畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (11): 4925-4937.doi: 10.11843/j.issn.0366-6964.2024.11.013
于聪颖(), 吴金华, 钟秉洲, 赵海全, 谭淑雯, 于辉*(
), 李华*(
)
收稿日期:
2024-04-28
出版日期:
2024-11-23
发布日期:
2024-11-30
通讯作者:
于辉,李华
E-mail:13415551629@163.com;yu71hui@aliyun.com;okhuali@fosu.edu.cn
作者简介:
于聪颖(2001-), 女, 吉林靖宇人, 硕士生, 主要从事动物遗传育种与繁殖研究, E-mail: 13415551629@163.com
基金资助:
Congying YU(), Jinhua WU, Bingzhou ZHONG, Haiquan ZHAO, Shuwen TAN, Hui YU*(
), Hua LI*(
)
Received:
2024-04-28
Online:
2024-11-23
Published:
2024-11-30
Contact:
Hui YU, Hua LI
E-mail:13415551629@163.com;yu71hui@aliyun.com;okhuali@fosu.edu.cn
摘要:
旨在探索间性猪垂体的编码与非编码RNAs的表达特征,为解析间性猪垂体功能紊乱的分子机制提供数据支持。以5月龄正常母猪和间性猪各3头为研究对象,进行血清激素检测和垂体组织的全转录组测序,分析鉴定间性猪垂体差异表达的mRNAs、lncRNAs、miRNAs,并构建间性猪垂体中相关基因调控的竞争性内源RNAs(ceRNAs)。结果表明,间性猪血清激素分泌紊乱,垂体功能异常。与正常母猪对比,间性猪垂体差异表达的mRNAs有1451个,差异表达的lncRNAs有277个,差异表达的miRNAs有17个。其中差异表达mRNAs主要富集在MAPK信号通路、孕酮介导的卵母细胞成熟、PRL信号通路等生物通路上;ceRNAs网络分析发现,TCONS_00175477-novel_265-CCNB3、TCONS_00134726-novel_265-ZNF366和TCONS_00212783-novel_265-ZNF366竞争组合可能与间性猪垂体激素分泌异常有关。综上所述,本研究揭示了间性猪垂体mRNAs、lncRNAs和miRNAs差异表达并构建ceRNAs,其特定lncRNA-miRNA-mRNA可能参与间性猪垂体的激素合成与分泌的调控,为解析间性猪垂体功能紊乱的分子机制提供了理论参考。
中图分类号:
于聪颖, 吴金华, 钟秉洲, 赵海全, 谭淑雯, 于辉, 李华. 间性猪垂体的全转录组学特征分析[J]. 畜牧兽医学报, 2024, 55(11): 4925-4937.
Congying YU, Jinhua WU, Bingzhou ZHONG, Haiquan ZHAO, Shuwen TAN, Hui YU, Hua LI. Analysis of Whole Transcriptome Characteristics of the Hermaphroditic Pig's Pituitary Gland[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4925-4937.
表 1
实时荧光定量PCR基因引物序列"
基因 Gene | 引物序列(5′→3′) Primers sequence | |
PLAC8 | F: | CCTCAAACCTCCAACTGGCAGAC |
R: | ACACAGGCAGCATTCGTTCAGG | |
TGFβ3 | F: | GCTGTGGCTGCTAGTGCTGAC |
R: | GAATGGCCTCGATGCGCTTCC | |
GBP2 | F: | CGCAGCCTGTGGTGGTTGTG |
R: | CATCCAGATGCCCTTCGTGTGAG | |
SAR1A | F: | GACAGACCACAGGAAAGGGGAATG |
R: | CGCCGTAGCCTTGCCTCTTG | |
TCONS_00103241 | F: | CTGAGTGCTGGCAGGACTGATTC |
R: | TTCACACCGCTCCACACCAAAC | |
TCONS_00151978 | F: | ACATTGATTCCTGCTGCCGACTC |
R: | TCCCTCCCTGTGTCAGAACTGTC | |
TCONS_00247538 | F: | TTCGGTCCCTGCCCTTGCTC |
R: | CTACGCCAGAGCCACAGCAAC | |
TCONS_00280037 | F: | AGGGGAGAGGATGGGGAGAGAG |
R: | TCCAGTTGTACCAGCTTGCGTTC | |
GAPDH | F: | AACATCATCCCTGCTTCTACCG |
R: | GGTCAGATCCACAACCGACAC | |
U6 | F: | GGAACGATACAGAGAAGATTAGC |
R: | TGGAACGATTCACGAATTTGCG | |
Ssc-miR-10391 | F: | CAAGGAAGGAGACTAATGATT |
Ssc-miR-2366 | F: | TGGGTCACAGAAGAGGGTCTG |
Ssc-miR-122-5p | F: | CCTGGAGTGTGACAATGGTGTTTGT |
Ssc-miR-143-3p | F: | GCGTGAGATGAAGCACTGTAGCTC |
1 |
REYES A P , LEÓN N Y , FROST E R , et al. Genetic control of typical and atypical sex development[J]. Nat Rev Urol, 2023, 20 (7): 434- 451.
