畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (11): 4796-4807.doi: 10.11843/j.issn.0366-6964.2024.11.002
董建华1,3(), 冯肖艺1, 杨柏高1, 李崇阳1, 潘红梅2, 吕丽华3, 赵学明1,*(
)
收稿日期:
2024-04-15
出版日期:
2024-11-23
发布日期:
2024-11-30
通讯作者:
赵学明
E-mail:15143173829@163.com;zhaoxueming@caas.cn
作者简介:
董建华(2000-), 男, 吉林长春人, 硕士生, 主要从事动物繁殖研究, E-mail: 15143173829@163.com
基金资助:
Jianhua DONG1,3(), Xiaoyi FENG1, Baigao YANG1, Chongyang LI1, Hongmei PAN2, Lihua LÜ3, Xueming ZHAO1,*(
)
Received:
2024-04-15
Online:
2024-11-23
Published:
2024-11-30
Contact:
Xueming ZHAO
E-mail:15143173829@163.com;zhaoxueming@caas.cn
摘要:
胚胎冷冻保存对于胚胎的远距离移植和遗传资源的保护具有重要意义。然而,猪胚胎由于其胞质脂肪含量高,对低温敏感,增加了其保存难度。研究表明,通过降低脂质含量、优化培养基成分、保护细胞骨架以及恢复线粒体功能等方式,能够提高猪胚胎冷冻保存技术的效率,从而促进其广泛应用。因此,本文介绍了胚胎冷冻保存技术,总结了提高胚胎冷冻效率的多种方法和措施。同时,笔者团队将通过讨论猪胚胎的内在特性以及低温保存对转录组改变的影响,进一步关注猪胚胎低温保存的机制,从而更好地了解和推进猪胚胎低温保存的研究。
中图分类号:
董建华, 冯肖艺, 杨柏高, 李崇阳, 潘红梅, 吕丽华, 赵学明. 猪胚胎冷冻保存的研究进展[J]. 畜牧兽医学报, 2024, 55(11): 4796-4807.
Jianhua DONG, Xiaoyi FENG, Baigao YANG, Chongyang LI, Hongmei PAN, Lihua LÜ, Xueming ZHAO. Advances in Cryopreservation of Porcine Embryo[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4796-4807.
表 2
猪胚胎玻璃化冷冻的发育能力"
胚胎阶段 Embryonic stage | 玻璃化方法 Vitrification freezing | 存活率/% Survival rate | 囊胚率/% Blastocyst rate | 孵化率/% Hatchability | 参考文献 Reference |
受精卵 Zygote | MD | 98.5±0.7 | 21.1±1.5 | [ | |
MVC | 90.1±5.8 | 19.1±4.1 | [ | ||
SSV | 93.4±63.5 | 15.8±62.1 | |||
2细胞 | SOPS | 66.1±6.0 | 4.9±3.4 | [ | |
2-Cell | SSV | 76.5±5.2 | 3.6±2.5 | ||
4细胞 | SOPS | 53.8±6.9 | 9.1±6.2 | ||
4-Cell | SSV | 34.5±6.3 | 5.0±5.0 | ||
桑葚胚 Morula | SOPS | 94.6±3.0 | 58.5±6.8 | [ | |
SSV | 96.6±2.3 | 48.3±6.6 | [ | ||
MVC | 95 | 74 | [ | ||
HFV | 73.8 | 32.3 | [ | ||
HFV | 77.6 | 10.6 | [ | ||
HFV | 90.3 | 40.9 | [ | ||
MVC | 31.5 | [ | |||
囊胚 Blastocyst | SOPS | 81.0±3.7 | 46.2±0.5 | [ | |
MVAC | 85.0 | 45.0 | [ | ||
Cryotop | 79±6 | 21±6 | [ | ||
MD | 26.8±2.7 | 2.5±2.5 | [ | ||
MVC | 52.2±6.1 | 2.3±1.6 | [ | ||
膨大囊胚 Expanded blastocyst | OPS | 86.2 | 74.1 | [ | |
MMV | 84.4 | [ | |||
MVAC | 88.9±3.9 | 69.4±7.3 | [ |
1 |
LÓPEZA,DUCOLOMBY,CASASE,et al.Effects of porcine immature oocyte vitrification on actin microfilament distribution and chromatin integrity during early embryo development in vitro[J].Front Cell Dev Biol,2021,9,636765.
doi: 10.3389/fcell.2021.636765 |
2 |
MARTINEZE A,CUELLOC,PARRILLAI,et al.Design, development, and application of a non-surgical deep uterine embryo transfer technique in pigs[J].Anim Front,2013,3(4):40-47.
