畜牧兽医学报 ›› 2020, Vol. 51 ›› Issue (7): 1488-1498.doi: 10.11843/j.issn.0366-6964.2020.07.002
董朕, 陈晨, 李冰, 周绪正, 张继瑜*
收稿日期:
2020-02-26
出版日期:
2020-07-25
发布日期:
2020-07-22
通讯作者:
张继瑜,主要从事兽药创新与细菌耐药性研究,E-mail:infzjy@sina.com
作者简介:
董朕(1991-),男,辽宁铁岭人,硕士,主要从事兽医毒理学与安全性评价研究,E-mail:13104100291@163.com
基金资助:
DONG Zhen, CHEN Chen, LI Bing, ZHOU Xuzheng, ZHANG Jiyu*
Received:
2020-02-26
Online:
2020-07-25
Published:
2020-07-22
摘要: 糖肽类抗生素,尤其是万古霉素是临床治疗耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)等多重耐药的革兰阳性菌感染的有效药物。由于糖肽类抗生素耐药性问题愈加严重,寻找和开发新的化合物应用于临床治疗变得十分紧迫。本文就糖肽类抗生素的作用与耐药机制、新批准的糖肽类抗菌药物、化学修饰与新的筛选开发手段展开综述,以期对糖肽类抗生素药物的开发提供思路。
中图分类号:
董朕, 陈晨, 李冰, 周绪正, 张继瑜. 糖肽类抗生素的研究进展[J]. 畜牧兽医学报, 2020, 51(7): 1488-1498.
DONG Zhen, CHEN Chen, LI Bing, ZHOU Xuzheng, ZHANG Jiyu. Research Progress of Glycopeptide Antibiotics[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1488-1498.
[1] | FERNANDES P,MARTENS E.Antibiotics in late clinical development[J].Biochem Pharmacol,2017,133:152-163. |
[2] | OUTTERSON K,REX J H,JINKS T,et al.Accelerating global innovation to address antibacterial resistance:introducing CARB-X[J].Nat Rev Drug Discov,2016,15(9):589-590. |
[3] | YAN Q,KARAU M J,RAVAL Y S,et al.In vitro activity of oritavancin in combination with rifampin or gentamicin against prosthetic joint infection-associated methicillin-resistant Staphylococcus epidermidis biofilms[J].Int J Antimicrob Agents,2018,52(5):608-615. |
[4] | BOUZA E,VALERIO M,SORIANO A,et al.Dalbavancin in the treatment of different gram-positive infections:a real-life experience[J].Int J Antimicrob Agents,2018,51(4):571-577. |
[5] | THEURETZBACHER U,OUTTERSON K,ENGEL A,et al.The global preclinical antibacterial pipeline[J].Nat Rev Microbiol,2020,18(5):275-285. |
[6] | MERKEL A B,TEMPLE G K,BURKART M D,et al.Purification,crystallization and preliminary structural studies of DTDP-4-Keto-6-Deoxy-Glucose-5-Epimerase (EvaD) from Amycolatopsis orientalis,the fourth enzyme in the DTDP-L-Epivancosamine biosynthetic pathway[J].Acta Crystallogr D Biol Crystallogr,2002,58(7):1226-1228. |
[7] | AHMED M O,BAPTISTE K E.Vancomycin-resistant enterococci:a review of antimicrobial resistance mechanisms and perspectives of human and animal health[J].Microb Drug Resist,2018,24(5):590-606. |
[8] | DIAZ R,AFREIXO V,RAMALHEIRA E,et al.Evaluation of vancomycin MIC creep in methicillin-resistant Staphylococcus aureus infections-a systematic review and meta-analysis[J].Clin Microbiol Infec,2018,24(2):97-104. |
[9] | RYBAK M J.The pharmacokinetic and pharmacodynamic properties of vancomycin[J].Clin Infect Dis,2006,42(S1):S35-S39. |
[10] | BEACH J E,PERROTT J,TURGEON R D,et al.Penetration of vancomycin into the cerebrospinal fluid:a systematic review[J].Clin Pharmacokinet,2017,56(12):1479-1490. |
[11] | ÁLVAREZ R,CORTÉS L E L,MOLINA J,et al.Optimizing the clinical use of vancomycin[J].Antimicrob Agents Chemother,2016,60(5):2601-2609. |
[12] | ZENG D N,DEBABOV D,HARTSELL T L,et al.Approved glycopeptide antibacterial drugs:mechanism of action and resistance[J].Cold Spring Harb Perspect Med,2016,6(12):a026989. |
