畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (7): 2927-2939.doi: 10.11843/j.issn.0366-6964.2024.07.013
王子岩1,2(), 王亚慧2, 吴天弋2, 高晨2, 杜振伟2, 葛菲2, 张晓贝1,2, 赵文轩2, 张路培2, 高会江2, 董焕声1, 李俊雅2,*(
)
收稿日期:
2023-11-01
出版日期:
2024-07-23
发布日期:
2024-07-24
通讯作者:
李俊雅
E-mail:wangziyan1023@126.com;Lijunya@caas.cn
作者简介:
王子岩(1998-),女,吉林人,硕士,主要从事动物遗传育种与繁殖研究,E-mail:wangziyan1023@126.com
基金资助:
Ziyan WANG1,2(), Yahui WANG2, Tianyi WU2, Chen GAO2, Zhenwei DU2, Fei GE2, Xiaobei ZHANG1,2, Wenxuan ZHAO2, Lupei ZHANG2, Huijiang GAO2, Huansheng DONG1, Junya LI2,*(
)
Received:
2023-11-01
Online:
2024-07-23
Published:
2024-07-24
Contact:
Junya LI
E-mail:wangziyan1023@126.com;Lijunya@caas.cn
摘要:
旨在验证牛INTS11基因在成肌细胞中的功能作用,通过生物信息学分析探讨INTS11的CDS区序列及其编码蛋白的特征,并使用不同分子试验技术验证其在牛成肌细胞增殖过程中发挥的作用。本研究对牛INTS11基因序列与其他物种进行同源性对比并构建生物进化树,对其编码蛋白进行理化性质和功能结构分析以及亚细胞定位。并以体外分离培养的3月龄健康胎牛成肌细胞为试验材料,克隆成肌细胞中INTS11的全部CDS区序列,构建INTS11的过表达载体并设计基因的干扰序列,通过CCK8、Edu、RT-qPCR等技术探究其对成肌细胞增殖的影响。生物信息分析结果表明,CDS区序列全长为1 800 bp,具有MBL-foldmetallo-hydro和β-CASP基序两个功能结构域,属于非跨膜蛋白,且细胞定位主要分布于细胞质。在成肌细胞中转染pcDNA3.1-INTS11质粒,结果显示在72~96 h时试验组的成肌细胞比对照组的增殖速度显著增加(P<0.05);Edu试验发现阳性细胞数目显著增加(P<0.05);RT-qPCR结果表明增殖标志因子CDK2、CYCLIND1的mRNA表达水平与对照组相比显著上升(P<0.05)。转入干扰序列后,细胞增殖速度显著下降(P<0.05),同时增殖标志因子CDK2、cyclin D1的mRNA表达水平与对照组相比显著下降(P<0.05)。本研究预测了INTS11在家养动物中的保守性, 并且INTS11蛋白具有两个功能结构域,发现其通过介导CDK2、CYCLIND1的mRNA转录促进牛成肌细胞增殖,其结果完善了调控骨骼肌的基因网络,为后序探讨调控骨骼肌生长机制提供理论支持。
中图分类号:
王子岩, 王亚慧, 吴天弋, 高晨, 杜振伟, 葛菲, 张晓贝, 赵文轩, 张路培, 高会江, 董焕声, 李俊雅. INTS11通过介导CDK2和CYCLIND1的转录促进牛成肌细胞增殖[J]. 畜牧兽医学报, 2024, 55(7): 2927-2939.
Ziyan WANG, Yahui WANG, Tianyi WU, Chen GAO, Zhenwei DU, Fei GE, Xiaobei ZHANG, Wenxuan ZHAO, Lupei ZHANG, Huijiang GAO, Huansheng DONG, Junya LI. INTS11 Promotes the Proliferation of Bovine Myoblasts by Mediating the Transcription of CDK2 and CYCLIND1[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2927-2939.