doi: 10.1038/s41585-023-00754-x |
2 | 钟秉洲, 吴金华, 于聪颖, 等. 38, XX-DSD(SRY-)间性猪分子病因学的研究进展[J]. 中国畜牧杂志, 2024, 60 (6): 107- 112. |
ZHONG B Z , WU J H , YU C Y , et al. Advances in the molecular pathogenesis of hermaphroditic pigs(38, XX-DSD, SRY-)[J]. Chinese Journal of Animal Science, 2024, 60 (6): 107- 112. | |
3 | HUGHES I A , HOUK C , AHMED S F , et al. Consensus statement on management of intersex disorders[J]. Arch Dis Child, 2006, 91 (7): 554- 563. |
4 |
MAMGAIN A , SAWYER I L , TIMAJO D A M , et al. RFamide-related peptide neurons modulate reproductive function and stress responses[J]. J Neurosci, 2021, 41 (3): 474- 488.
doi: 10.1523/JNEUROSCI.1062-20.2020 |
5 |
ZHANG S , CUI Y L , MA X Y , et al. Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development[J]. Nat Commun, 2020, 11 (1): 5275.
doi: 10.1038/s41467-020-19012-4 |
6 |
PECULIS R , MANDRIKA I , PETROVSKA R , et al. Pituispheres contain genetic variants characteristic to pituitary adenoma tumor tissue[J]. Front Endocrinol, 2020, 11, 313.
doi: 10.3389/fendo.2020.00313 |
7 | EYAREFE O D , ATAWALNA J , EMIKPE B O , et al. Intersex piglet with bilobed urinary bladder in Kumasi, Ghana: A case report[J]. Anim Res Int, 2017, 14 (2): 2720- 2724. |
8 |
NOWACKA-WOSZUK J , SZCZERBAL I , STACHOWIAK M , et al. Association between polymorphisms in the SOX9 region and canine disorder of sex development (78, XX; SRY-negative) revisited in a multibreed case-control study[J]. PLoS One, 2019, 14 (6): e0218565.
doi: 10.1371/journal.pone.0218565 |
9 | 周怡, 赵海全, 刘玉清, 等. 一例真间性猪的研究[J]. 中国农业科学, 2014, 47 (10): 2021- 2029. |
ZHOU Y , ZHAO H Q , LIU Y Q , et al. Study of a true hermaphrodite pig[J]. Scientia Agricultura Sinica, 2014, 47 (10): 2121- 2029. | |
10 |
CHEN X , SUN Y Z , GUAN N N , et al. Computational models for lncRNA function prediction and functional similarity calculation[J]. Brief Funct Genomics, 2019, 18 (1): 58- 82.
doi: 10.1093/bfgp/ely031 |
11 | PAILHOUX E , VIGIER B , SCHIBLER L , et al. Positional cloning of the PIS mutation in goats and its impact on understanding mammalian sex-differentiation[J]. Genet Sel Evol, 2005, 37 Suppl 1 (S1): S55- S64. |
12 |
WAN Z , YANG H , CHEN P Y , et al. The novel competing endogenous long noncoding RNA SM2 regulates gonadotropin secretion in the hu sheep anterior pituitary by targeting the oar-miR-16b/TGF-β/SMAD2 signaling pathway[J]. Cells, 2022, 11 (6): 985.
doi: 10.3390/cells11060985 |
13 |
MOKABBER H , NAJAFZADEH N , VARDIN M M . miR-124 promotes neural differentiation in mouse bulge stem cells by repressing Ptbp1 and Sox9[J]. J Cell Physiol, 2019, 234 (6): 8941- 8950.
