畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (8): 3503-3515.doi: 10.11843/j.issn.0366-6964.2024.08.023
陈静(), 吴薛蓓, 苗冬枝, 张弛, 郭振玉, 王莹*(
)
收稿日期:
2024-02-01
出版日期:
2024-08-23
发布日期:
2024-08-28
通讯作者:
王莹
E-mail:cj82955@163.com;dkwangying@yzu.edu.cn
作者简介:
陈静(2001-),女,陕西咸阳人,硕士生,主要从事家禽繁殖研究,E-mail: cj82955@163.com
基金资助:
Jing CHEN(), Xuebei WU, Dongzhi MIAO, Chi ZHANG, Zhenyu GUO, Ying WANG*(
)
Received:
2024-02-01
Online:
2024-08-23
Published:
2024-08-28
Contact:
Ying WANG
E-mail:cj82955@163.com;dkwangying@yzu.edu.cn
摘要:
旨在对产蛋间隔前期母鸽卵泡颗粒细胞(GC)层进行高通量测序,筛选出与鸽卵泡发育和选择相关的关键基因。本研究选择了80对12月龄产蛋规律、体重相近的白羽王鸽为研究对象,在产蛋间隔第1天(LI1)和第3天(LI3)分别选择3只母鸽,采集F1和SF1卵泡GC层,并利用RNA-seq进行转录组分析,筛选L1F1/L1SF1、L3F1/L3SF1、L1F1/L3F1和L1SF1/L3SF1组,4组间差异表达基因(DEGs),对DEGs进行GO功能注释和KEGG通路富集分析,通过STRING数据库进行蛋白质互作(PPI)网络分析并使用Cytoscape软件进行可视化处理筛选关键基因,各组随机选择5个DEGs进行RT-qPCR验证转录组的可靠性。在4组比对中分别获得77、2 736、5 698和3 864个DEGs。GO分析显示,4组DEGs都主要富集的GO条目为细胞过程、细胞解剖实体和连接。KEGG通路富集分析显示,L1F1/L1SF1组和L3F1/L3SF1组DEGs均显著富集在类固醇激素生物合成和卵巢类固醇合成等信号通路,L1F1/L3F1组和L1SF1/L3SF1组DEGs均显著富集在糖胺聚糖降解、突触囊泡周期和氧化磷酸化等信号通路。进一步地,进行PPI网络分析并筛选与卵泡发育和选择密切相关的DEGs。各组随机选择5个DEGs进行RT-qPCR验证,表达趋势与测序结果一致。本研究利用RNA-seq技术筛选到与鸽卵泡发育和选择相关的关键基因——EEF2、DDX5、PLK2、IGF2R、LHCGR、HSD3B1、CYP19A1和StAR,为进一步探究鸽卵泡发育和选择的分子调控机制提供了理论依据。
中图分类号:
陈静, 吴薛蓓, 苗冬枝, 张弛, 郭振玉, 王莹. 产蛋间隔前期鸽卵泡转录组比较分析揭示卵泡发育相关基因[J]. 畜牧兽医学报, 2024, 55(8): 3503-3515.
Jing CHEN, Xuebei WU, Dongzhi MIAO, Chi ZHANG, Zhenyu GUO, Ying WANG. Comparative Analysis of Transcriptome of Pigeon Follicles at Early Stage of Laying Interval Reveals Genes Related to Follicular Development[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3503-3515.
