畜牧兽医学报 ›› 2021, Vol. 52 ›› Issue (9): 2369-2383.doi: 10.11843/j.issn.0366-6964.2021.09.001
唐敏嘉, 何卓琳, 蒲万霞*
收稿日期:
2021-01-18
出版日期:
2021-09-23
发布日期:
2021-09-26
通讯作者:
蒲万霞,主要从事细菌耐药性研究,E-mail:puwanxia@caas.cn
作者简介:
唐敏嘉(1997-),女,湖南永州人,硕士生,主要从事细菌耐药性研究,E-mail:1084079547@qq.com
基金资助:
TANG Minjia, HE Zhuolin, PU Wanxia*
Received:
2021-01-18
Online:
2021-09-23
Published:
2021-09-26
摘要: 外源获得性16S rRNA甲基化酶基因广泛分布于革兰阴性细菌中,介导对多种氨基糖苷类药物的高水平耐药。该酶能将S-腺苷-L-甲硫氨酸的甲基添加到16S rRNA氨酰tRNA识别位点的特异性核苷酸上,从而干扰氨基糖苷类药物与靶位点的结合。16S rRNA甲基化酶基因通常由转座子等活动性遗传元件介导并嵌入到可转移的质粒或染色体中,从而导致耐药基因广泛而迅速地传播。更令人担忧的是,16S rRNA甲基化酶基因经常与blaNDM-1、blaCTX-M和qnrB1等其他耐药基因偶联,介导对β-内酰胺类药物和氟喹诺酮类药物的多重耐药。对于多重耐药16S rRNA甲基化酶阳性菌引发的感染,治疗方法非常有限。迄今为止,至少已有30个国家和地区对16S rRNA甲基化酶进行了相关报道,由此可见,16S rRNA甲基化酶基因的全球传播正成为一个全球重大公共卫生问题。
中图分类号:
唐敏嘉, 何卓琳, 蒲万霞. 获得性16S rRNA甲基化酶的研究进展[J]. 畜牧兽医学报, 2021, 52(9): 2369-2383.
TANG Minjia, HE Zhuolin, PU Wanxia. The Research Progress of Acquired 16S rRNA Methyltransferases[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2369-2383.
[1] | PFISTER P, HOBBIE S, VICENS Q, et al. The molecular basis for A-site mutations conferring aminoglycoside resistance:relationship between ribosomal susceptibility and X-ray crystal structures[J]. ChemBioChem, 2003, 4(10):1078-1088. |
[2] | WACHINO J I, ARAKAWA Y. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria:an update[J]. Drug Resist Updat, 2012, 15(3):133-148. |
[3] | YOKOYAMA K, DOI Y, YAMANE K, et al. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa[J]. Lancet, 2003, 362(9399):1888-1893. |
[4] | GALIMAND M, COURVALIN P, LAMBERT T. Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation[J]. Antimicrob Agents Chemother, 2003, 47(8):2565-2571. |
[5] | LIOU G F, YOSHIZAWA S, COURVALIN P, et al. Aminoglycoside resistance by ArmA-mediated ribosomal 16S methylation in human bacterial pathogens[J]. J Mol Biol, 2006, 359(2):358-364. |
[6] | DOI Y, YOKOYAMA K, YAMANE K, et al. Plasmid-mediated 16S rRNA methylase in Serratia marcescens conferring high-level resistance to aminoglycosides[J]. Antimicrob Agents Chemother, 2004, 48(2):491-496. |
[7] | WACHINO J I, YAMANE K, SHIBAYAMA K, et al. Novel plasmid-mediated 16S rRNA methylase, RmtC, found in a Proteus mirabilis isolate demonstrating extraordinary high-level resistance against various aminoglycosides[J]. Antimicrob Agents Chemother, 2006, 50(1):178-184. |
[8] | DOI Y, DE OLIVEIRA GARCIA D, ADAMS J, et al. Coproduction of novel 16S rRNA methylase RmtD and metallo-β-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil[J]. Antimicrob Agents Chemother, 2007, 51(3):852-856. |
[9] | TIJET N, ANDRES P, CHUNG C, et al. rmtD2, a new allele of a 16S rRNA methylase gene, has been present in Enterobacteriaceae isolates from Argentina for more than a decade[J]. Antimicrob Agents Chemother, 2011, 55(2):904-909. |
[10] | DAVIS M A, BAKER K N K, ORFE L H, et al. Discovery of a gene conferring multiple-aminoglycoside resistance in Escherichia coli[J]. Antimicrob Agents Chemother, 2010, 54(6):2666-2669. |
[11] | XIA J, SUN J, LI L, et al. First report of the IncI1/ST898 conjugative plasmid carrying rmtE216S rRNA methyltransferase gene in Escherichia coli[J]. Antimicrob Agents Chemother, 2015, 59(12):7921-7922. |