doi: 10.1002/jcp.27563 |
14 |
HE J , XU S R , JI Z J , et al. The role of miR-7 as a potential switch in the mouse hypothalamus-pituitary-ovary axis through regulation of gonadotropins[J]. Mol Cell Endocrinol, 2020, 518, 110969.
doi: 10.1016/j.mce.2020.110969 |
15 |
ZHAO H Y , YIN X Z , XU H T , et al. LncTarD 2.0:an updated comprehensive database for experimentally-supported functional lncRNA-target regulations in human diseases[J]. Nucleic Acids Res, 2023, 51 (D1): D199- D207.
doi: 10.1093/nar/gkac984 |
16 |
CHEN X , SHI W . Genome-wide characterization of coding and non-coding RNAs in the ovary of honeybee workers and queens[J]. Apidologie, 2020, 51 (5): 777- 792.
doi: 10.1007/s13592-020-00760-7 |
17 |
CAPRA E , LAZZARI B , FRATTINI S , et al. Distribution of ncRNAs expression across hypothalamic-pituitary-gonadal axis in Capra hircus[J]. BMC Genomics, 2018, 19 (1): 417.
doi: 10.1186/s12864-018-4767-x |
18 |
EGGERS S , SADEDIN S , VAN DEN BERGEN J A , et al. Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort[J]. Genome Biol, 2016, 17 (1): 243.
doi: 10.1186/s13059-016-1105-y |
19 |
EOZENOU C , GONEN N , TOUZON M S , et al. Testis formation in XX individuals resulting from novel pathogenic variants in Wilms' tumor 1 (WT1) gene[J]. Proc Natl Acad Sci U S A, 2020, 117 (24): 13680- 13688.
doi: 10.1073/pnas.1921676117 |
20 |
FINKIELSTAIN G P , VIEITES A , BERGADÁ I , et al. Disorders of sex development of adrenal origin[J]. Front Endocrinol, 2021, 12, 770782.
doi: 10.3389/fendo.2021.770782 |
21 |
TSUKAMURA H . Kobayashi Award 2019:The neuroendocrine regulation of the mammalian reproduction[J]. Gen Comp Endocrinol, 2022, 315, 113755.
doi: 10.1016/j.ygcen.2021.113755 |
22 |
TAN S W , ZHOU Y , ZHAO H Q , et al. Comprehensive transcriptome analysis of hypothalamus reveals genes associated with disorders of sex development in pigs[J]. J Steroid Biochem Mol Biol, 2021, 210, 105875.
doi: 10.1016/j.jsbmb.2021.105875 |
23 | RIVERA-HERNÁNDEZ A , MADRIGAL-GONZÁLEZ M M , ESPINOSA-PENICHE R , et al. Van Wyk-Grumbach syndrome and trisomy 21[J]. Proc (Bayl Univ Med Cent), 2022, 35 (4): 569- 571. |
24 |
STAMATIADES G A , CARROLL R S , KAISER U B . GnRH-A key regulator of FSH[J]. Endocrinology, 2019, 160 (1): 57- 67.
doi: 10.1210/en.2018-00889 |
25 |
MARTINEZ-ARMENTA M , DE LEÓN-GUERRERO S D , CATALÁN A , et al. TGFβ2 regulates hypothalamic Trh expression through the TGFβ inducible early gene-1 (TIEG1) during fetal development[J]. Mol Cell Endocrinol, 2015, 400, 129- 139.
doi: 10.1016/j.mce.2014.10.021 |
26 |
SHAN B B , LIU Y , YANG C P , et al. Comparative transcriptomic analysis for identification of candidate sex-related genes and pathways in Crimson seabream (Parargyrops edita)[J]. Sci Rep, 2021, 11 (1): 1077.
doi: 10.1038/s41598-020-80282-5 |
27 |
徐俊杰, 张璐通, 王津洁, 等. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55 (4): 1615- 1628.
doi: 10.11843/j.issn.0366-6964.2024.04.024 |
XU J J , ZHANG L T , WANG J J , et al. Exploring the effect of epimedium on estrus of gilts based on multiomics and network pharmacology[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (4): 1615- 1628.
doi: 10.11843/j.issn.0366-6964.2024.04.024 |
|
28 |
YANG L Q , WANG H , SONG S J , et al. Systematic understanding of anti-aging effect of coenzyme Q10 on oocyte through a network pharmacology approach[J]. Front Endocrinol (Lausanne), 2022, 13, 813772.