[13] | STEGMANN E,FRASCH H J,KILIAN R,et al.Self-resistance mechanisms of Actinomycetes producing lipid II-targeting antibiotics[J].Int J Med Microbiol,2015,305(2):190-195. |
[14] | GARDETE S,TOMASZ A.Mechanisms of vancomycin resistance in Staphylococcus aureus[J].J Clin Invest,2014,124(7):2836-2840. |
[15] | COURVALIN P.Vancomycin resistance in gram-positive cocci[J].Clin Infect Dis,2006,42(S1):S25-S34. |
[16] | LUNDE C S,HARTOUNI S R,JANC J W,et al.Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid Ⅱ[J].Antimicrob Agents Chemother,2009,53(8):3375-3383. |
[17] | KARLOWSKY J A,NICHOL K,ZHANEL G G.Telavancin:mechanisms of action,in vitro activity,and mechanisms of resistance[J].Clin Infect Dis,2015,61(S2):S58-S68. |
[18] | HILL C M,KRAUSE K M,LEWIS S R,et al.Specificity of induction of the VanA and VanB operons in vancomycin-resistant enterococci by telavancin[J].Antimicrob Agents Chemother,2010,54(7):2814-2818. |
[19] | JONES R N,FLAMM R K,CASTANHEIRA M,et al.Activity of Telavancin against Gram-positive pathogens isolated from bone and joint infections in North American,Latin American,European and Asia-Pacific nations[J].Diagn Microbiol Infect Dis,2017,88(2):184-187. |
[20] | GOLDSTEIN B P,SELVA E,GASTALDO L,et al.A40926,a new glycopeptide antibiotic with anti-Neisseria activity[J].Antimicrob Agents Chemother,1987,31(12):1961-1966. |
[21] | CANDIANI G,ABBONDI M,BORGONOVI M,et al.In-vitro and in-vivo antibacterial activity of BI 397,a new semi-synthetic glycopeptide antibiotic[J].J Antimicrob Chemother,1999,44(2):179-192. |
[22] | MALABARBA A,GOLDSTEIN B P.Origin,structure,and activity in vitro and in vivo of dalbavancin[J].J Antimicrob Chemother,2005,55(S2):ii15-ii20. |
[23] | GARNOCK-JONES K P.Single-dose dalbavancin:a review in acute bacterial skin and skin structure infections[J].Drugs,2017,77(1):75-83. |
[24] | RAPPO U,PUTTAGUNTA S,SHEVCHENKO V,et al.Dalbavancin for the treatment of osteomyelitis in adult patients:a randomized clinical trial of efficacy and safety[J].Open Forum Infect Dis,2019,6(1):ofy331. |
[25] | CERCENADO E.Antimicrobial spectrum of dalbavancin.Mechanism of action and in vitro activity against Gram-positive microorganisms[J].Enferm Infecc Microbiol Clin,2017,35(Sl):9-14. |
[26] | ECONOMOU N J,NAHOUM V,WEEKS S D,et al.A carrier protein strategy yields the structure of dalbavancin[J].J Am Chem Soc,2012,134(10):4637-4645. |
[27] | CHENG M,ZIORA Z M,HANSFORD K A,et al.Anti-cooperative ligand binding and dimerisation in the glycopeptide antibiotic dalbavancin[J].Org Biomol Chem,2014,12(16):2568-2575. |
[28] | ARHIN F F,SEGUIN D L,BELLEY A,et al.In vitro stepwise selection of reduced susceptibility to lipoglycopeptides in enterococci[J].Diagn Microbiol Infect Dis,2017,89(2):168-171. |
[29] | AZANZA J R,SÁDABA B,REIS J.Dalbavancina:pharmacokinetic and pharmacodynamic parameters[J].Enferm Infecc Microbiol ClÍn,2017,35(Sl):22-27. |