[12] | GALIMAND M, COURVALIN P, LAMBERT T. RmtF, a New member of the aminoglycoside resistance 16S rRNA N7 G1405 methyltransferase family[J]. Antimicrob Agents Chemother, 2012, 56(7):3960-3962. |
[13] | TADA T, SHIMADA K, SATOU K, et al. Pseudomonas aeruginosa clinical isolates in nepal coproducing metallo-β-lactamases and 16S rRNA methyltransferases[J]. Antimicrob Agents Chemother, 2017, 61(9):e00694-17. |
[14] | BUENO M F C, FRANCISCO G R, O'HARA J A, et al. Coproduction of 16S rRNA methyltransferase RmtD or RmtG with KPC-2 and CTX-M group extended-spectrum β-lactamases in Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2013, 57(5):2397-2400. |
[15] | O'HARA J A, MCGANN P, SNESRUD E C, et al. Novel 16S rRNA methyltransferase RmtH produced by Klebsiella pneumoniae associated with war-related trauma[J]. Antimicrob Agents Chemother, 2013, 57(5):2413-2416. |
[16] | NOSRATI M, DEY D, MEHRANI A, et al. Functionally critical residues in the aminoglycoside resistance-associated methyltransferase RmtC play distinct roles in 30S substrate recognition[J]. J Biol Chem, 2019, 294(46):17642-17653. |
[17] | WACHINO J I, SHIBAYAMA K, KIMURA K, et al. RmtC introduces G1405 methylation in 16S rRNA and confers high-level aminoglycoside resistance on Gram-positive microorganisms[J]. FEMS Microbiol Lett, 2010, 311(1):56-60. |
[18] | WACHINO J I, YAMANE K, KIMURA K, et al. Mode of transposition and expression of 16S rRNA methyltransferase gene rmtC accompanied by ISEcp1[J]. Antimicrob Agents Chemother, 2006, 50(9):3212-3215. |
[19] | WACHINO J I, DOI Y, ARAKAWA Y. Aminoglycoside resistance:updates with a focus on acquired 16S ribosomal RNA methyltransferases[J]. Infect Dis Clin North Am, 2020, 34(4):887-902. |
[20] | WACHINO J I, SHIBAYAMA K, KUROKAWA H, et al. Novel plasmid-mediated 16S rRNA m1A1408 methyltransferase, NpmA, found in a clinically isolated Escherichia coli strain resistant to structurally diverse aminoglycosides[J]. Antimicrob Agents Chemother, 2007, 51(12):4401-4409. |
[21] | KANAZAWA H, BABA F, KOGANEI M, et al. A structural basis for the antibiotic resistance conferred by an N1-methylation of A1408 in 16S rRNA[J]. Nucleic Acids Res, 2017, 45(21):12529-12535. |
[22] | GALIMAND M, SABTCHEVA S, COURVALIN P, et al. Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548[J]. Antimicrob Agents Chemother, 2005, 49(7):2949-2953. |
[23] | MOREL F, DECOUSSER J W, KUMANSKI S, et al. Association of the 16S rRNA methylase gene rmtB with a novel insertion sequence element belonging to the ISL3 family[J]. Int J Antimicrob Agents, 2017, 49(1):117-118. |
[24] | HUANG J W, DENG S S, REN J M, et al. Characterization of a blaNDM-1-harboring plasmid from a Salmonella enterica clinical isolate in China[J]. Mol Med Rep, 2017, 16(2):1087-1092. |
[25] | DOI Y, ADAMS-HADUCH J M, PATERSON D L. Genetic environment of 16S rRNA methylase gene rmtD[J]. Antimicrob Agents Chemother, 2008, 52(6):2270-2272. |
[26] | TOLEMAN M A, BENNETT P M, WALSH T R. ISCR elements:novel gene-capturing systems of the 21st century?[J]. Microbiol Mol Biol Rev, 2006, 70(2):296-316. |