doi: 10.2527/af.2013-0032 |
3 |
BLOCKEELC,CAMPBELLA,COTICCHIOG,et al.Should we still perform fresh embryo transfers in ART?[J].Hum Reprod,2019,34(12):2319-2329.
doi: 10.1093/humrep/dez233 |
4 |
CHENZ J,SHIY H,SUNY,et al.Fresh versus frozen embryos for infertility in the polycystic ovary syndrome[J].N Engl J Med,2016,375(6):523-533.
doi: 10.1056/NEJMoa1513873 |
5 |
高峰,何琪富,吴盛辉,等.哺乳动物配子冷冻保存并应用于珍稀濒危动物保护的技术策略[J].畜牧兽医学报,2022,53(8):2479-2489.
doi: 10.11843/j.issn.0366-6964.2022.08.007 |
GAOF,HEQ F,WUS H,et al.Mammalian gametes cryopreserved and applied to technical strategies for the protection of rare and endangered animals[J].Acta Veterinaria et Zootechnica Sinica,2022,53(8):2479-2489.
doi: 10.11843/j.issn.0366-6964.2022.08.007 |
|
6 |
VININGL M,ZAKL J,HARVEYS C,et al.The role of apoptosis in cryopreserved animal oocytes and embryos[J].Theriogenology,2021,173,93-101.
doi: 10.1016/j.theriogenology.2021.07.017 |
7 | ZHUAN Q, LI J, DU X, et al. Antioxidant procyanidin B2 protects oocytes against cryoinjuries via mitochondria regulated cortical tension. J Anim Sci Biotechnol. 2022;13(1): 95. |
8 | KEREM,LIUP C,CHENY K,et al.Ultrastructural characterization of porcine growing and in vitro matured oocytes[J].Animals (Basel),2020,10(4):664. |
9 |
CHENJ S,TSAIL K,YEHT Y,et al.Effects of electromagnetic waves on oocyte maturation and embryonic development in pigs[J].J Reprod Dev,2021,67(6):392-401.
doi: 10.1262/jrd.2021-074 |
10 |
CAOL H,YANGT,HUANGS H,et al.Expression patterns of ZO-1/2 and their effects on porcine oocyte in vitro maturation and early embryonic development[J].Theriogenology,2021,161,262-270.
doi: 10.1016/j.theriogenology.2020.12.009 |
11 |
ABEDPOURN,SHOOREIH,RAJAEIF.Detrimental effects of vitrification on integrin genes (α9 and β1) and in vitro fertilization in mouse oocytes[J].Mol Biol Rep,2023,50(6):4823-4829.
doi: 10.1007/s11033-023-08377-6 |
12 |
GONZALEZ-PLAZAA,CAMBRAJ M,PARRILLAI,et al.The open Cryotop system is effective for the simultaneous vitrification of a large number of porcine embryos at different developmental stages[J].Front Vet Sci,2022,9,936753.
doi: 10.3389/fvets.2022.936753 |
13 |
TAJIMAS,UCHIKURAK,KURITAT,et al.Insemination of recipient sows improves the survival to term of vitrified and warmed porcine expanded blastocysts transferred non-surgically[J].Anim Sci J,2020,91(1):e13453.
doi: 10.1111/asj.13453 |
14 |
QIUJ,MATSUKAWAK,KOSHIMOTOC,et al.Equilibrium vitrification of mouse embryos at various developmental stages using low concentrations of cryoprotectants[J].J Reprod Dev,2021,67(2):109-114.
doi: 10.1262/jrd.2020-152 |
15 | MARTÍNEZ-RODEROI,GARCIA-MARTÍNEZT,ORDÓÑEZ-LEÓNE A,et al.A shorter equilibration period improves post-warming outcomes after vitrification and in straw dilution of in vitro-produced bovine embryos[J].Biology (Basel),2021,10(2):142. |
16 |
SKRZYPEKK,NIBBELINKM C,LIEFERS-VISSERJ,et al.A high cell-bearing capacity multibore hollow fiber device for macroencapsulation of islets of Langerhans[J].Macromol Biosci,2020,20(8):2000021.
doi: 10.1002/mabi.202000021 |
17 |
ALMIÑANAC,DUBUISSONF,BAUERSACHSS,et al.Unveiling how vitrification affects the porcine blastocyst: clues from a transcriptomic study[J].J Anim Sci Biotechnol,2022,13(1):46.
