[1] |
GARCÍA A, Fox J G. A one health perspective for defining and deciphering Escherichia coli pathogenic potential in multiple hosts[J]. Comp Med, 2021, 71(1):3-45.
|
[2] |
陈家露, 蔡重振, 次 旦, 等. 西藏那曲市羊源大肠杆菌分离鉴定及耐药性研究[J]. 中国畜牧兽医, 2019, 46(12):3759-3767.CHEN J L, CAI C Z, CI D, et al. Isolation, identification and drug resistance analysis of sheep Escherichia coli in Naqu, Tibet[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(12):3759-3767. (in Chinese)
|
[3] |
BÉLANGER L, GARENAUX A, HAREL J, et al. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E.coli[J]. FEMS Immunol Med Microbiol, 2011, 62(1):1-10.
|
[4] |
WIRIYAPROM R, NGASAMAN R, KAEWNOI D, et al. Prevalence and virulent gene profiles of sorbitol non-fermenting Shiga toxin-producing Escherichia coli isolated from goats in southern Thailand[J]. Trop Med Infect Dis, 2022, 7(11):357.
|
[5] |
YANG X, SUN H, FAN R Y, et al. Genetic diversity of the intimin gene (eae) in non-O157 Shiga toxin-producing Escherichia coli strains in China[J]. Sci Rep, 2020, 10(1):3275.
|
[6] |
郑晓风, 张 妍, 刘英玉, 等. 新疆部分地区牛羊源产志贺毒素大肠埃希菌菌株检测与分析[J]. 畜牧兽医学报, 2020, 51(10):2518-2527.ZHENG X F, ZHANG Y, LIU Y Y, et al. Detection and analysis of Shiga toxin-producing Escherichia coli isolates from cattle and sheep sources in some regions of Xinjiang, China[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(10):2518-2527. (in Chinese)
|
[7] |
禹金龙, 董 晨, 王娴静, 等. 牛源性非O157大肠杆菌的分离与鉴定[J]. 食品科学, 2019, 40(4):299-304.YU J L, DONG C, WANG X J, et al. Isolation and identification of bovine-Derived non-O157 Escherichia coli strains[J]. Food Science, 2019, 40(4):299-304. (in Chinese)
|
[8] |
YUN J L, MAO L, LI J Z, et al. Molecular characterization and antimicrobial resistance profile of pathogenic Escherichia coli from goats with respiratory disease in eastern China[J]. Microb Pathog, 2022, 166:105501.
|
[9] |
ABDULKAREEM M H, ABOOD A I, DAKHEEL M M. Antimicrobial resistance of tannin extract against E.coli isolates from sheep[J]. Arch Razi Inst, 2022, 77(2):697-701.
|
[10] |
KRIZMAN M, AVGUSTIN J A, ZDOVC I, et al. Antimicrobial resistance and molecular characterization of extended-spectrum β-lactamases and other Escherichia coli isolated from food of animal origin and human intestinal isolates[J]. J Food Prot, 2017, 80(1):113-120.
|
[11] |
赵学亮, 王 斌, 苗永强, 等. 陕西地区羊源致病性大肠杆菌耐药性分析与毒力基因检测[J]. 畜牧兽医学报, 2022, 53(5):1644-1648.ZHAO X L, WANG B, MIAO Y Q, et al. Detection of virulence genes and antimicrobial resistance analysis of Escherichia coli isolated from diarrhea sheep in Shanxi Province[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5):1644-1648. (in Chinese)
|
[12] |
王显峰, 白金英. 羊源大肠杆菌血清型鉴定、毒力基因检测及耐药性分析[J]. 畜牧与兽医, 2020, 52(3):69-72.WANG X F, BAI J Y. Serotype identification, virulence gene and drug resistance detection of Escherichia from sheep[J]. Animal Husbandry & Veterinary Medicine, 2020, 52(3):69-72. (in Chinese)
|
[13] |
宋晓莉, 成大荣, 刘晓明, 等. 临床腹泻肉羊源大肠杆菌流行病学调查及耐药性分析[J]. 黑龙江畜牧兽医, 2019(12):71-75, 80.SONG X L, CHENG D R, LIU X M, et al. Epidemiological investigation and drug resistance analysis of Escherichia coli from mutton sheep with clinical diarrhea[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(12):71-75, 80. (in Chinese)
|
[14] |
FRANK J A, REICH C I, SHARMA S, et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes[J]. Appl Environ Microbiol, 2008, 74(8):2461-2470.
|
[15] |
CLERMONT O, BONACORSI S, BINGEN E. Rapid and simple determination of the Escherichia coli phylogenetic group[J]. Appl Environ Microbiol, 2000, 66(10):4555-4558.
|
[16] |
ZHU Y C, DONG W Y, MA J L, et al. Characterization and virulence clustering analysis of extraintestinal pathogenic Escherichia coli isolated from swine in China[J]. BMC Vet Res, 2017, 13(1):94.
|
[17] |
JAKOBSEN L, SPANGHOLM D J, PEDERSEN K, et al. Broiler chickens, broiler chicken meat, pigs and pork as sources of ExPEC related virulence genes and resistance in Escherichia coli isolates from community-dwelling humans and UTI patients[J]. Int J Food Microbiol, 2010, 142(1-2):264-272.
|
[18] |
OBENG A S, RICKARD H, NDI O, et al. Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia coli isolated from the faeces of intensively farmed and free range poultry[J]. Vet Microbiol, 2012, 154(3-4):305-315.