[27] | POIREL L, BONNIN R A, NORDMANN P. Analysis of the resistome of a multidrug-resistant NDM-1-producing Escherichia coli strain by high-throughput genome sequencing[J]. Antimicrob Agents Chemother, 2011, 55(9):4224-4229. |
[28] | HO P L, LO W U, YEUNG M K, et al. Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase from a multidrug-resistant Escherichia coli strain isolated in Hong Kong[J]. PLoS One, 2011, 6(3):e17989. |
[29] | GRANIER S A, HIDALGO L, SAN MILLAN A, et al. ArmA methyltransferase in a monophasic Salmonella enterica isolate from food[J]. Antimicrob Agents Chemother, 2011, 55(11):5262-5266. |
[30] | WRIGHT M S, HAFT D H, HARKINS D M, et al. New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis[J]. mBio, 2014, 5(1):e00963-13. |
[31] | DOI Y, ADAMS J M, YAMANE K, et al. Identification of 16S rRNA methylase-producing Acinetobacter baumannii clinical strains in North America[J]. Antimicrob Agents Chemother, 2007, 51(11):4209-4210. |
[32] | ZHAO W S, LIU G Y, MI Z H, et al. Coexistence of blaOXA-23 with armA and novel gyrA mutation in a pandrug-resistant Acinetobacter baumannii isolate from the blood of a patient with haematological disease in China[J]. J Hosp Infect, 2011, 77(3):278-279. |
[33] | KARTHIKEYAN K, THIRUNARAYAN M A, KRISHNAN P. Coexistence of blaOXA-23 with blaNDM-1 and armA in clinical isolates of Acinetobacter baumannii from India[J]. J Antimicrob Chemother, 2010, 65(10):2253-2254. |
[34] | NAFPLIOTI K, GALANI I, ANGELIDIS E, et al. Dissemination of international clone II Acinetobacter baumannii strains coproducing OXA-23 carbapenemase and 16S rRNA methylase ArmA in Athens, Greece[J]. Microb Drug Resist, 2020, 26(1):9-13. |
[35] | KUMARASAMY K K, TOLEMAN M A, WALSH T R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK:a molecular, biological, and epidemiological study[J]. Lancet Infect Dis, 2010, 10(9):597-602. |
[36] | AISHWARYA K V L, GEETHA P V, SHANTHI M, et al. Co occurrence of two 16S rRNA methyltrasferases along with NDM and OXA 48 like carbapenamases on a single plasmid in Klebsiella pneumoniae[J]. J Lab Physicians, 2019, 11(4):305-311. |
[37] | TAYLOR E, SRISKANDAN S, WOODFORD N, et al. High prevalence of 16S rRNA methyltransferases among carbapenemase-producing Enterobacteriaceae in the UK and Ireland[J]. Int J Antimicrob Agents, 2018, 52(2):278-282. |
[38] | DOI Y, HAZEN T H, BOITANO M, et al. Whole-genome assembly of Klebsiella pneumoniae coproducing NDM-1 and OXA-232 carbapenemases using single-molecule, real-time sequencing[J]. Antimicrob Agents Chemother, 2014, 58(10):5947-5953. |
[39] | LUO Y P, YANG J Y, YE L Y, et al. Characterization of KPC-2-producing Escherichia coli, Citrobacter freundii, Enterobacter cloacae, Enterobacter aerogenes, and Klebsiella oxytoca isolates from a Chinese Hospital[J]. Microb Drug Resist, 2014, 20(4):264-269. |
[40] | GVR D, HASDEMIR U, ÇAKAR A, et al. Comparative in vitro activity of plazomicin and older aminoglyosides against Enterobacterales isolates; prevalence of aminoglycoside modifying enzymes and 16S rRNA methyltransferases[J]. Diagn Microbiol Infect Dis, 2020, 97(4):115092. |