doi: 10.1186/s40104-021-00672-1 |
18 | ALMUBARAKA,LEES,YUI J,et al.Effects of Nobiletin supplementation on the freezing diluent on porcine sperm cryo-survival and subsequent in vitro embryo development[J].Theriogenology,2023,214,314-322. |
19 |
ABDELHADYA W,MITTAN-MOREAUD W,CRANEP L,et al.Ice formation and its elimination in cryopreservation of oocytes[J].Sci Rep,2024,14,18809.
doi: 10.1038/s41598-024-69528-8 |
20 |
CUELLOC,GONZÁLEZ-PLAZAA,CAMBRAJ M,et al.Vitrification of pig embryos dysregulates the microRNA transcriptome profile[J].Theriogenology,2024,226,243-252.
doi: 10.1016/j.theriogenology.2024.06.001 |
21 |
NAKAGAWAY,KANEKOT.Improvement of survivability and developmental ability in vitrified rat oocytes[J].Cryobiology,2024,115,104882.
doi: 10.1016/j.cryobiol.2024.104882 |
22 |
DI GUARDOF,RACCAA,COTICCHIOG,et al.Impact of cell loss after warming of human vitrified day 3 embryos on obstetric outcome in single frozen embryo transfers[J].J Assist Reprod Genet,2022,39(9):2069-2075.
doi: 10.1007/s10815-022-02572-3 |
23 |
HOCHIS.Cryodevices developed for minimum volume cooling vitrification of bovine oocytes[J].Anim Sci J,2022,93(1):e13683.
doi: 10.1111/asj.13683 |
24 |
MORADOS,APARICIOA,PINCHETTID,et al.Variations in metabolic parameters of in vitro matured porcine oocytes after vitrification-warming[J].Open Vet J,2023,13(11):1416-1424.
doi: 10.5455/OVJ.2023.v13.i11.4 |
25 |
MARCANTONINIG,BARTOLINID,ZATINIL,et al.Natural cryoprotective and cytoprotective agents in cryopreservation: a focus on melatonin[J].Molecules,2022,27(10):3254.
doi: 10.3390/molecules27103254 |
26 |
GONZALEZ-PLAZAA,CAMBRAJ M,GARCIA-CANOVASM,et al.Cryotop vitrification of large batches of pig embryos simultaneously provides excellent postwarming survival rates and minimal interference with gene expression[J].Theriogenology,2023,206,1-10.
doi: 10.1016/j.theriogenology.2023.04.011 |
27 |
VAN NGUYENT,DOL T K,NGUYENN A T,et al.The effects of an in vitro oocyte maturation system and chlorogenic acid supplementation during embryo culture on the development of porcine cloned embryos derived from native vietnamese ban pigs[J].Vet Med Int,2023,2023(1):5702970.
doi: 10.1155/2023/5702970 |
28 |
WIESAKT,GORYSZEWSKA-SZCZUREKE.Effect of vitrification on the expression of genes in porcine blastocysts derived from in vitro matured oocytes[J].Syst Biol Reprod Med,2022,68(4):239-246.
doi: 10.1080/19396368.2022.2072788 |
29 | RIENZIL,GRACIAC,MAGGIULLIR,et al.Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance[J].Hum Reprod Update,2017,23(2):139-155. |
30 |
XIANGD C,JIAB Y,GUOJ X,et al.Transcriptome analysis of mRNAs and long non-coding RNAs during subsequent embryo development of porcine cloned zygotes after vitrification[J].Front Genet,2021,12,753327.
doi: 10.3389/fgene.2021.753327 |
31 |
SOMFAIT,HARAGUCHIS,DANG-NGUYENT Q,et al.Vitrification of porcine immature oocytes and zygotes results in different levels of DNA damage which reflects developmental competence to the blastocyst stage[J].PLoS One,2023,18(3):e0282959.
doi: 10.1371/journal.pone.0282959 |
32 |
GOMISJ,CUELLOC,SANCHEZ-OSORIOJ,et al.Forskolin improves the cryosurvival of in vivo-derived porcine embryos at very early stages using two vitrification methods[J].Cryobiology,2013,66(2):144-150.
doi: 10.1016/j.cryobiol.2012.12.009 |
33 |
XUH X,WANGX G,TAOR X,et al.Optimal stage for cryotop vitrification of porcine embryos[J].Cell Reprogram,2022,24(3):132-141.
doi: 10.1089/cell.2022.0001 |
34 |
USHIJIMAH,YOSHIOKAH,ESAKIR,et al.Improved survival of vitrified in vivo-derived porcine embryos[J].J Reprod Dev,2004,50(4):481-486.