[30] | WERTH B J,JAIN R,HAHN A,et al.Emergence of dalbavancin non-susceptible,vancomycin-intermediate Staphylococcus aureus (VISA) after treatment of MRSA central line-associated bloodstream infection with a dalbavancin-and vancomycin-containing regimen[J].Clin Microbiol Infect,2018,24(4):429.e1-429.e5. |
[31] | ALLEN N E.From vancomycin to oritavancin:the discovery and development of a novel lipoglycopeptide antibiotic[J].Anti Infect Agents Med Chem,2010,9(1):23-47. |
[32] | COREY G R,LOUTIT J,MOECK G,et al.Single intravenous dose of oritavancin for treatment of acute skin and skin structure infections caused by gram-positive bacteria:summary of safety analysis from the phase 3 SOLO studies[J].Antimicrob Agents Chemother,2018,62(4):e01919-17. |
[33] | JOHNSON J A,FEENEY E R,KUBIAK D W,et al.Prolonged use of oritavancin for vancomycin-resistant Enterococcus faecium prosthetic valve endocarditis[J].Open Forum Infect Dis,2015,2(4):ofv156. |
[34] | ZHANEL G G,SCHWEIZER F,KARLOWSKY J A.Oritavancin:mechanism of action[J].Clin Infect Dis,2012,54(S3):S214-S219. |
[35] | KIM S J,CEGELSKI L,STUEBER D,et al.Oritavancin exhibits dual mode of action to inhibit cell-wall biosynthesis in Staphylococcus aureus[J].J Mol Biol,2008,377(1):281-293. |
[36] | COOPER M A,WILLIAMS D H.Binding of glycopeptide antibiotics to a model of a vancomycin-resistant bacterium[J].Chem Biol,1999,6(12):891-899. |
[37] | YARLAGADDA V,SAMADDAR S,PARAMANANDHAM K,et al.Membrane disruption and enhanced inhibition of cell-wall biosynthesis:a synergistic approach to tackle vancomycin-resistant bacteria[J].Angew Chem Int Ed,2015,54(46):13644-13649. |
[38] | NICOLAOU K C,BODDY C N C,BRÄSE S,et al.Chemistry,biology,and medicine of the glycopeptide antibiotics[J].Angew Chem Int Ed,1999,38(15):2096-2152. |
[39] | YAO R C,CRANDALL L W.Glycopeptides:classification,occurrence,and discovery[M]//NAGARAJAN R.Glycopeptide Antibiotics.New York:Marcel Dekker,1994:1. |
[40] | WRIGHT L P,PHILIPS M R.Thematic review series:lipid posttranslational modifications CAAX modification and membrane targeting of Ras[J].J Lipid Res,2006,47(5):883-891. |
[41] | MURRAY D,HERMIDA-MATSUMOTO L,BUSER C A,et al.Electrostatics and the membrane association of Src:theory and experiment[J].Biochemistry,1998,37(8):2145-2159. |
[42] | PYLYPENKO O,HAMMICH H,YU I M,et al.Rab GTPases and their interacting protein partners:structural insights into Rab functional diversity[J].Small GTPases,2018,9(1-2):22-48. |
[43] | ZHOU W,PARENT L J,WILLS J W,et al.Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 gag protein which interacts with acidic phospholipids[J].J Virol,1994,68(4):2556-2569. |
[44] | SEYKORA J T,MYAT M M,ALLEN L A H,et al.Molecular determinants of the myristoyl-electrostatic switch of MARCKS[J].J Biol Chem,1996,271(31):18797-18802. |
[45] | MURRAY D,ARBUZOVA A,HONIG B,et al.The role of electrostatic and nonpolar interactions in the association of peripheral proteins with membranes[J].Curr Top Membr,2002,52:277-307. |