[41] | LIU Z R, LING B D, ZHOU L M. Prevalence of 16S rRNA methylase, modifying enzyme, and extended-spectrum beta-lactamase genes among Acinetobacter baumannii isolates[J]. J Chemother, 2015, 27(4):207-212. |
[42] | JIN J S, KWON K T, MOON D C, et al. Emergence of 16S rRNA methylase rmtA in colistin-only-sensitive Pseudomonas aeruginosa in South Korea[J]. Int J Antimicrob Agents, 2009, 33(5):490-491. |
[43] | YAMANE K, WACHINO J I, SUZUKI S, et al. 16S rRNA methylase-producing, gram-negative pathogens, Japan[J]. Emerg Infect Dis, 2007, 13(4):642-646. |
[44] | YEGANEH SEFIDAN F, MOHAMMADZADEH-ASL Y, GHOTASLOU R. High-level resistance to aminoglycosides due to 16S rRNA methylation in Enterobacteriaceae Isolates[J]. Microb Drug Resist, 2019, 25(9):1261-1265. |
[45] | GAJAMER V R, BHATTACHARJEE A, PAUL D, et al. High prevalence of carbapenemase, AmpC β-lactamase and aminoglycoside resistance genes in extended-spectrum β-lactamase-positive uropathogens from Northern India[J]. J Glob Antimicrob Resist, 2020, 20:197-203. |
[46] | CHEN F, WANG L, WANG M, et al. Genetic characterization and in vitro activity of antimicrobial combinations of multidrug-resistant Acinetobacter baumannii from a general hospital in China[J]. Oncol Lett, 2018, 15(2):2305-2315. |
[47] | BOGAERTS P, GALIMAND M, BAURAING C, et al. Emergence of ArmA and RmtB aminoglycoside resistance 16S rRNA methylases in Belgium[J]. J Antimicrob Chemother, 2007, 59(3):459-464. |
[48] | FRITSCHE T R, CASTANHEIRA M, MILLER G H, et al. Detection of methyltransferases conferring high-level resistance to aminoglycosides in Enterobacteriaceae from Europe, North America, and Latin America[J]. Antimicrob Agents Chemother, 2008, 52(5):1843-1845. |
[49] | KANG H Y, KIM K Y, KIM J, et al. Distribution of conjugative-plasmid-mediated 16S rRNA methylase genes among amikacin-resistant Enterobacteriaceae isolates collected in 1995 to 1998 and 2001 to 2006 at a university hospital in South Korea and identification of conjugative plasmids mediating dissemination of 16S rRNA methylase[J]. J Clin Microbiol, 2008, 46(2):700-706. |
[50] | POIREL L, LAGRUTTA E, TAYLOR P, et al. Emergence of metallo-β-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia[J]. Antimicrob Agents Chemother, 2010, 54(11):4914-4916. |
[51] | TIAN G B, RIVERA J I, PARK Y S, et al. Sequence type ST405 Escherichia coli isolate producing QepA1, CTX-M-15, and RmtB from Detroit, Michigan[J]. Antimicrob Agents Chemother, 2011, 55(8):3966-3967. |
[52] | WU Q, ZHANG Y B, HAN L Z, et al. Plasmid-mediated 16S rRNA methylases in aminoglycoside-resistant Enterobacteriaceae isolates in Shanghai, China[J]. Antimicrob Agents Chemother, 2009, 53(1):271-272. |
[53] | YAMANE K, WACHINO J I, SUZUKI S, et al. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan[J]. Antimicrob Agents Chemother, 2008, 52(4):1564-1566. |
[54] | DENG Y, ZENG Z, CHEN S, et al. Dissemination of IncFII plasmids carrying rmtB and qepA in Escherichia coli from pigs, farm workers and the environment[J]. Clin Microbiol Infect, 2011, 17(11):1740-1745. |