表 2
INTS11基因实时荧光定量PCR扩增引物信息"
基因Gene | 上游引物(5′→3′) Forward primer sequence | 下游引物(5′→3′) Reverse primer sequence |
INTS11 | AGATCAGGGTCACGCCCTT | GCAGTCCAGAAAGTCGGTCA |
CDK2 | TCTTTGCTGAGATGGTGACCC | TAACTCCTGGCCAAACCACC |
CYCLIND1 | GACGAGCTGCTGCACATGGA | TGCTTGTTCTCCTCGGCCAC |
GAPDH | CGAGCTGCTGCACATG | GGCGACGATGTCCACTTTG |
1 |
ZHAO T T , ZHAO R , YI X D , et al. METTL3 promotes proliferation and myogenic differentiation through m6A RNA methylation/YTHDF1/2 signaling axis in myoblasts[J]. Life Sci, 2022, 298, 120496.
doi: 10.1016/j.lfs.2022.120496 |
2 |
HOH J A Y . Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles[J]. J Comp Physiol B, 2023, 193 (4): 355- 382.
doi: 10.1007/s00360-023-01499-0 |
3 |
MENG Q W , LI J W , WANG C S , et al. Biological function of resveratrol and its application in animal production: a review[J]. J Anim Sci Biotechnol, 2023, 14 (1): 25.
doi: 10.1186/s40104-022-00822-z |
4 |
SONG C C , YANG Z X , DONG D , et al. miR-483 inhibits bovine myoblast cell proliferation and differentiation via IGF1/PI3K/AKT signal pathway[J]. J Cell Physiol, 2019, 234 (6): 9839- 9848.
doi: 10.1002/jcp.27672 |
5 |
CHEN M J , WEI X F , SONG M M , et al. Circular RNA circMYBPC1 promotes skeletal muscle differentiation by targeting MyHC[J]. Mol Ther Nucleic Acids, 2021, 24, 352- 368.
doi: 10.1016/j.omtn.2021.03.004 |
6 |
LUO W , LIN Z T , CHEN J H , et al. TMEM182 interacts with integrin beta 1 and regulates myoblast differentiation and muscle regeneration[J]. J Cachexia Sarcopenia Muscle, 2021, 12 (6): 1704- 1723.
doi: 10.1002/jcsm.12767 |
7 |
MO M J , ZHANG Z H , WANG X T , et al. Molecular mechanisms underlying the impact of muscle fiber types on meat quality in livestock and poultry[J]. Front Vet Sci, 2023, 10, 1284551.
doi: 10.3389/fvets.2023.1284551 |
8 |
KONG D L , HE M , YANG L , et al. MiR-17 and miR-19 cooperatively promote skeletal muscle cell differentiation[J]. Cell Mol Life Sci, 2019, 76 (24): 5041- 5054.
doi: 10.1007/s00018-019-03165-7 |
9 | DU L L , DUAN X H , AN B X , et al. Genome-wide association study based on random regression model reveals candidate genes associated with longitudinal data in Chinese simmental beef cattle[J]. Animals (Basel), 2021, 11 (9): 2524. |
10 |
KUANG H Z , LI Y L , WANG Y X , et al. A homozygous variant in INTS11 links mitosis and neurogenesis defects to a severe neurodevelopmental disorder[J]. Cell Rep, 2023, 42 (12): 113445.
doi: 10.1016/j.celrep.2023.113445 |
11 |
FONGANG B , WADOP Y N , ZHU Y J , et al. Coevolution combined with molecular dynamics simulations provides structural and mechanistic insights into the interactions between the integrator complex subunits[J]. Comput Struct Biotechnol J, 2023, 21, 5686- 5697.
doi: 10.1016/j.csbj.2023.11.022 |
12 | DOKANEHEIFARD S , GOMES DOS SANTOS H , VALENCIA M G , et al. BRAT1 associates with INTS11/INTS9 heterodimer to regulate key neurodevelopmental genes[J]. bioRxiv, 2023, 8 (10): 552743. |
13 |
NIU Q H , ZHANG T L , XU L , et al. Integration of selection signatures and multi-trait GWAS reveals polygenic genetic architecture of carcass traits in beef cattle[J]. Genomics, 2021, 113 (5): 3325- 3336.