表 1
RT-qPCR引物序列信息"
基因 Gene | 引物序列(5′→3′) Primer sequence | 目的片段长度/bp Products length |
CYP19A1 | F: TTGCAAGACCTACCAAGGGC R: GCACAGTATCGGGTACGAGG | 185 |
B2M | F: GCTGAGGCACTGAGAGGAA R: GCTCCTTCGTTGTCACCAG | 125 |
IGF2R | F: TTACACCACCACCATCCACTT R: TAACGGCAGCAGATTGAACAG | 199 |
HSD17B3 | F: TGTGTCCTGCGGTTCATCC R: TTCCTCCACCTCTTCTTCAGATAA | 101 |
StAR | F: GCCCTCCAGAAATCGCTCAG R: CGGAATACCTTGCCCACAT | 119 |
DDX5 | F: AAGACCAATCTCAGGCGGTG R: AGTCTTCAGCCAGTTGCCTC | 172 |
LHGCR | F: TAACGTATCCCAGCCACTGC R: TGGTGCTTTCGCACACTTTG | 105 |
PLK2 | F: TCGCCAAGTGTTATGAGATGAC R: TGCTACTCTGCTGTGAGGAAT | 80 |
EEF2 | F: GACAGTGAAGATAAGGACAAGGAG R: AGAAGGCAGGTGAATGGTGAT | 111 |
KRR1 | F: CTTGGACCCTTTAGTGGGCT R: TCCGCTTGAACTTGGGCAAA | 169 |
HSD3B1 | F: GGGTAAGCTGTCTGGTGAC R: TCACATCTCGGATGTCCCCT | 179 |
FST | F: TGCCAGCGATAACACAACTTAC R: TCTTCTTCTTCCTCTTCATCCTCT | 141 |
GAPDH | F: CTCTACTCATGGCCACTTCCG R: ACAACGTATTCAGCACCAGC | 138 |
表 2
鸽卵泡颗粒细胞层转录组分析结果"
样本 Sample | 质控后序列/条 Clean reads | Q20/% | Q30/% | 比对率/% Mapped reads rate |
L1F1-1 | 42 566 840 | 96.92 | 92.22 | 84.97 |
L1F1-2 | 42 566 850 | 96.93 | 92.25 | 83.80 |
L1F1-3 | 42 585 948 | 96.97 | 92.30 | 84.06 |
L1SF1-1 | 42 815 642 | 97.09 | 92.57 | 84.90 |
L1SF1-2 | 42 815 678 | 97.08 | 92.58 | 83.78 |
L1SF1-3 | 42 316 180 | 97.09 | 92.59 | 84.08 |
L3F1-1 | 42 239 724 | 96.94 | 92.27 | 84.99 |
L3F1-2 | 42 153 656 | 96.97 | 92.34 | 82.67 |
L3F1-3 | 43 454 914 | 96.96 | 92.34 | 84.01 |
L3SF1-1 | 42 260 902 | 97.03 | 92.45 | 83.69 |
L3SF1-2 | 42 368 216 | 97.04 | 92.52 | 83.54 |
L3SF1-3 | 42 368 343 | 97.03 | 92.48 | 83.24 |
1 | 王明礼, 王猛, 李延森, 等. 不同粗蛋白水平人工鸽乳对乳鸽生长性能、血清抗氧化水平及肠道发育的影响[J]. 畜牧兽医学报, 2023, 54 (4): 1545- 1554. |
WANG M L , WANG M , LI Y S , et al. Effect of different crude protein levels of artificial crop milk on growth performance, serum antioxidant level and intestinal development of squabs[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (4): 1545- 1554. | |
2 |
SUN C J , LIU J N , YANG N , et al. Egg quality and egg albumen property of domestic chicken, duck, goose, turkey, quail, and pigeon[J]. Poult Sci, 2019, 98 (10): 4516- 4521.
doi: 10.3382/ps/pez259 |
3 | 王云浩, 郑玉才, 李志雄, 等. 不同种类禽蛋的蛋品质和蛋内营养成分的比较分析[J]. 畜牧与兽医, 2022, 54 (5): 40- 44. |
WANG Y H , ZHENG Y C , LI Z X , et al. Comparative analysis of external quality and nutritional components of poultry eggs[J]. Animal Husbandry & Veterinary Medicine, 2022, 54 (5): 40- 44. | |
4 |
MOGHTADERI M , NABAVIZADEH S H , HOSSEINITESHNIZI S . The frequency of cross-reactivity with various avian eggs among children with hen's egg allergy using skin prick test results: fewer sensitizations with pigeon and goose egg[J]. Allergol Immunopathol (Madr), 2020, 48 (3): 265- 269.
doi: 10.1016/j.aller.2019.10.002 |
5 |
WANG Y , YANG H M , ZI C , et al. The mediation of pigeon egg production by regulating the steroid hormone biosynthesis of pigeon ovarian granulosa cells[J]. Poult Sci, 2020, 99 (11): 6075- 6083.