[55] | XIA J, FANG L X, CHENG K, et al. Clonal spread of 16S rRNA methyltransferase-producing Klebsiella pneumoniae ST37 with high prevalence of ESBLs from companion animals in China[J]. Front Microbiol, 2017, 8:529. |
[56] | XIA J, SUN J, CHENG K, et al. Persistent spread of the rmtB 16S rRNA methyltransferase gene among Escherichia coli isolates from diseased food-producing animals in China[J]. Vet Microbiol, 2016, 188:41-46. |
[57] | DENG Y T, HE L Y, CHEN S, et al. F33:A-:B- and F2:A-:B-plasmids mediate dissemination of rmtB-blaCTX-M-9 group genes and rmtB-qepA in Enterobacteriaceae isolates from pets in China[J]. Antimicrob Agents Chemother, 2011, 55(10):4926-4929. |
[58] | SHENG J F, LI J J, TU S, et al. blaKPC and rmtB on a single plasmid in Enterobacter amnigenus and Klebsiella pneumoniae isolates from the same patient[J]. Eur J Clin Microbiol Infect Dis, 2012, 31(7):1585-1591. |
[59] | POIREL L, GOUTINES J, AIRES-DE-SOUSA M, et al. High rate of association of 16S rRNA methylases and carbapenemases in Enterobacteriaceae recovered from hospitalized children in Angola[J]. Antimicrob Agents Chemother, 2018, 62(4):e00021-18. |
[60] | YU T, HE T, YAO H, et al. Prevalence of 16S rRNA methylase gene rmtB among Escherichia coli isolated from bovine mastitis in Ningxia, China[J]. Foodborne Pathog Dis, 2015, 12(9):770-777. |
[61] | MA X J, YANG H F, LIU Y Y, et al. The emergence of the 16S rRNA methyltransferase RmtB in a multidrug-resistant Serratia marcescens isolate in China[J]. Ann Lab Med, 2015, 35(1):172-174. |
[62] | LIAO W J, DE WANG L, LI D, et al. High prevalence of 16S rRNA methylase genes among carbapenem-resistant hypervirulent Klebsiella pneumoniae isolates in a Chinese tertiary hospital[J]. Microb Drug Resist, 2020, 27(1):44-52. |
[63] | ZONG Z Y, PARTRIDGE S R, IREDELL J R. RmtC 16S rRNA methyltransferase in Australia[J]. Antimicrob Agents Chemother, 2008, 52(2):794-795. |
[64] | HOPKINS K L, ESCUDERO J A, HIDALGO L, et al. 16S rRNA methyltransferase RmtC in Salmonella enterica serovar Virchow[J]. Emerg Infect Dis, 2010, 16(4):712-715. |
[65] | HIDALGO L, HOPKINS K L, GUTIERREZ B, et al. Association of the novel aminoglycoside resistance determinant RmtF with NDM carbapenemase in Enterobacteriaceae isolated in India and the UK[J]. J Antimicrob Chemother, 2013, 68(7):1543-1550. |
[66] | WILLIAMSON D A, SIDJABAT H E, FREEMAN J T, et al. Identification and molecular characterisation of New Delhi metallo-β-lactamase-1(NDM-1)- and NDM-6-producing Enterobacteriaceae from New Zealand hospitals[J]. Int J Antimicrob Agents, 2012, 39(6):529-533. |
[67] | DA PAZ PEREIRA J N, DE ANDRADE C A D N, DA COSTA LIMA J L, et al. Clonal dissemination of clinical isolates of Acinetobacter baumannii carriers of 16S rRNA methylase genes in an Oncological Hospital in Recife, Brazil[J]. Curr Microbiol, 2020, 77(1):32-39. |
[68] | YAMANE K, ROSSI F, BARBERINO M G M A, et al. 16S ribosomal RNA methylase RmtD produced by Klebsiella pneumoniae in Brazil[J]. J Antimicrob Chemother, 2008, 61(3):746-747. |