doi: 10.1016/j.ygeno.2021.07.025 |
14 | LIU L , YIN L Q , YUAN Y H , et al. Developmental characteristics of skeletal muscle during the embryonic stage in Chinese Yellow Quail (Coturnix japonica)[J]. Animals (Basel), 2023, 13 (14): 2317. |
15 |
SKAAR J R , FERRIS A L , WU X L , et al. The integrator complex controls the termination of transcription at diverse classes of gene targets[J]. Cell Res, 2015, 25 (3): 288- 305.
doi: 10.1038/cr.2015.19 |
16 |
LAI F , GARDINI A , ZHANG A D , et al. Integrator mediates the biogenesis of enhancer RNAs[J]. Nature, 2015, 525 (7569): 399- 403.
doi: 10.1038/nature14906 |
17 |
ALBRECHT T R , SHEVTSOV S P , WU Y X , et al. Integrator subunit 4 is a 'symplekin-like' scaffold that associates with INTS9/11 to form the Integrator cleavage module[J]. Nucleic Acids Res, 2018, 46 (8): 4241- 4255.
doi: 10.1093/nar/gky100 |
18 |
HUANG H F , LIU J Z , YAO F , et al. The integrator complex subunit 11 is involved in the post-diapaused embryonic development and stress response of Artemia sinica[J]. Gene, 2020, 741, 144548.
doi: 10.1016/j.gene.2020.144548 |
19 |
TEPE B , MACKE E L , NICETA M , et al. Bi-allelic variants in INTS11 are associated with a complex neurological disorder[J]. Am J Hum Genet, 2023, 110 (5): 774- 789.
doi: 10.1016/j.ajhg.2023.03.012 |
20 |
HE L F , MA H H , SONG W H , et al. Arabidopsis COPT1 copper transporter uses a single histidine to regulate transport activity and protein stability[J]. Int J Biol Macromol, 2023, 241, 124404.
doi: 10.1016/j.ijbiomac.2023.124404 |
21 | YOSAATMADJA Y , BADDOCK H T , NEWMAN J A , et al. Structural and mechanistic insights into the Artemis endonuclease and strategies for its inhibition[J]. Nucleic Acids Res, 2021, 49 (6): 9310- 9326. |
22 |
GONZÁLEZ L J , BAHR G , GONZÁLEZ M M , et al. In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution[J]. Nat Chem Biol, 2023, 19 (9): 1116- 1126.
doi: 10.1038/s41589-023-01319-0 |
23 |
WU Y X , ALBRECHT T R , BAILLAT D , et al. Molecular basis for the interaction between Integrator subunits IntS9 and IntS11 and its functional importance[J]. Proc Natl Acad Sci U S A, 2017, 114 (17): 4394- 4399.
doi: 10.1073/pnas.1616605114 |
24 |
OSANA S , KITAJIMA Y , SUZUKI N , et al. Puromycin-sensitive aminopeptidase is required for C2C12 myoblast proliferation and differentiation[J]. J Cell Physiol, 2021, 236 (7): 5293- 5305.
doi: 10.1002/jcp.30237 |
25 |
SUN C S , KANNAN S , CHOI I Y , et al. Human pluripotent stem cell-derived myogenic progenitors undergo maturation to quiescent satellite cells upon engraftment[J]. Cell Stem Cell, 2022, 29 (4): 610- 619.
doi: 10.1016/j.stem.2022.03.004 |
26 |
DASILVA L F , BLUMENTHAL E , BECKEDORFF F , et al. Integrator enforces the fidelity of transcriptional termination at protein-coding genes[J]. Sci Adv, 2021, 7 (45): eabe3393.
doi: 10.1126/sciadv.abe3393 |
27 |
SHI L , SONG L , MAURER K , et al. IL-1 Transcriptional Responses to Lipopolysaccharides Are Regulated by a Complex of RNA Binding Proteins[J]. The Journal of Immunology, 2020, 204 (5): 1334- 1344.
doi: 10.4049/jimmunol.1900650 |
28 |
ALBRECHT T R , WAGNER E J . snRNA 3' end formation requires heterodimeric association of integrator subunits[J]. Mol Cell Biol, 2012, 32 (6): 1112- 1123.