doi: 10.3389/fendo.2022.813772 |
29 |
HAISENLEDER D J , BURGER L L , WALSH H E , et al. Pulsatile gonadotropin-releasing hormone stimulation of gonadotropin subunit transcription in rat pituitaries: evidence for the involvement of Jun N-terminal kinase but not p38[J]. Endocrinology, 2008, 149 (1): 139- 145.
doi: 10.1210/en.2007-1113 |
30 |
BURGER L L , HAISENLEDER D J , AYLOR K W , et al. Regulation of Lhb and Egr1 gene expression by GNRH pulses in rat pituitaries is both c-Jun N-terminal kinase (JNK)- and extracellular signal-regulated kinase (ERK)-dependent[J]. Biol Reprod, 2009, 81 (6): 1206- 1215.
doi: 10.1095/biolreprod.109.079426 |
31 |
WANG Y , BERNARD D J . Activin A induction of murine and ovine follicle-stimulating hormone β transcription is SMAD-dependent and TAK1 (MAP3K7)/p38 MAPK-independent in gonadotrope-like cells[J]. Cell Signal, 2012, 24 (8): 1632- 1640.
doi: 10.1016/j.cellsig.2012.04.006 |
32 |
HOLLANDER-COHEN L , GOLAN M , LEVAVI-SIVAN B . Differential regulation of gonadotropins as revealed by transcriptomes of distinct LH and FSH cells of fish pituitary[J]. Int J Mol Sci, 2021, 22 (12): 6478.
doi: 10.3390/ijms22126478 |
33 |
KANASAKI H , MIJIDDORJ T , SUKHBAATAR U , et al. Pituitary adenylate cyclase-activating poly-peptide (PACAP) increases expression of the gonadotropin-releasing hormone (GnRH) receptor in GnRH-producing GT1-7 cells overexpressing PACAP type Ⅰ receptor[J]. Gen Comp Endocrinol, 2013, 193, 95- 102.
doi: 10.1016/j.ygcen.2013.07.013 |
34 |
ZHENG W M , GRAFER C M , HALVORSON L M . Interaction of gonadal steroids and gonadotropin-releasing hormone on pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP receptor expression in cultured rat anterior pituitary cells[J]. Reprod Sci, 2014, 21 (1): 41- 51.
doi: 10.1177/1933719113488454 |
35 |
TAO W J , CHEN J L , TAN D J , et al. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis[J]. BMC Genomics, 2018, 19 (1): 363.
doi: 10.1186/s12864-018-4756-0 |
36 |
PURWANA I N , KANASAKI H , ORIDE A , et al. GnRH-induced PACAP and PAC1 receptor expression in pituitary gonadotrophs: a possible role in the regulation of gonadotropin subunit gene expression[J]. Peptides, 2010, 31 (9): 1748- 1755.
doi: 10.1016/j.peptides.2010.05.012 |
37 |
MIJIDDORJ T , KANASAKI H , ORIDE A , et al. Interaction between kisspeptin and adenylate cyclase-activating polypeptide 1 on the expression of pituitary gonadotropin subunits: a study using mouse pituitary lbetaT2 cells[J]. Biol Reprod, 2017, 96 (5): 1043- 1051.
doi: 10.1093/biolre/iox030 |
38 |
PURWANA I N , KANASAKI H , ORIDE A , et al. Expression of the pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1R) potentiates the effects of GnRH on gonadotropin subunit gene expression[J]. Biochem Biophys Res Commun, 2011, 410 (2): 295- 300.
doi: 10.1016/j.bbrc.2011.05.135 |
39 |
QIAN X , JIN L , LLOYD R V . Expression and regulation of transforming growth factor β1 in cultured normal and Neoplastic rat pituitary cells[J]. Endocr Pathol, 1996, 7 (1): 77- 90.
doi: 10.1007/BF02739918 |
40 |
HENTGES S , BOYADJIEVA N , SARKAR D K . Transforming growth factor-β3 stimulates lactotrope cell growth by increasing basic fibroblast growth factor from folliculo-stellate cells[J]. Endocrinology, 2000, 141 (3): 859- 867.