doi: 10.1016/j.psj.2020.06.048 |
6 | TYASI T L , SUN X , SHAN X S , et al. Effects of RAC1 on proliferation of hen ovarian prehierarchical follicle granulosa cells[J]. Animals (Basel), 2020, 10 (9): 1589. |
7 |
CUI Z F , SHEN X X , ZHANG X X , et al. A functional polymorphism of inhibin alpha subunit at miR-181b-1-3p-binding site regulates proliferation and apoptosis of chicken ovarian granular cells[J]. Cell Tissue Res, 2021, 384 (2): 545- 560.
doi: 10.1007/s00441-020-03356-w |
8 | 郭振玉. 产蛋间隔期鸽卵泡发育、生殖激素浓度及相关基因表达的研究[D]. 扬州: 扬州大学, 2023. |
GUO Z Y. Study on follicle development, reproductive hormone synthesis and related genes expression patterns in white king pigeons during laying interval[D]. Yangzhou: Yangzhou University, 2023. (in Chinese) | |
9 | 茹盟, 曾文惠, 彭剑玲, 等. 蛋鸡卵泡发育及其表观遗传调控机制研究进展[J]. 畜牧兽医学报, 2023, 54 (9): 3613- 3622. |
RU M , ZENG W H , PENG J L , et al. Research progress on follicles development of hens and its epigenetic regulatory mechanism[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (9): 3613- 3622. | |
10 |
WEI Q Y , LI J , HE H R , et al. miR-23b-3p inhibits chicken granulosa cell proliferation and steroid hormone synthesis via targeting GDF9[J]. Theriogenology, 2022, 177, 84- 93.
doi: 10.1016/j.theriogenology.2021.10.011 |
11 | 张俊珍, 李彩娥, 刘博, 等. 不同生理阶段边鸡卵巢转录谱的构建及卵泡发育相关基因的分析[J]. 畜牧兽医学报, 2022, 53 (2): 423- 435. |
ZHANG J Z , LI C E , LIU B , et al. Construction of ovary transcription profile of bian chicken at different physiological stages and analysis of genes related to follicular development[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (2): 423- 435. | |
12 |
YANG C , HUANG X B , CHEN S J , et al. The effect of heat stress on proliferation, synthesis of steroids, and gene expression of duck granulosa cells[J]. Anim Sci J, 2021, 92 (1): e13617.
doi: 10.1111/asj.13617 |
13 |
SUN X , CHEN X X , ZHAO J H , et al. Transcriptome comparative analysis of ovarian follicles reveals the key genes and signaling pathways implicated in hen egg production[J]. BMC Genomics, 2021, 22 (1): 899.
doi: 10.1186/s12864-021-08213-w |
14 |
WANG Y , GUO Z Y , ZHANG C , et al. Characterization of ovarian follicles, serum steroid hormone concentration, and steroidogenic gene expression profiles in the developing ovarian follicles in White King pigeons[J]. Poult Sci, 2023, 102 (7): 102673.
doi: 10.1016/j.psj.2023.102673 |
15 | 任钰为, 陈星, 林燕宁, 等. 基于全基因组重测序研究文昌鸡产蛋性能的影响因素[J]. 畜牧兽医学报, 2024, 55 (2): 502- 514. |
REN Y W , CHEN X , LIN Y N , et al. Investigating the influencing factors of egg laying performance in Wenchang chickens based on whole genome resequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (2): 502- 514. | |
16 |
VAN DE WEERDT B C M , MEDEMA R H . Polo-like kinases: a team in control of the division[J]. Cell Cycle, 2006, 5 (8): 853- 864.
doi: 10.4161/cc.5.8.2692 |
17 |
MA S , CHARRON J , ERIKSON R L . Role of PLK2 (Snk) in mouse development and cell proliferation[J]. Mol Cell Biol, 2003, 23 (19): 6936- 6943.
doi: 10.1128/MCB.23.19.6936-6943.2003 |
18 |
LI F X , JO M , CURRY JR T E , et al. Hormonal induction of polo-like kinases (PLKS) and impact of PLK2 on cell cycle progression in the rat ovary[J]. PLoS One, 2012, 7 (8): e41844.
