proc Natl Acad Sci U S A, 2007, 104 (30): 12282- 12287.
doi: 10.1073/pnas.0702760104
|
8 |
SRIVASTAVA S , SINGH V , KUMAR V , et al. Identification of regulatory elements in 16S rRNA gene of Acinetobacter species isolated from water sample[J]. Bioinformation, 2008, 3 (4): 173- 176.
doi: 10.6026/97320630003173
|
9 |
MENTASTI M , DAVID S , SANDS K , et al. Rapid detection and differentiation of mobile colistin resistance (mcr-1 to mcr-10) genes by real-time PCR and melt-curve analysis[J]. J Hosp Infect, 2021, 110, 148- 155.
doi: 10.1016/j.jhin.2021.01.010
|
10 |
BANKEVICH A , NURK S , ANTIPOV D , et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[J]. J Comput Biol, 2012, 19 (5): 455- 477.
doi: 10.1089/cmb.2012.0021
|
11 |
ANTONOPOULOS D A , ASSAF R , AZIZ R K , et al. PATRIC as a unique resource for studying antimicrobial resistance[J]. Brief Bioinform, 2019, 20 (4): 1094- 1102.
doi: 10.1093/bib/bbx083
|
12 |
BORTOLAIA V , KAAS R S , RUPPE E , et al. ResFinder 4.0 for predictions of phenotypes from genotypes[J]. J Antimicrob Chemother, 2020, 75 (12): 3491- 3500.
doi: 10.1093/jac/dkaa345
|
13 |
MALBERG TETZSCHNER A M , JOHNSON J R , JOHNSTON B D , et al. In silico genotyping of Escherichia coli isolates for extraintestinal virulence genes by use of whole-genome sequencing data[J]. J Clin Microbiol, 2020, 58 (10): e01269- 20.
|
14 |
SULLIVAN M J , PETTY N K , BEATSON S A . Easyfig: a genome comparison visualizer[J]. Bioinformatics, 2011, 27 (7): 1009- 1010.
doi: 10.1093/bioinformatics/btr039
|
15 |
PARTRIDGE S R , ENNE V I , GROHMANN E , et al. Classifying mobile genetic elements and their interactions from sequence data: the importance of existing biological knowledge[J]. Proc Natl Acad Sci U S A, 2021, 118 (35): e2104685118.
doi: 10.1073/pnas.2104685118
|
16 |
JAIN C , RODRIGUEZ-R L M , PHILLIPPY A M , et al. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries[J]. Nat Commun, 2018, 9 (1): 5114.
doi: 10.1038/s41467-018-07641-9
|
17 |
STREPIS N , VOOR IN'T HOLT A F , VOS M C , et al. Genetic analysis of mcr-1-carrying plasmids from gram-negative bacteria in a Dutch tertiary care hospital: evidence for intrapatient and interspecies transmission events[J]. Front Microbiol, 2021, 12, 727435.
doi: 10.3389/fmicb.2021.727435
|
18 |
SHEN C , ZHONG L L , YANG Y Q , et al. Dynamics of mcr-1 prevalence and mcr-1-positive Escherichia coli after the cessation of colistin use as a feed additive for animals in China: a prospective cross-sectional and whole genome sequencing-based molecular epidemiological study[J]. Lancet Microbe, 2020, 1 (1): e34.
doi: 10.1016/S2666-5247(20)30005-7
|
19 |
WALSH T R , WU Y N . China bans colistin as a feed additive for animals[J]. Lancet Infect Dis, 2016, 16 (10): 1102- 1103.
doi: 10.1016/S1473-3099(16)30329-2
|
20 |
XIAO X , ZENG F X , LI R C , et al. Subinhibitory concentration of colistin promotes the conjugation frequencies of mcr-1- and blaNDM-5-positive plasmids[J]. Microbiol Spectr, 2022, 10 (2): e0216021.