[69] | TADA T, SHIMADA K, MYA S, et al. A new variant of 16S rRNA methylase, RmtD3, in a Clinical Isolate of Pseudomonas aeruginosa in Myanmar[J]. Antimicrob Agents Chemother, 2018, 62(1):e01806-17. |
[70] | URBANOWICZ P, IZDEBSKI R, BARANIAK A, et al. Pseudomonas aeruginosa with NDM-1, DIM-1 and PME-1β-lactamases, and RmtD316S rRNA methylase, encoded by new genomic islands[J]. J Antimicrob Chemother, 2019, 74(10):3117-3119. |
[71] | DOI Y, GHILARDI A C R, ADAMS J, et al. High prevalence of metallo-beta-lactamase and 16S rRNA methylase coproduction among imipenem-resistant Pseudomonas aeruginosa isolates in Brazil[J]. Antimicrob Agents Chemother, 2007, 51(9):3388-3390. |
[72] | FONTES L C, NEVES P R, OLIVEIRA S, et al. Isolation of Pseudomonas aeruginosa coproducing metallo-β-lactamase SPM-1 and 16S rRNA methylase RmtD1 in an urban river[J]. Antimicrob Agents Chemother, 2011, 55(6):3063-3064. |
[73] | BUENO M F C, FRANCISCO G R, DE OLIVEIRA GARCIA D, et al. Complete sequences of multidrug resistance plasmids bearing rmtD1 and rmtD216S rRNA methyltransferase genes[J]. Antimicrob Agents Chemother, 2016, 60(3):1928-1931. |
[74] | WANGKHEIMAYUM J, BHATTACHARJEE M, DAS B J, et al. Correction to:expansion of acquired 16S rRNA methytransferases along with CTX-M-15, NDM and OXA-48 within three sequence types of Escherichia coli from northeast India[J]. BMC Infect Dis, 2020, 20(1):620. |
[75] | WANG Y X, ZHANG A Y, YANG Y Q, et al. Emergence of Salmonella enterica serovar Indiana and California isolates with concurrent resistance to cefotaxime, amikacin and ciprofloxacin from chickens in China[J]. Int J Food Microbiol, 2017, 262:23-30. |
[76] | LI B, PACEY M P, DOI Y. Chromosomal 16S ribosomal RNA methyltransferase RmtE1 in Escherichia coli sequence Type 448[J]. Emerg Infect Dis, 2017, 23(5):876-878. |
[77] | LEE C S, LI J J, DOI Y. Complete sequence of conjugative IncA/C plasmid encoding CMY-2β-lactamase and RmtE 16S rRNA methyltransferase[J]. Antimicrob Agents Chemother, 2015, 59(7):4360-4361. |
[78] | TADA T, HISHINUMA T, WATANABE S, et al. Molecular characterization of multidrug-resistant Pseudomonas aeruginosa isolates in Hospitals in Myanmar[J]. Antimicrob Agents Chemother, 2019, 63(5):e02397-18. |
[79] | SIDJABAT H E, TOWNELL N, NIMMO G R, et al. Dominance of IMP-4-producing Enterobacter cloacae among carbapenemase-producing Enterobacteriaceae in Australia[J]. Antimicrob Agents Chemother, 2015, 59(7):4059-4066. |
[80] | GAMAL D, FERNÁNDEZ-MARTÍNEZ M, SALEM D, et al. Carbapenem-resistant Klebsiella pneumoniae isolates from Egypt containing blaNDM-1 on IncR plasmids and its association with rmtF[J]. Int J Infect Dis, 2016, 43:17-20. |
[81] | POIREL L, LABARCA J, BELLO H, et al. Emergence of the 16S rRNA methylase RmtG in an extended-spectrum-β-lactamase-producing and colistin-resistant Klebsiella pneumoniae isolate in Chile[J]. Antimicrob Agents Chemother, 2014, 58(1):618-619. |
[82] | MANCINI S, POIREL L, CORTHESY M, et al. Klebsiella pneumoniae co-producing KPC and RmtG, finally targeting Switzerland[J]. Diagn Microbiol Infect Dis, 2018, 90(2):151-152. |