doi: 10.1371/journal.pone.0041844 |
19 |
Bellé R , PLUCHON P F , CORMIER P , et al. Identification of a new isoform of eEF2 whose phosphorylation is required for completion of cell division in sea urchin embryos[J]. Dev Biol, 2011, 350 (2): 476- 483.
doi: 10.1016/j.ydbio.2010.12.015 |
20 | KALECI B , KOYUTURK M . Efficacy of resveratrol in the wound healing process by reducing oxidative stress and promoting fibroblast cell proliferation and migration[J]. Dermatol Ther, 2020, 33 (6): e14357. |
21 |
CHEN J Y , WANG J , WU X J , et al. eEF2 improves dense connective tissue repair and healing outcome by regulating cellular death, autophagy, apoptosis, proliferation and migration[J]. Cell Mol Life Sci, 2023, 80 (5): 128.
doi: 10.1007/s00018-023-04776-x |
22 |
ZHANG J N , DUAN Z T , WANG X Q , et al. Screening and validation of candidate genes involved in the regulation of egg yolk deposition in chicken[J]. Poult Sci, 2021, 100 (6): 101077.
doi: 10.1016/j.psj.2021.101077 |
23 |
HU K , WANG C , XU Y F , et al. Interaction of lncRNA Gm2044 and EEF2 promotes estradiol synthesis in ovarian follicular granulosa cells[J]. J Ovarian Res, 2023, 16 (1): 171.
doi: 10.1186/s13048-023-01232-z |
24 | 郑婉秋, 李烁, 吴金峰, 等. RNA解旋酶DDX5在病理生理作用中的研究进展[J]. 临床与病理杂志, 2023, 43 (3): 623- 627. |
ZHENG W Q , LI S , WU J F , et al. Research progress in RNA helicase DDX5 in its pathophysiological effects[J]. Journal of Clinical and Pathological Research, 2023, 43 (3): 623- 627. | |
25 |
MAZUREK A , LUO W J , KRASNITZ A , et al. DDX5 regulates DNA replication and is required for cell proliferation in a subset of breast cancer cells[J]. Cancer Discov, 2012, 2 (9): 812- 825.
doi: 10.1158/2159-8290.CD-12-0116 |
26 | 朱国胜, 邱丽影, 资捷. DDX5和DDX17在卵巢癌组织中的表达及其临床意义[J]. 医学理论与实践, 2023, 36 (10): 1633-1635, 1628. |
ZHU G S , QIU L Y , ZI J . Expression of DDX5 and DDX17 in ovarian cancer tissues and their clinical significance[J]. The Journal of Medical Theory and Practice, 2023, 36 (10): 1633-1635, 1628. | |
27 | 强浩. 绵羊IGF1R、IGF2R基因的多态性及其与生长性状的关联分析[D]. 银川: 宁夏大学, 2022. |
QIANG H. Polymorphism of IGF1R, IGF2R gene and its association analysis with growth traits in sheep[D]. Yinchuan: Ningxia University, 2022. (in Chinese) | |
28 |
NIELSEN F C . The molecular and cellular biology of insulin-like growth factor Ⅱ[J]. Prog Growth Factor Res, 1992, 4 (3): 257- 290.
doi: 10.1016/0955-2235(92)90023-B |
29 | WEBB R , CAMPBELL B K . Development of the dominant follicle: mechanisms of selection and maintenance of oocyte quality[J]. Soc Reprod Fertil Suppl, 2007, 64, 141- 163. |
30 |
TKACHENKO O Y , WOLF S , LAWSON M S , et al. Insulin-like growth factor 2 is produced by antral follicles and promotes preantral follicle development in macaques[J]. Biol Reprod, 2021, 104 (3): 602- 610.
doi: 10.1093/biolre/ioaa227 |
31 |
NGUYEN P T T , CONLEY A J , SOBOLEVA T K , et al. Multilevel regulation of steroid synthesis and metabolism in the bovine placenta[J]. Mol Reprod Dev, 2012, 79 (4): 239- 254.