doi: 10.1128/spectrum.02160-21
|
21 |
LUO Q X , WANG Y , XIAO Y H . Prevalence and transmission of mobilized colistin resistance (mcr) gene in bacteria common to animals and humans[J]. Biosaf Health, 2020, 2 (2): 71- 78.
doi: 10.1016/j.bsheal.2020.05.001
|
22 |
MAAMAR E , ALONSO C A , HAMZAOUI Z , et al. Emergence of plasmid-mediated colistin-resistance in CMY-2-producing Escherichia coli of lineage ST2197 in a Tunisian poultry farm[J]. Int J Food Microbiol, 2018, 269, 60- 63.
doi: 10.1016/j.ijfoodmicro.2018.01.017
|
23 |
FANG L X , LI X P , LI L , et al. ISEcp1-mediated transposition of chromosome-borne blaCMY-2 into an endogenous ColE1-like plasmid in Escherichia coli[J]. Infect Drug Resist, 2018, 11, 995- 1005.
doi: 10.2147/IDR.S159345
|
24 |
SHIGEMURA H , MAEDA T , NAKAYAMA S , et al. Transmission of extended-spectrum cephalosporin-resistant Salmonella harboring a blaCMY-2-carrying IncA/C2 plasmid chromosomally integrated by ISEcp1 or IS26 in layer breeding chains in Japan[J]. J Vet Med Sci, 2021, 83 (9): 1345- 1355.
doi: 10.1292/jvms.21-0085
|
25 |
SNESRUD E , MCGANN P , CHANDLER M . The birth and demise of the ISApl1-mcr-1-ISApl1 composite transposon: the vehicle for transferable colistin resistance[J]. mBio, 2018, 9 (1): e02381- 17.
|
26 |
BUCHANAN-WOLLASTON V , PASSIATORE J E , CANNON F . The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants[J]. Nature, 1987, 328 (6126): 172- 175.
doi: 10.1038/328172a0
|
27 |
CASCALES E , CHRISTIE P J . The versatile bacterial type Ⅳ secretion systems[J]. Nat Rev Microbiol, 2003, 1 (2): 137- 149.
doi: 10.1038/nrmicro753
|
28 |
CHEETHAM M E , CAPLAN A J . Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function[J]. Cell Stress Chaperones, 1998, 3 (1): 28- 36.
doi: 10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2
|
29 |
GUO S Y , TAY M Y F , THU A K , et al. Conjugative IncX1 plasmid harboring colistin resistance gene mcr-5. 1 in Escherichia coli isolated from chicken rice retailed in Singapore[J]. Antimicrob Agents Chemother, 2019, 63 (11): e01043- 19.
|
30 |
GOMI R , MATSUDA T , YAMAMOTO M , et al. Molecular characterization of a multidrug-resistant IncF plasmid carrying mcr-3. 1 in an Escherichia coli sequence type 393 strain of wastewater origin[J]. Int J Antimicrobial Agents, 2019, 54 (4): 524- 526.
doi: 10.1016/j.ijantimicag.2019.06.024
|
31 |
SAIDANI M , MESSADI L , MEFTEH J , et al. Various inc-type plasmids and lineages of Escherichia coli and Klebsiella pneumoniae spreading blaCTX-M-15, blaCTX-M-1 and mcr-1 genes in camels in Tunisia[J]. J Global Antimicrob Resist, 2019, 19, 280- 283.
doi: 10.1016/j.jgar.2019.05.007
|
32 |
WU R J , YI L X , YU L F , et al. Fitness Advantage of mcr-1–bearing IncI2 and IncX4 plasmids in vitro[J]. Front Microbiol, 2018, 9, 331.
doi: 10.3389/fmicb.2018.00331
|
33 |
GHAZAWI A , STREPIS N , ANES F , et al. First report of colistin-resistant Escherichia coli carrying mcr-1 IncI2(delta) and IncX4 plasmids from camels (Camelus dromedarius) in the gulf region[J]. Antibiotics (Basel), 2024, 13 (3): 227.
doi: 10.3390/antibiotics13030227
|