doi: 10.1262/jrd.50.481 |
35 |
HOCHIS,IDEM,UENOS,et al.High survival of bovine mature oocytes after nylon mesh vitrification, as assessed by intracytoplasmic sperm injection[J].J Reprod Dev,2022,68(5):335-339.
doi: 10.1262/jrd.2022-053 |
36 |
CUELLOC,MARTINEZC A,CAMBRAJ M,et al.Effects of vitrification on the blastocyst gene expression profile in a porcine model[J].Int J Mol Sci,2021,22(3):1222.
doi: 10.3390/ijms22031222 |
37 |
TUC F,PENGS H,CHUANGC K,et al.Reproductive technologies needed for the generation of precise gene-edited pigs in the pathways from laboratory to farm[J].Anim Biosci,2023,36(2):339-349.
doi: 10.5713/ab.22.0389 |
38 |
LÓPEZA,BETANCOURTM,DUCOLOMBY,et al.DNA damage in cumulus cells generated after the vitrification of in vitro matured porcine oocytes and its impact on fertilization and embryo development[J].Porc Health Manag,2021,7(1):56.
doi: 10.1186/s40813-021-00235-w |
39 |
KAWAKAMIM,KATOY,TSUNODAY.The effects of time of first cleavage, developmental stage, and delipidation of nuclear-transferred porcine blastocysts on survival following vitrification[J].Anim Reprod Sci,2008,106(3-4):402-411.
doi: 10.1016/j.anireprosci.2007.06.002 |
40 |
GAOM,CHENM J,CHENQ Z,et al.Integration of parallel metabolomics and transcriptomics reveals metabolic patterns in porcine oocytes during maturation[J].Front Endocrinol (Lausanne),2023,14,1131256.
doi: 10.3389/fendo.2023.1131256 |
41 | MARCO-JIMÉNEZF,GARCIA-DOMINGUEZX,GARCÍA-VALEROL,et al.A 3D-Printed Large Holding Capacity Device for Minimum Volume Cooling Vitrification of Embryos in Prolific Livestock Species[J].Animals (Basel),2023,13(5):791. |
42 |
HÖLKERM,PETERSENB,HASSELP,et al.Duration of in vitro maturation of recipient oocytes affects blastocyst development of cloned porcine embryos[J].Cloning Stem Cells.,2005,7(1):35-44.
doi: 10.1089/clo.2005.7.35 |
43 |
TAJIMAS,MOTOYAMAS,WAKIYAY,et al.Piglet production by non-surgical transfer of vitrified embryos, transported to commercial swine farms and warmed on site[J].Anim Sci J,2021,Dec92(1):e13588.
doi: 10.1111/asj.13588 |
44 |
NGUYENV K,VUH,NGUYENH T T,et al.Comparison of the microdrop and minimum volume cooling methods for vitrification of porcine in vitro-produced zygotes and blastocysts after equilibration in low concentrations of cryoprotectant agents[J].J Reprod Dev,2018,64(5):457-462.
doi: 10.1262/jrd.2018-047 |
45 |
NAJAFZADEHV,SECHERJ B M,PIHLM,et al.Vitrification yields higher cryo-survival rate than slow freezing in biopsied bovine in vitro produced blastocysts[J].Theriogenology,2021,171,44-54.
doi: 10.1016/j.theriogenology.2021.04.020 |
46 |
KAJDASZA,WARZYCHE,DEREBECKAN,et al.Lipid stores and lipid metabolism associated gene expression in porcine and bovine parthenogenetic embryos revealed by fluorescent staining and RNA-seq[J].Int J Mol Sci,2020,21(18):6488.
doi: 10.3390/ijms21186488 |
47 |
IBAYASHIM,AIZAWAR,MITSUIJ,et al.Homeostatic regulation of lipid droplet content in mammalian oocytes and embryos[J].Reproduction,2021,162(6):R99-R109.
doi: 10.1530/REP-21-0238 |
48 |
DUNNINGK R,RUSSELLD L,ROBKERR L.Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation[J].Reproduction,2014,148(1):R15-R27.
doi: 10.1530/REP-13-0251 |
49 |
WANGC,NIUY,CHID,et al.Influence of delipation on the energy metabolism in pig parthenogenetically activated embryos[J].Reprod Domest Anim,2015,50(5):826-833.