doi: 10.1128/MCB.06511-11 |
29 |
WELSH S A , GARDINI A . Genomic regulation of transcription and RNA processing by the multitasking Integrator complex[J]. Nature Reviews Molecular Cell Biology, 2023, 24 (3): 204- 220.
doi: 10.1038/s41580-022-00534-2 |
30 |
CIHLAROVA Z , KUBOVCIAK J , SOBOL M , et al. BRAT1 links Integrator and defective RNA processing with neurodegeneration[J]. Nat Commun, 2022, 13 (1): 5026.
doi: 10.1038/s41467-022-32763-6 |
31 |
HUANG J , LIU X Y , SUN Y D , et al. An examination of the metal ion content in the active sites of human endonucleases CPSF73 and INTS11[J]. J Biol Chem, 2023, 299 (4): 103047.
doi: 10.1016/j.jbc.2023.103047 |
32 |
ZHANG P , SUI P , CHEN S , et al. INTS11 regulates hematopoiesis by promoting PRC2 function[J]. Science Advances, 2021, 7 (36): eabh1684.
doi: 10.1126/sciadv.abh1684 |
33 | DUMAN E T , SITTE M , CONRADS K , et al. A single-cell strategy for the identification of intronic variants related to mis-splicing in pancreatic cancer[J]. bioRxiv, 2023, 5 (8): 539836. |
34 | SHERSHER E , LAHIRY M , ALVAREZ-TROTTA A , et al. NACK and INTEGRATOR act coordinately to activate notch-mediated transcription in tumorigenesis[J]. Cell Commun, 2021, 19 (1): 96. |
35 |
SIMON M , MIKEC S , MORTON N M , et al. Genome-wide screening for genetic variants in polyadenylation signal (PAS) sites in mouse selection lines for fatness and leanness[J]. Mamm Genome, 2023, 34 (1): 12- 31.
doi: 10.1007/s00335-022-09967-8 |
36 |
ZHANG P , SUI P P , CHEN S , et al. INTS11 regulates hematopoiesis by promoting PRC2 function[J]. Sci Adv, 2021, 7 (36): eabh1684.
doi: 10.1126/sciadv.abh1684 |
37 |
KALDIS P , ALEEM E . Cell cycle sibling rivalry: Cdc2 versus Cdk2[J]. Cell Cycle, 2005, 4 (11): 1491- 1494.
doi: 10.4161/cc.4.11.2124 |
38 |
HE S Y , CHEN M , LIN X L , et al. Triptolide inhibits PDGF-induced proliferation of ASMCs through G0/G1 cell cycle arrest and suppression of the AKT/NF-κB/cyclinD1 signaling pathway[J]. Eur J Pharmacol, 2020, 867, 172811.
doi: 10.1016/j.ejphar.2019.172811 |
39 |
WANG H , ZHANG Q , WANG B B , et al. miR-22 regulates C2C12 myoblast proliferation and differentiation by targeting TGFBR1[J]. Eur J Cell Biol, 2018, 97 (4): 257- 268.
doi: 10.1016/j.ejcb.2018.03.006 |
40 |
ZHOU H Y , WANG Y C , WANG T , et al. CCNA2 and NEK2 regulate glioblastoma progression by targeting the cell cycle[J]. Oncol Lett, 2024, 27 (5): 206.
doi: 10.3892/ol.2024.14339 |
41 |
BROWN V E , MOORE S L , CHEN M , et al. CDK2 regulates collapsed replication fork repair in CCNE1-amplified ovarian cancer cells via homologous recombination[J]. NAR Cancer, 2023, 5 (3): zcad039.