[46] | MCLAUGHLIN S,ADEREM A.The myristoyl-electrostatic switch:a modulator of reversible protein-membrane interactions[J].Trends Biochem Sci,1995,20(7):272-276. |
[47] | BLASKOVICH M A T,HANSFORD K A,GONG Y J,et al.Protein-inspired antibiotics active against vancomycin-and daptomycin-resistant bacteria[J].Nat Commun,2018,9(1):22. |
[48] | CROWLEY B M,BOGER D L.Total synthesis and evaluation of[Ψ[CH2NH]Tpg4]vancomycin aglycon:reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding[J].J Am Chem Soc,2006,128(9):2885-2892. |
[49] | XIE J,PIERCE J G,JAMES R C,et al.A redesigned vancomycin engineered for dual D-Ala-D-Ala And D-Ala-D-Lac binding exhibits potent antimicrobial activity against vancomycin-resistant bacteria[J].J Am Chem Soc,2011,133(35):13946-13949. |
[50] | XIE J,OKANO A,PIERCE J G,et al.Total synthesis of[Ψ[C(=S)NH]Tpg4]Vancomycin Aglycon,[Ψ[C(=NH)NH]Tpg4]Vancomycin aglycon,and related key compounds:reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding[J].J Am Chem Soc,2012,134(2):1284-1297. |
[51] | OKANO A,JAMES R C,PIERCE J G,et al.Silver(I)-promoted conversion of thioamides to amidines:divergent synthesis of a key series of vancomycin aglycon residue 4 amidines that clarify binding behavior to model ligands[J].J Am Chem Soc,2012,134(21):8790-8793. |
[52] | NAKAMA Y,YOSHIDA O,YODA M,et al.Discovery of a novel series of semisynthetic vancomycin derivatives effective against vancomycin-resistant bacteria[J].J Med Chem,2010,53(6):2528-2533. |
[53] | GERHARD U,MACKAY J P,MAPLESTONE R A,et al.The role of the sugar and chlorine substituents in the dimerization of vancomycin antibiotics[J].J Am Chem Soc,1993,115(1):232-237. |
[54] | WADZINSKI T J,GEA K D,MILLER S J.A stepwise dechlorination/cross-coupling strategy to diversify the vancomycin ‘in-chloride’[J].Bioorg Med Chem Lett,2016,26(3):1025-1028. |
[55] | MARSCHALL E,CRYLE M J,TAILHADES J.Biological,chemical,and biochemical strategies for modifying glycopeptide antibiotics[J].J Biol Chem,2019,294(49):18769-18783. |
[56] | ANTONOPLIS A,ZANG X Y,HUTTNER M A,et al.A dual-function antibiotic-transporter conjugate exhibits superior activity in sterilizing MRSA biofilms and killing persister cells[J].J Am Chem Soc,2018,140(47):16140-16151. |
[57] | ANTONOPLIS A,ZANG X Y,WEGNER T,et al.Vancomycin-arginine conjugate inhibits growth of carbapenem-resistant E. coli and targets cell-wall synthesis[J].ACS Chem Biol,2019,14(9):2065-2070. |
[58] | ZMIJEWSKI M J,LOGAN R M,MARCONI G,et al.Biotransformation of vancomycin B to vancomycin hexapeptide by a soil microorganism[J].J Nat Prod,1989,52(1):203-206. |
[59] | BOOTH P M,STONE D J M,WILLIAMS D H.The edman degradation of vancomycin:preparation of vancomycin hexapeptide[J].J Chem Soc Chem Commun,1987(22):1694-1695. |
[60] | BRIEKE C,YIM G,PESCHKE M,et al.Catalytic promiscuity of glycopeptide N-methyltransferases enables bio-orthogonal labelling of biosynthetic intermediates[J].Chem Commun,2016,52(94):13679-13682. |