|
[19] |
孟庆美, 王少辉, 韩先干, 等. 禽致病性大肠杆菌毒力基因多重PCR方法的建立和应用[J]. 微生物学报, 2014, 54(6):696-702.MENG Q M, WANG S H, HAN X G, et al. Multiplex PCR assay for detection of virulence genes in avian pathogenic Escherichia coli[J]. Acta Microbiologica Sinica, 2014, 54(6):696-702. (in Chinese)
|
[20] |
EWERS C, LI G W, WILKING H, et al. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli:How closely related are they?[J]. Int J Med Microbiol, 2007, 297(3):163-176.
|
[21] |
尚立宏, 张 啸, 许 伟, 等. 甘肃部分羊场羔羊腹泻病原菌分离鉴定及其耐药性研究[J]. 中兽医医药杂志, 2022, 41(4):7-11.SHANG L H, ZHANG X, XU W, et al. Isolation, identification and antimicrobial resistance of lamb diarrhea pathogens in some sheep farms in Gansu Province[J]. Journal of Traditional Chinese Veterinary Medicine, 2022, 41(4):7-11. (in Chinese)
|
[22] |
刘晨阳. 羊源大肠杆菌的分离鉴定及耐药性与致病性分析[D]. 咸阳:西北农林科技大学, 2019.LIU C Y. Isolation and identification of Escherichia coli from goats and analysis of drug resistance and pathogenicity[D]. Xianyang:Northwest A&F University, 2019. (in Chinese)
|
[23] |
NDEGWA E, O'BRIEN D, MATTHEW K, et al. Shiga toxin subtypes, serogroups, phylogroups, RAPD genotypic diversity, and select virulence markers of Shiga-toxigenic Escherichia coli strains from goats in mid-atlantic US[J]. Microorganisms, 2022, 10(9):1842.
|
[24] |
NDEGWA E, ALAHMDE A, KIM C, et al. Age related differences in phylogenetic diversity, prevalence of Shiga toxins, intimin, hemolysin genes and select serogroups of Escherichia. coli from pastured meat goats detected in a longitudinal cohort study[J]. BMC Vet Res, 2020, 16(1):266.
|
[25] |
ZHAO X L, LV Y Y, ADAM F E A, et al Comparison of antimicrobial resistance, virulence genes, phylogroups, and biofilm formation of Escherichia coli isolated from intensive farming and free-range sheep[J]. Front Microbiol, 2021, 12:699927.
|
[26] |
BLUM S E, LEITNER G. Genotyping and virulence factors assessment of bovine mastitis Escherichia coli[J]. Vet Microbiol, 2013, 163(3-4):305-312.
|
[27] |
张星星, 乔 军, 孟庆玲, 等. 新疆犊牛源大肠杆菌系统进化及其耐药特性[J]. 家畜生态学报, 2016, 37(6):60-64.ZHANG X X, QIAO J, MENG Q L, et al. Phylogenetic analysis and resistance characteristics of Escherichia coli from calves in Xinjiang[J]. Acta Ecologae Animalis Domastici, 2016, 37(6):60-64. (in Chinese)
|
[28] |
于伟伟, 乔 军, 孟庆玲, 等. 奶牛乳房炎大肠杆菌新疆分离株系统分群及其耐药特性与毒力因子分布研究[J]. 中国奶牛, 2017(10):30-35.YU W W, QIAO J, MENG Q L, et al. Phylogenetic grouping, antimicrobial resistance and virulence factors of Escherichia coli isolated from bovine mastitis in Xinjiang[J]. China Dairy Cattle, 2017, (10):30-35. (in Chinese)
|
[29] |
WANG S H, SHI Z Y, XIA Y J, et al. IbeB is involved in the invasion and pathogenicity of avian pathogenic Escherichia coli[J]. Vet Microbiol, 2012, 159(3-4):411-419.
|
[30] |
TU J, XUE T, QI K Z, et al. The irp2 and fyuA genes in High Pathogenicity Islands are involved in the pathogenesis of infections caused by avian pathogenic Escherichia coli (APEC)[J]. Pol J Vet Sci, 2016, 19(1):21-29.
|
[31] |
张 凌, 佟盼盼, 张 毅, 等. 羔羊STEC的耐药性、毒力基因和血清型分析[J]. 新疆农业科学, 2020, 57(10):1921-1930.ZHANG L, TONG P P, ZHANG Y, et al. Analysis of drug resistance, virulence genes and serotypes of STEC in a large-scale sheep farm in Xinjiang[J]. Xinjiang Agricultural Sciences, 2020, 57(10):1921-1930. (in Chinese)
|
[32] |
冯 杰, 马剑钢, 张 新, 等. 宁夏地区羊源大肠埃希氏菌的分离鉴定及耐药性检测[J]. 动物医学进展, 2022, 43(5):126-130.FENG J, MA J G, ZHANG X, et al. Isolation, identification and antimicrobial resistance detection of Escherichia coli from sheep in Ningxia[J]. Progress in Veterinary Medicine, 2022, 43(5):126-130. (in Chinese)
|
[33] |
PERSAD A K, RAJASHEKARA G, LEJEUNE J T. Shiga toxin (stx) encoding genes in sheep and goats reared in Trinidad and Tobago[J]. PLoS One, 2022, 17(11):e0277564.
|
[34] |
杨跃飞. 临床动物源性大肠杆菌的分离鉴定、耐药基因检测及多位点序列分型分析[D]. 扬州:扬州大学, 2022.YANG Y F. Isolation, identification, antibiotic resistant gene detection and multi-locus sequence typing analysis of Escherichia coli isolates from animal origins in clinical[D]. Yangzhou:Yangzhou University, 2022. (in Chinese)
|