doi: 10.1111/rda.12596 |
50 |
RAZAS H A,ABD EL-AZIZA H,ABDELNOURS A,et al.The role of forskolin as a lipolytic stimulator during in vitro oocyte maturation and the in vitro embryo production of livestock[J].Reprod Domest Anim,2021,56(12):1486-1496.
doi: 10.1111/rda.14021 |
51 |
AMSTISLAVSKYS,MOKROUSOVAV,BRUSENTSEVE,et al.Influence of cellular lipids on cryopreservation of mammalian oocytes and preimplantation embryos: a review[J].Biopreserv Biobank,2019,17(1):76-83.
doi: 10.1089/bio.2018.0039 |
52 |
CASTILLO-MARTÍNM,BONETS,MORATÓR,et al.Supplementing culture and vitrification-warming media with L-ascorbic acid enhances survival rates and redox status of IVP porcine blastocysts via induction of GPX1 and SOD1 expression[J].Cryobiology,2014,68(3):451-458.
doi: 10.1016/j.cryobiol.2014.03.001 |
53 |
LIJ,XIONGS,ZHAOY,et al.Effect of the re-vitrification of embryos at different stages on embryonic developmental potential[J].Front Endocrinol (Lausanne),2021,12,653310.
doi: 10.3389/fendo.2021.653310 |
54 |
MENEZOY,CLEMENTP,DALEB,et al.Modulating oxidative stress and epigenetic homeostasis in preimplantation IVF embryos[J].Zygote,2022,30(2):149-158.
doi: 10.1017/S0967199421000356 |
55 |
MENEZOY,ELDERK,CLEMENTP,et al.Biochemical hazards during three phases of assisted reproductive technology: repercussions associated with epigenesis and imprinting[J].Int J Mol Sci,2022,23(16):8916.
doi: 10.3390/ijms23168916 |
56 |
PAVANELIA P P,RECUEROS,CHAVESB R,et al.The presence of seminal plasma during liquid storage of pig spermatozoa at 17 ℃ modulates their ability to elicit in vitro capacitation and trigger acrosomal exocytosis[J].Int J Mol Sci,2020,21(12):4520.
doi: 10.3390/ijms21124520 |
57 |
HARDYM L M,DAYM L,MORRISM B.Redox regulation and oxidative stress in mammalian oocytes and embryos developed in vivo and in vitro[J].Int J Environ Res Public Health,2021,18(21):11374.
doi: 10.3390/ijerph182111374 |
58 |
SOTO-HERASS,PARAMIOM T.Impact of oxidative stress on oocyte competence for in vitro embryo production programs[J].Res Vet Sci,2020,132,342-350.
doi: 10.1016/j.rvsc.2020.07.013 |
59 |
JIANGY,HEY T,PANX C,et al.Advances in oocyte maturation in vivo and in vitro in mammals[J].Int J Mol Sci,2023,24(10):9059.
doi: 10.3390/ijms24109059 |
60 |
NIUY J,ZHOUW J,NIEZ W,et al.Melatonin enhances mitochondrial biogenesis and protects against rotenone-induced mitochondrial deficiency in early porcine embryos[J].J Pineal Res,2020,68(2):e12627.
doi: 10.1111/jpi.12627 |
61 |
SUNM H,JIANGW J,LIX H,et al.ATF6 aggravates apoptosis in early porcine embryonic development by regulating organelle homeostasis under high-temperature conditions[J].Zool Res,2023,44(5):848-859.
doi: 10.24272/j.issn.2095-8137.2023.080 |
62 |
KAGEYAMAM,ITOJ,SHIRASUNAK,et al.Mitochondrial reactive oxygen species regulate mitochondrial biogenesis in porcine embryos[J].J Reprod Dev,2021,67(2):141-147.
doi: 10.1262/jrd.2020-111 |
63 |
YANGS G,BAEJ W,PARKH J,et al.Mito-TEMPO protects preimplantation porcine embryos against mitochondrial fission-driven apoptosis through DRP1/PINK1-mediated mitophagy[J].Life Sci,2023,315,121333.
doi: 10.1016/j.lfs.2022.121333 |
64 |
LIUR P,WANGJ,WANGX Q,et al.Xanthoangelol promotes early embryonic development of porcine embryos by relieving endoplasmic reticulum stress and enhancing mitochondrial function[J].Reprod BioMed Online,2023,47(2):103211.
doi: 10.1016/j.rbmo.2023.04.002 |
65 |
ZHOUD J,SUNM H,LEES H,et al.ROMO1 is required for mitochondrial metabolism during preimplantation embryo development in pigs[J].Cell Div,2021,16(1):7.