doi: 10.1002/mrd.22021 |
32 | NIE R X , ZHENG X T , ZHANG W H , et al. Morphological characteristics and transcriptome landscapes of chicken follicles during selective development[J]. Animals (Basel), 2022, 12 (6): 713. |
33 |
LAVOIE H A , KING S R . Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B[J]. Exp Biol Med (Maywood), 2009, 234 (8): 880- 907.
doi: 10.3181/0903-MR-97 |
34 | 杨安琪, 李嘉诚, 宋颖, 等. CYP19A1对兔卵巢颗粒细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2023, 54 (10): 4209- 4219. |
YANG A Q , LI J C , SONG Y , et al. Effects of CYP19A1 on proliferation and apoptosis of rabbit ovary granulosa cells[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (10): 4209- 4219. | |
35 |
SECHMAN A , GRZEGORZEWSKA A K , GRZESIAK M , et al. Nitrophenols suppress steroidogenesis in prehierarchical chicken ovarian follicles by targeting STAR, HSD3B1, and CYP19A1 and downregulating LH and estrogen receptor expression[J]. Domest Anim Endocrinol, 2020, 70, 106378.
doi: 10.1016/j.domaniend.2019.07.006 |
36 |
CONVISSAR S , WINSTON N J , FIERRO M A , et al. Sp1 regulates steroidogenic genes and LHCGR expression in primary human luteinized granulosa cells[J]. J Steroid Biochem Mol Biol, 2019, 190, 183- 192.
doi: 10.1016/j.jsbmb.2019.04.003 |
[1] | 张肖旭, 李昊, 冯平捷, 杨豪, 李新月, 吕冉, 潘章源, 储明星. 单细胞转录组测序技术在家养动物中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3276-3287. |
[2] | 梁小娟, 李雨爽, 付周, 唐铎, 李莹莹, 王守伟. 鸽脂肪前体细胞的分离培养及成脂诱导分化研究[J]. 畜牧兽医学报, 2024, 55(8): 3482-3492. |
[3] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
[4] | 李婉卿, 曾亚琦, 姚新奎, 王建文, 袁鑫鑫, 孟晨, 孙远方, 彭宣, 孟军. 肉用型伊犁马的血液转录组比较分析[J]. 畜牧兽医学报, 2024, 55(7): 2951-2962. |
[5] | 宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
[6] | 何明亮, 吕晓阳, 蒋永清, 宋正海, 王叶青, 杨会国, 王善禾, 孙伟. 基于转录组测序分析SOX18在湖羊毛囊毛乳头细胞中的功能[J]. 畜牧兽医学报, 2024, 55(6): 2409-2420. |
[7] | 李栋梁, 郑关民, 李帅, 朱洪森, 吴超. 猪流行性腹泻病毒感染仔猪空肠转录组差异表达分析[J]. 畜牧兽医学报, 2024, 55(6): 2652-2661. |
[8] | 陈哲, 曲小露, 郭彬彬, 孙雪峰, 闫乐艳. 基于转录组测序研究绿光影响鹅胚心脏早期发育的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1978-1988. |
[9] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
[10] | 王鑫, 聂桐, 李阿群, 马隽. 橙皮苷通过氧化磷酸化途径缓解高脂饲喂诱导的小鼠肝氧化应激[J]. 畜牧兽医学报, 2024, 55(3): 1302-1313. |
[11] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
[12] | 魏苗伊, 吴世海, 杨富琳, 余宸昀, 孙志刚, 刘馨媛, 徐媛媛, 梁冰冰, 李复煌, 孙鸿, 刘晓晔, 董虹. 中药龙胆草抗鸽毛滴虫的临床药效分析[J]. 畜牧兽医学报, 2024, 55(2): 785-796. |
[13] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
[14] | 张靖鹏, 陈翠腾, 林琳, 付环茹, 李兆龙, 江斌, 黄瑜, 万春和. 鸽微RNA病毒实时荧光定量RT-PCR检测方法的建立[J]. 畜牧兽医学报, 2024, 55(2): 860-866. |
[15] | 曹建华, 杨柏高, 张培培, 冯肖艺, 张航, 余洲, 牛一凡, 郝海生, 杜卫华, 朱化彬, 杨凌, 赵学明. 能量负平衡影响奶牛卵泡发育的机制[J]. 畜牧兽医学报, 2024, 55(1): 22-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||