doi: 10.1210/endo.141.3.7382 |
41 |
OOMIZU S , CHATURVEDI K , SARKAR D K . Folliculostellate cells determine the susceptibility of lactotropes to estradiol's mitogenic action[J]. Endocrinology, 2004, 145 (3): 1473- 1480.
doi: 10.1210/en.2003-0965 |
42 |
CHRISTIAN H C , IMIRTZIADIS L , TORTONESE D . Ultrastructural changes in lactotrophs and folliculo-stellate cells in the ovine pituitary during the annual reproductive cycle[J]. J Neuroendocrinol, 2015, 27 (4): 277- 284.
doi: 10.1111/jne.12261 |
43 |
KABIR N , CHATURVEDI K , LIU L S , et al. Transforming growth factor-β3 increases gap-junctional communication among folliculostellate cells to release basic fibroblast growth factor[J]. Endocrinology, 2005, 146 (9): 4054- 4060.
doi: 10.1210/en.2005-0122 |
44 |
DE DIOS N , ORRILLO S , IRIZARRI M , et al. JAK2/STAT5 pathway mediates prolactin-induced apoptosis of lactotropes[J]. Neuroendocrinology, 2019, 108 (2): 84- 97.
doi: 10.1159/000494975 |
45 |
DASILVA L , RUI H , ERWIN R A , et al. Prolactin recruits STAT1, STAT3 and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515 and TYR580[J]. Mol Cell Endocrinol, 1996, 117 (2): 131- 140.
doi: 10.1016/0303-7207(95)03738-1 |
46 |
MENG T G , LEI W L , LI J , et al. Degradation of Ccnb3 is essential for maintenance of MII arrest in oocyte[J]. Biochem Biophys Res Commun, 2020, 521 (1): 265- 269.
doi: 10.1016/j.bbrc.2019.10.124 |
47 |
HONTELEZ S , KARTHAUS N , LOOMAN M W , et al. DC-SCRIPT regulates glucocorticoid receptor function and expression of its target GILZ in dendritic cells[J]. J Immunol, 2013, 190 (7): 3172- 3179.
doi: 10.4049/jimmunol.1201776 |
48 |
ANSEMS M , KARTHAUS N , HONTELEZ S , et al. DC-SCRIPT: AR and VDR regulator lost upon transformation of prostate epithelial cells[J]. Prostate, 2012, 72 (16): 1708- 1717.
doi: 10.1002/pros.22522 |
49 |
ANSEMS M , HONTELEZ S , LOOMAN M W G , et al. DC-SCRIPT: nuclear receptor modulation and prognostic significance in primary breast cancer[J]. J Natl Cancer Inst, 2010, 102 (1): 54- 68.
doi: 10.1093/jnci/djp441 |
50 |
LOPEZ-GARCIA J , PERIYASAMY M , THOMAS R S , et al. ZNF366 is an estrogen receptor corepressor that acts through CtBP and histone deacetylases[J]. Nucleic Acids Res, 2006, 34 (21): 6126- 6136.
doi: 10.1093/nar/gkl875 |
51 |
GRONEMEYER H , GUSTAFSSON J Å , LAUDET V . Principles for modulation of the nuclear receptor superfamily[J]. Nat Rev Drug Discov, 2004, 3 (11): 950- 964.
doi: 10.1038/nrd1551 |
52 |
ANSEMS M , SØNDERGAARD J N , SIEUWERTS A M , et al. DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERα-positive breast cancer cells[J]. Breast Cancer Res Treat, 2015, 149 (3): 693- 703.
doi: 10.1007/s10549-015-3281-y |
53 |
JACKSON T A , RICHER J K , BAIN D L , et al. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT[J]. Mol Endocrinol, 1997, 11 (6): 693- 705.
doi: 10.1210/mend.11.6.0004 |
54 |
FERNANDES I , BASTIEN Y , WAI T , et al. Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms[J]. Mol Cell, 2003, 11 (1): 139- 150.
doi: 10.1016/S1097-2765(03)00014-5 |
55 |
VO N , FJELD C , GOODMAN R H . Acetylation of nuclear hormone receptor-interacting protein RIP140 regulates binding of the transcriptional corepressor CtBP[J]. Mol Cell Biol, 2001, 21 (18): 6181- 6188.
doi: 10.1128/MCB.21.18.6181-6188.2001 |
56 |
PÉREZ P A , TOLEDO J , DEL VALLE SOSA L , et al. The phthalate DEHP modulates the estrogen receptors α and β increasing lactotroph cell population in female pituitary glands[J]. Chemosphere, 2020, 258, 127304.