[83] | PASSARELLI-ARAUJO H, PALMEIRO J K, MOHARANA K C, et al. Molecular epidemiology of 16S rRNA methyltransferase in Brazil:RmtG in Klebsiella aerogenes ST93(CC4)[J]. An Acad Bras Cienc, 2019, 91(S1):e20180762. |
[84] | BEYROUTHY R, ROBIN F, HAMZE M, et al. IncFIIk plasmid harbouring an amplification of 16S rRNA methyltransferase-encoding gene rmtH associated with mobile element ISCR2[J]. J Antimicrob Chemother, 2017, 72(2):402-406. |
[85] | MARSH J W, PACEY M P, EZEONWUKA C, et al. Clostridioides difficile:a potential source of NpmA in the clinical environment[J]. J Antimicrob Chemother, 2019, 74(2):521-523. |
[86] | LIOY V S, GOUSSARD S, GUERINEAU V, et al. Aminoglycoside resistance 16S rRNA methyltransferases block endogenous methylation, affect translation efficiency and fitness of the host[J]. RNA, 2014, 20(3):382-391. |
[87] | KIMURA S, SUZUKI T. Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16S rRNA[J]. Nucleic Acids Res, 2010, 38(4):1341-1352. |
[88] | YUAN M, CHEN H, ZHU X, et al. pSY153-MDR, a p12969-DIM-related mega plasmid carrying blaIMP-45 and armA, from clinical Pseudomonas putida[J]. Oncotarget, 2017, 8(40):68439-68447. |
[89] | SHANKAR C, SHANKAR B A, MANESH A, et al. KPC-2 producing ST101 Klebsiella pneumoniae from bloodstream infection in India[J]. J Med Microbiol, 2018, 67(7):927-930. |
[90] | HUSAIN N, TULSIAN N K, CHIEN W L, et al. Ligand-mediated changes in conformational dynamics of NpmA:implications for ribosomal interactions[J]. Sci Rep, 2016, 6(1):37061. |
[91] | DOI Y, ARAKAWA Y. 16S ribosomal RNA methylation:emerging resistance mechanism against aminoglycosides[J]. Clin Infect Dis, 2007, 45(1):88-94. |
[92] | PLATTNER M, GYSIN M, HALDIMANN K, et al. Epidemiologic, phenotypic, and structural characterization of aminoglycoside-resistance gene aac(3)-IV[J]. Int J Mol Sci, 2020, 21(17):6133. |
[93] | MACMASTER R, ZELINSKAYA N, SAVIC M, et al. Structural insights into the function of aminoglycoside-resistance A140816S rRNA methyltransferases from antibiotic-producing and human pathogenic bacteria[J]. Nucleic Acids Res, 2010, 38(4):7791-7799. |
[94] | SCHMITT E, GALIMAND M, PANVERT M, et al. Structural bases for 16S rRNA methylation catalyzed by ArmA and RmtB methyltransferases[J]. J Mol Biol, 2009, 388(3):570-582. |
[1] | 刘鑫欢, 恽佳蕾, 毛立, 李基棕, 郝飞, 何苗锋, 杨蕾蕾, 张纹纹, 程子龙, 孙敏, 刘茂军, 王少辉, 白娟, 李文良. 羊腹泻样本中大肠杆菌的分离、毒力基因与耐药性分析[J]. 畜牧兽医学报, 2023, 54(8): 3445-3454. |
[2] | 秦蕾, 吴慧敏, 徐琦琦, 陈万昭, 王东, 李宏博, 夏盼盼, 刘泽鹏, 夏利宁. 外源MDR鼠伤寒沙门菌对健康小鼠肠道菌群的影响[J]. 畜牧兽医学报, 2023, 54(5): 2158-2169. |
[3] | 武周慧, 王瑜, 杜衡, 王之文, 肖爽, 武金亮, 王真. 替拉扎明对多重耐药沙门菌抗菌增敏活性分析[J]. 畜牧兽医学报, 2023, 54(10): 4362-4371. |
[4] | 张海霞, 张振彪, 代禾根, 宋昱, 李蕾, 夏兆飞. 中国部分地区犬源伪中间葡萄球菌的流行特征分析[J]. 畜牧兽医学报, 2021, 52(9): 2561-2568. |
[5] | 董朕, 陈晨, 李冰, 周绪正, 张继瑜. 糖肽类抗生素的研究进展[J]. 畜牧兽医学报, 2020, 51(7): 1488-1498. |
[6] | 何良英,刘兰平,曾振灵,刘健华. 携带blaCTX-M-65、rmtB和fosA3多重耐药质粒pHN7A8的适应性研究[J]. 畜牧兽医学报, 2016, 47(1): 172-176. |
[7] | 王春梅,何启盖,操继跃. 细菌多重耐药泵的研究进展[J]. 畜牧兽医学报, 2011, 42(4): 455-467. |
[8] | 林居纯;陈雅莉;曹三杰;舒刚;文心田. 食品动物源大肠杆菌多重耐药菌株整合子-基因盒的分子特征[J]. 畜牧兽医学报, 2011, 42(1): 77-81. |
[9] | 陈琳;刘健华;张俊丰;陈杖榴;曾振灵. 猪肠道菌氨基糖苷类药物耐药基因分析[J]. 畜牧兽医学报, 2009, 40(7): 1088-1096. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||