doi: 10.1186/s13008-021-00076-7 |
66 |
WANGC R,JIH W,HES Y,et al.Chrysoeriol improves in vitro porcine embryo development by reducing oxidative stress and autophagy[J].Vet Sci,2023,10(2):143.
doi: 10.3390/vetsci10020143 |
67 |
NIUY J,WANGC F,XIONGQ,et al.Distribution and content of lipid droplets and mitochondria in pig parthenogenetically activated embryos after delipation[J].Theriogenology,2015,83(1):131-138.
doi: 10.1016/j.theriogenology.2014.09.002 |
68 |
TOSTIE,MÉNÉZOY.Gamete activation: basic knowledge and clinical applications[J].Hum Reprod Update,2016,22(4):420-439.
doi: 10.1093/humupd/dmw014 |
69 |
WASSARMANP M,LITSCHERE S.Zona pellucida genes and proteins: essential players in mammalian oogenesis and fertility[J].Genes (Basel),2021,12(8):1266.
doi: 10.3390/genes12081266 |
70 | NGUYENN T,HIRATAM,TANIHARAF,et al.In vitro development of zona pellucida-free porcine zygotes cultured individually after vitrification[J].Cryo Letters,2020,41(2):86-91. |
71 |
SCIORIOR,MANNAC,FAUQUEP,et al.Can cryopreservation in Assisted Reproductive Technology (ART) induce epigenetic changes to gametes and embryos?[J].J Clin Med,2023,12(13):4444.
doi: 10.3390/jcm12134444 |
72 |
ESTUDILLOE,JIMÉNEZA,BUSTAMANTE-NIEVESP E,et al.Cryopreservation of gametes and embryos and their molecular changes[J].Int J Mol Sci,2021,22(19):10864.
doi: 10.3390/ijms221910864 |
73 |
TIRGARP,SARMADIF,NAJAFIM,et al.Toward embryo cryopreservation-on-a-chip: a standalone microfluidic platform for gradual loading of cryoprotectants to minimize cryoinjuries[J].Biomicrofluidics,2021,15(3):034104.
doi: 10.1063/5.0047185 |
74 |
ZHANGL,QIX,NINGW,et al.Single-cell transcriptome profiling revealed that vitrification of somatic cloned porcine blastocysts causes substantial perturbations in gene expression[J].Front Genet,2020,11,640.
doi: 10.3389/fgene.2020.00640 |
75 |
PEROM E,ZULLOG,ESPOSITOL,et al.Inhibition of apoptosis by caspase inhibitor Z-VAD-FMK improves cryotolerance of in vitro derived bovine embryos[J].Theriogenology,2018,108,127-135.
doi: 10.1016/j.theriogenology.2017.11.031 |
76 |
DENGD M,XIEJ,TIANY,et al.Effects of meiotic stage-specific oocyte vitrification on mouse oocyte quality and developmental competence[J].Front Endocrinol (Lausanne),2023,14,1200051.
doi: 10.3389/fendo.2023.1200051 |
77 |
TAJIMAS,MOTOYAMAS,WAKIYAY,et al.Piglet production by non-surgical transfer of vitrified embryos, transported to commercial swine farms and warmed on site[J].Anim Sci J,2020,91(1):e13476.
doi: 10.1111/asj.13476 |
78 |
LEEK,UHK,FARRELLK.Current progress of genome editing in livestock[J].Theriogenology,2020,150,229-235.
doi: 10.1016/j.theriogenology.2020.01.036 |
79 |
CHENP R,REDELB K,KERNSK C,et al.Challenges and considerations during in vitro production of porcine embryos[J].Cells,2021,10(10):2770.
doi: 10.3390/cells10102770 |
80 |
HARAK,ABEEY,KUMADAN,et al.Extrusion and removal of lipid from the cytoplasm of porcine oocytes at the germinal vesicle stage: centrifugation under hypertonic conditions influences vitrification[J].Cryobiology,2005,50(2):216-222.
doi: 10.1016/j.cryobiol.2005.01.003 |
81 |
OECKLJ,BAST-HABERSBRUNNERA,FROMMET,et al.Isolation, culture, and functional analysis of murine thermogenic adipocytes[J].STAR Protoc,2020,1(3):100118.
doi: 10.1016/j.xpro.2020.100118 |
82 |
TATSUMIT,TAKAYAMAK,ISHⅡS,et al.Forced lipophagy reveals that lipid droplets are required for early embryonic development in mouse[J].Development,2018,145(4):dev161893.