doi: 10.1016/j.chemosphere.2020.127304 |
57 |
GUZMÁN J M , LUCKENBACH J A , DA SILVA D A M , et al. Seasonal variation of pituitary gonadotropin subunit, brain-type aromatase and sex steroid receptor mRNAs, and plasma steroids during gametogenesis in wild sablefish[J]. Comp Biochem Physiol Part A Mol Integr Physiol, 2018, 219-220, 48- 57.
doi: 10.1016/j.cbpa.2018.02.010 |
[1] | 王选艺, 孙亚伟, 龙雨薇, 王俪颖, 周渝新, 李娜, 马雪连, 赵红琼, 姚刚. 屡配不孕母牛FOXP3、FSHR、FMR1基因多态性与生殖激素相关性分析[J]. 畜牧兽医学报, 2024, 55(6): 2727-2740. |
[2] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
[3] | 陈权俊, 王祚, 万发春, 沈维军. 反刍动物胃肠道葡萄糖感应受体与转运载体的功能特征及相关调控[J]. 畜牧兽医学报, 2024, 55(11): 4819-4828. |
[4] | 王婉昕, 袁紫金, 朱功全, 王雨晴, 薛颖, 葛晶, 赵敏孟, 刘龙, 龚道清, 耿拓宇. ACSBG2基因通过类固醇激素合成和细胞黏附相关通路介导鹅肝组织对营养状态变化的响应[J]. 畜牧兽医学报, 2024, 55(11): 5018-5034. |
[5] | 卢建, 居小军, 王星果, 马猛, 王强, 李永峰, 窦套存, 胡玉萍, 郭军, 邵丹, 童海兵, 曲亮. 育成期代谢能摄入量对蛋鸡生殖器官发育、激素水平和卵巢基因表达的影响[J]. 畜牧兽医学报, 2024, 55(11): 5085-5100. |
[6] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
[7] | 神英超, 陶力, 任宏, 王希生, 田书岳, 杜明, 芒来, 格日乐其木格. 卵母细胞成熟相关激素和生长因子受体在马扩展型和紧凑型卵丘-卵母细胞复合体表达的研究[J]. 畜牧兽医学报, 2023, 54(9): 3735-3744. |
[8] | 贺名扬, 马钰静, 王泳, 杨若晨, 刘月琴, 张英杰, 段春辉. 褪黑激素对绵羊卵巢颗粒细胞增殖、凋亡、类固醇激素分泌的影响[J]. 畜牧兽医学报, 2023, 54(8): 3313-3324. |
[9] | 邢宝瑞, 刘振, 赵海平, 马泽芳, 李勋胜, 周珏, 孙红梅. 鹿茸逆向成骨的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2231-2240. |
[10] | 王唯, 贺小云, 储明星. 昼夜节律与雌激素协同调控哺乳动物生殖的研究进展[J]. 畜牧兽医学报, 2023, 54(5): 1771-1781. |
[11] | 杨闯, 吴龙飞, 柳广斌, 李耀坤, 刘德武, 孙宝丽. 雷琼牛与陆丰牛背最长肌lncRNA表达特点及其相关ceRNA网络分析[J]. 畜牧兽医学报, 2023, 54(5): 1951-1963. |
[12] | 相彩霞, 王相国, 李俊玫, 支飞杰, 房姣阳, 郑维芳, 陈家露, 靳亚平, 王爱华. 布鲁氏菌Ⅳ型分泌系统效应蛋白VceC对山羊滋养层细胞内质网应激和性腺激素分泌的影响[J]. 畜牧兽医学报, 2023, 54(3): 1210-1220. |
[13] | 杜海东, 娜仁花. 反刍动物妊娠期和泌乳期生理代谢和微生物变化及其对子代发育的影响研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4458-4467. |
[14] | 刘杰, 丛玮, 赵敏蝶, 赵茹茜. AA肉鸡和如皋黄鸡海马和下丘脑GR和FKBP5的表达及其与应激敏感性的关系[J]. 畜牧兽医学报, 2023, 54(11): 4766-4776. |
[15] | 邢文文, 齐南南, 李梦轩, 刘吉英. YY1作用机制及在动物繁殖调控中的研究进展[J]. 畜牧兽医学报, 2023, 54(10): 4040-4049. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||