[61] | PARK O K,CHOI H Y,KIM G W,et al.Generation of new complestatin analogues by heterologous expression of the complestatin biosynthetic gene cluster from Streptomyces chartreusis AN1542[J].ChemBioChem,2016,17(18):1725-1731. |
[62] | YIM G,WANG W L,THAKER M N,et al.How to make a glycopeptide:a synthetic biology approach to expand antibiotic chemical diversity[J].ACS Infect Dis,2016,2(9):642-650. |
[63] | WAGLECHNER N,MCARTHUR A G,WRIGHT G D.Phylogenetic reconciliation reveals the natural history of glycopeptide antibiotic biosynthesis and resistance[J].Nat Microbiol,2019,4(11):1862-1871. |
[64] | THAKER M N,WANG W L,SPANOGIANNOPOULOS P,et al.Identifying producers of antibacterial compounds by screening for antibiotic resistance[J].Nat Biotechnol,2013,31(10):922-927. |
[65] | GUITOR A K,RAPHENYA A R,KLUNK J,et al.Capturing the resistome:a targeted capture method to reveal antibiotic resistance determinants in metagenomes[J].Antimicrob Agents Chemother,2019,64(1):e01324-19. |
[66] | YAN Y,LIU Q K,ZANG X,et al.Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action[J].Nature,2018,559(7714):415-418. |
[67] | TANG X Y,LI J,MILLÁN-AGUIÑAGA N,et al.Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining[J].ACS Chem Biol,2015,10(12):2841-2849. |
[68] | CULP E J,WAGLECHNER N,WANG W L,et al.Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling[J].Nature,2020,578(7796):582-587. |
[1] | 苏依曼, 叶嘉莉, 邱文粤, 章心婷, 庞晓玥, 王荣梅, 唐兆新, 苏荣胜. 积雪草酸通过抑制HMGB1/TLR4/NF-κB通路减轻脂多糖诱导肉鸡肾细胞焦亡[J]. 畜牧兽医学报, 2024, 55(4): 1777-1786. |
[2] | 王晋宇, 张凯川, 王芮杰, 高铎, 蒋祺丰, 贾坤. 一株铜绿假单胞菌噬菌体全基因组分析及与抗生素体外联合应用效果[J]. 畜牧兽医学报, 2024, 55(2): 727-738. |
[3] | 刘元红, 胡玉欢, 张莉, 杨萍瑞, 胡卫东, 马琪, 毕师诚. 白术-肉苁蓉治疗便秘的网络药理学分析及试验验证[J]. 畜牧兽医学报, 2024, 55(2): 834-845. |
[4] | 周文惠, 包红霞, 王俊豪, 黄远玲, 王文惠, 郝海红. 甘草查尔酮A与三种抗生素联用对产气荚膜梭菌感染小鼠的治疗作用[J]. 畜牧兽医学报, 2024, 55(1): 334-345. |
[5] | 范锦全, 张宇航, 唐午阳, 赵欣宇, 李丕顺, 郑晓峰. 地西他滨对猪圆环病毒2型的体外抑制作用[J]. 畜牧兽医学报, 2023, 54(12): 5134-5142. |
[6] | 梁雾滢, 刘镇, 曾玉淇, 吕俊瑾, 莫睿文, 远立国. 1-甲基海因对慢性疼痛大鼠钠离子通道蛋白Nav1.8的干预作用[J]. 畜牧兽医学报, 2023, 54(12): 5312-5317. |
[7] | 单强, 王雪, 朱要宏, 王九峰. 鼠李糖乳杆菌抗炎机制及其在防治家畜疾病中的应用前景[J]. 畜牧兽医学报, 2023, 54(11): 4537-4550. |
[8] | 武周慧, 王瑜, 杜衡, 王之文, 肖爽, 武金亮, 王真. 替拉扎明对多重耐药沙门菌抗菌增敏活性分析[J]. 畜牧兽医学报, 2023, 54(10): 4362-4371. |
[9] | 孙盼盼, 曹志刚, 凌小雅, 孙娜, 孙耀贵, 李宏全. 苦参碱联合不同抗生素抗炎作用比较研究[J]. 畜牧兽医学报, 2023, 54(10): 4411-4421. |
[10] | 王志霞, 白莉霞, 秦哲, 刘希望, 杨亚军, 李世宏, 葛闻博, 李剑勇. 阿司匹林丁香酚酯颗粒剂有关物质检测方法的建立与验证[J]. 畜牧兽医学报, 2023, 54(8): 3500-3509. |
[11] | 王芮杰, 洪志楷, 董英娇, 陈瑶, 王晋宇, 王冠华. 基于UPLC-Q-TOF-MS/MS代谢组学研究土霉素和穿心莲内酯对鸡代谢的影响[J]. 畜牧兽医学报, 2023, 54(7): 3078-3090. |
[12] | 张潇, 李丹丹, 田红利, 欧春敏, 杨龙, 欧阳五庆, 郑寅. 侧柏叶抗红色毛癣菌主要活性成分α-蒎烯以ERG-3为靶点发挥抗真菌作用[J]. 畜牧兽医学报, 2023, 54(4): 1690-1702. |
[13] | 林梦娟, 高沙沙, 赵星辰, 仲宇欣, 吴俊, 张军忍, 郭大伟. 常山酮抗原虫作用研究进展[J]. 畜牧兽医学报, 2023, 54(3): 924-933. |
[14] | 陈洋, 王悦力, 陈诗奇, 李楠鑫, 张伟, 舒刚, 徐傅能, 李昊欢, 林居纯, 符华林. 基于寡肽转运蛋白的氟苯尼考肠吸收特性研究[J]. 畜牧兽医学报, 2023, 54(3): 1240-1248. |
[15] | 杨艳北, 许晶, 刘婉萍, 陶艾妮, 冯育林, 孙勇, 王闯, 刘建. 低浓度阿奇霉素对猪链球菌2型蛋白表达、荚膜多糖与药物敏感性的影响[J]. 畜牧兽医学报, 2023, 54(2): 757-765. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||