doi: 10.1242/dev.161893 |
83 |
TIBBOA J,MIKAD,DOBIS,et al.Phosphodiesterase type 4 anchoring regulates cAMP signaling to Popeye domain-containing proteins[J].J Mol Cell Cardiol,2022,165,86-102.
doi: 10.1016/j.yjmcc.2022.01.001 |
84 |
ISAT,SOMFAIT,OYADOMARIM,et al.Production of Agu piglets after transfer of embryos produced in vitro[J].Anim Sci J,2022,93(1):e13685.
doi: 10.1111/asj.13685 |
85 |
TATSUMIT,TAKAYAMAK,ISHⅡS,et al.Forced lipophagy reveals that lipid droplets are required for early embryonicdevelopment in mouse[J].Development,2018,145(4):dev161893.
doi: 10.1242/dev.161893 |
86 | EL-SOKARYM M M,EL-NABYA A H,HAMEEDA R A E,et al.Impact of L-carnitine supplementation on the in vitro developmental competence and cryotolerance of buffalo embryos[J].Vet World,2021,14(12):3164-3169. |
87 |
RAKHMANOVAT,MOKROUSOVAV,OKOTRUBS,et al.Effects of forskolin on cryopreservation and embryo development in the domestic cat[J].Theriogenology,2023,210,192-198.
doi: 10.1016/j.theriogenology.2023.07.035 |
88 |
NAMULAZ,HIRATAM,LEQ A,et al.Zona pellucida treatment before CRISPR/Cas9-mediated genome editing of porcine zygotes[J].Vet Med Sci,2022,8(1):164-169.
doi: 10.1002/vms3.659 |
89 |
ROMEKM,GAJDAB,KRZYSZTOFOWICZE,et al.New technique to quantify the lipid composition of lipid droplets in porcine oocytes and pre-implantation embryos using Nile Red fluorescent probe[J].Theriogenology,2011,75(1):42-54.
doi: 10.1016/j.theriogenology.2010.06.040 |
90 |
CAMBRAJ M,GILM A,CUELLOC,et al.Cytokine profile in peripheral blood mononuclear cells differs between embryo donor and potential recipient sows[J].Front Vet Sci,2024,11,1333941.
doi: 10.3389/fvets.2024.1333941 |
91 |
FUX W,WUG Q,LIJ J,et al.Positive effects of Forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes[J].Theriogenology,2011,75(2):268-275.
doi: 10.1016/j.theriogenology.2010.08.013 |
92 |
YANGC X,LIANGH,WUZ W,et al.Identification of lncRNAs involved in maternal-to-zygotic transition of in vitro-produced porcine embryos by single-cell RNA-seq[J].Reprod Domest Anim.,2022,57(1):111-122.
doi: 10.1111/rda.14034 |
93 |
ZHUANQ,MAH J,CHENJ,et al.Cytoplasm lipids can be modulated through hormone-sensitive lipase and are related to mitochondrial function in porcine IVM oocytes[J].Reprod Fertil Dev,2020,32(7):667-675.
doi: 10.1071/RD19047 |
94 |
LIJ Y,XIONGS,ZHAOY H,et al.Effect of the re-vitrification of embryos at different stages on embryonic developmental potential[J].Front Endocrinol (Lausanne),2021,12,653310.
doi: 10.3389/fendo.2021.653310 |
95 |
CUELLOC,MARTINEZC A,NOHALEZA,et al.Effective vitrification and warming of porcine embryos using a pH-stable, chemically defined medium[J].Sci Rep,2016,6,33915.
doi: 10.1038/srep33915 |
96 |
SANCHEZ-OSORIOJ,CUELLOC,GILM A,et al.Vitrification and warming of in vivo-derived porcine embryos in a chemically defined medium[J].Theriogenology,2010,73(3):300-308.
doi: 10.1016/j.theriogenology.2009.07.031 |
97 |
MARTINEZC A,CUELLOC,PARRILLAI,et al.Exogenous melatonin in the culture medium does not affect the development of in vivo-derived pig embryos but substantially improves the quality of in vitro-produced embryos[J].Antioxidants (Basel),2022,11(6):1177.
doi: 10.3390/antiox11061177 |
98 |
CUELLOC,MARTINEZC A,CAMBRAJ M,et al.Vitrification effects on the transcriptome of in vivo-derived porcine morulae[J].Front Vet Sci,2021,8,771996.
doi: 10.3389/fvets.2021.771996 |
99 |
XIANGD C,JIAB Y,QUANG B,et al.Effect of knockout serum replacement during postwarming recovery culture on the development and quality of vitrified parthenogenetic porcine blastocysts[J].Biopreserv Biobank,2019,17(4):342-351.