doi: 10.1093/narcan/zcad039 |
[1] | 谢兵红, 刘一帆, 薛夫光, 单艳菊, 屠云洁, 姬改革, 巨晓军, 束婧婷, 吴红翔. 缺氧对鸡成肌细胞肌纤维类型转化作用的机制探究[J]. 畜牧兽医学报, 2024, 55(6): 2397-2408. |
[2] | 刘畅, 郝科兴, 陈岩, 曾维斌, 喻恒彬, 陈磊, 王静, 胡广东. 干扰PPARγ基因对绵羊滋养层细胞增殖、凋亡、迁移和脂质积累的影响[J]. 畜牧兽医学报, 2024, 55(6): 2421-2430. |
[3] | 李秋云, 田芯源, 廖文圣, 张焕容, 任玉鹏, 杨发龙, 朱江江, 向华. SOCS2对山羊鼻甲骨细胞增殖、周期及凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2226-2240. |
[4] | 荆扬, 王玉淼, 李洋, 常辉, 马志倩, 李志伟, 肖书奇. 稳定表达PRRSV M蛋白的MARC-145ORF6细胞系的构建及其对PRRSV增殖的影响[J]. 畜牧兽医学报, 2024, 55(3): 1159-1169. |
[5] | 苗舒, 安济山, 王祚, 肖定福, 兰欣怡, 刘磊, 沈维军, 万发春. 亮氨酸通过PI3K-AKT信号通路促进牛成肌细胞的增殖[J]. 畜牧兽医学报, 2024, 55(1): 142-152. |
[6] | 唐崟梅, 李琪, 李海洋, 林亚秋, 王永, 向华, 黄炼, 朱江江. 山羊FATP2基因的克隆及对前体脂肪细胞脂质沉积的影响[J]. 畜牧兽医学报, 2023, 54(9): 3642-3652. |
[7] | 邵鹏, 唐崟梅, 林亚秋, 王永, 向华, 黄炼, 朱江江. PSMD9对山羊前体脂肪细胞脂质沉积的调控作用研究[J]. 畜牧兽医学报, 2023, 54(9): 3653-3663. |
[8] | 梁睿, 范小瑞, 张晋强, 庞全海. 小鼠黑色素细胞沉默及过表达色素上皮衍生因子对黑色素合成的影响[J]. 畜牧兽医学报, 2023, 54(9): 3916-3930. |
[9] | 张万锋, 赵天枝, 李娇, 尤紫薇, 杨阳, 蔡春波, 高鹏飞, 曹果清, 郭晓红, 李步高. NR2F2基因调控猪PK15细胞增殖和凋亡的研究[J]. 畜牧兽医学报, 2023, 54(8): 3242-3251. |
[10] | 王婉洁, 陈南珠, 邹惠影, 周心仪, 郝海生, 庞云渭, 朱化彬, 赵学明, 余大为, 杜卫华. 过表达组蛋白甲基转移酶ASH1L对牛卵丘细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2023, 54(8): 3358-3368. |
[11] | 张鹏, 王明秀, 敬科民, 彭巍, 田园, 李雨谦, 付长其, 舒适, 钟金城, 蔡欣. FGFs/FGFRs及其介导信号通路基因的异常表达影响犏牛未分化精原细胞增殖活性[J]. 畜牧兽医学报, 2023, 54(7): 2886-2897. |
[12] | 许甜甜, 张彤彤, 王蒙, 王昕. 转录因子Foxq1通过WNT/β-catenin信号通路影响绒山羊毛囊干细胞增殖的研究[J]. 畜牧兽医学报, 2023, 54(6): 2653-2661. |
[13] | 曲比伍且, 李艳艳, 李鑫, 王永, 王友利, 刘伟, 朱江江, 林亚秋. 山羊APOA4基因抑制肌内脂肪细胞分化[J]. 畜牧兽医学报, 2023, 54(5): 1927-1938. |
[14] | 薄禄琪, 王雪莹, 侯嘉茗, 张力, 张鉴慧, 阮入琳, 张博涵, 王爽, 宋铭忻, 张子群. siRNA-757干扰旋毛虫Ts-ODC基因对其抗酸能力的影响[J]. 畜牧兽医学报, 2023, 54(5): 2114-2125. |
[15] | 方源, 侯巧弟, 项超辉, 赵红奕, 齐雪峰. IFITM3对小反刍兽疫病毒在山羊子宫内膜上皮细胞中增殖的调控效应[J]. 畜牧兽医学报, 2023, 54(5): 2200-2207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||