doi: 10.1089/bio.2018.0132 |
100 |
BUDANIM C,TIBONIG M.Effects of supplementation with natural antioxidants on oocytes and preimplantation embryos[J].Antioxidants (Basel),2020,9(7):612.
doi: 10.3390/antiox9070612 |
101 |
GAOL,DUM,ZHUANQ,et al.Melatonin rescues the aneuploidy in mice vitrified oocytes by regulating mitochondrial heat product[J].Cryobiology,2019,89,68-75.
doi: 10.1016/j.cryobiol.2019.05.005 |
102 |
YOONS Y,EUMJ H,CHAS K,et al.Prematuration culture with phosphodiesterase inhibitors after vitrification may induce recovery of mitochondrial activity in vitrified mouse immature oocytes[J].Biopreserv Biobank,2018,16(4):296-303.
doi: 10.1089/bio.2018.0010 |
103 |
PANB,QAZII H,GUOS C,et al.Melatonin improves the first cleavage of parthenogenetic embryos from vitrified-warmed mouse oocytes potentially by promoting cell cycle progression[J].J Anim Sci Biotechnol,2021,12(1):84.
doi: 10.1186/s40104-021-00605-y |
104 |
LINQ Y,LEQ A,TAKEBAYASHIK,et al.Short-term preservation of porcine zygotes at ambient temperature using a chemically defined medium[J].Anim Sci J,2022,93(1):e13711.
doi: 10.1111/asj.13711 |
105 |
KIKUCHIK,KASHIWAZAKIN,NAGAIT,et al.Selected aspects of advanced porcine reproductive technology[J].Reprod Domest Anim,2008,43(S2):401-406.
doi: 10.1111/j.1439-0531.2008.01191.x |
106 |
WHALEYD,DAMYARK,WITEKR P,et al.Cryopreservation: an overview of principles and cell-specific considerations[J].Cell Transplant,2021,30,963689721999617.
doi: 10.1177/0963689721999617 |
107 |
CZERNIKM,WINIARCZYKD,SAMPINOS,et al.Author correction: mitochondrial function and intracellular distribution is severely affected in in vitro cultured mouse embryos[J].Sci Rep,2022,12(1):21276.
doi: 10.1038/s41598-022-25820-z |
108 |
NGUYENH T,NGUYENN T,NGUYENL V,et al.The effects of pretreatment with Cyclosporin A and Docetaxel before vitrification of porcine immature oocytes on subsequent embryo development[J].Reprod Biol,2023,23(4):100798.
doi: 10.1016/j.repbio.2023.100798 |
109 |
DUARTEF V,CIAMPID,DUARTEC B.Mitochondria as central hubs in synaptic modulation[J].Cell Mol Life Sci,2023,80(6):173.
doi: 10.1007/s00018-023-04814-8 |
110 |
FUJINOY,KOJIMAT,NAKAMURAY,et al.Metal mesh vitrification (MMV) method for cryopreservation of porcine embryos[J].Theriogenology,2008,70(5):809-817.
doi: 10.1016/j.theriogenology.2008.05.045 |
111 |
PANGY W,ANL,WANGP,et al.Treatment of porcine donor cells and reconstructed embryos with the antioxidant melatonin enhances cloning efficiency[J].J Pineal Res.,2013,54(4):389-397.
doi: 10.1111/jpi.12024 |
112 |
JOES Y,YANGS G,LEEJ H,et al.Stabilization of F-actin cytoskeleton by paclitaxel improves the blastocyst developmental competence through P38 MAPK activity in porcine embryos[J].Biomedicines,2022,10(8):1867.
doi: 10.3390/biomedicines10081867 |
113 |
PARRILLAI,GILM A,CUELLOC,et al.Immunological uterine response to pig embryos before and during implantation[J].Reprod Domest Anim,2022,57(S5):4-13.
doi: 10.1111/rda.14142 |
[1] | 田晶晶, 王晓庆, 李棉燕, 王海玲, 吴启钿, 王立贤, 张龙超, 赵福平. 北京黑猪全基因组ROH检测和选择信号分析[J]. 畜牧兽医学报, 2024, 55(9): 3833-3842. |
[2] | 陈栋, 周文譞, 赵真坚, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 吴平先, 郭宗义, 王金勇, 唐国庆. 基于计算机视觉技术的猪肌内脂肪含量和眼肌面积测定系统的研发[J]. 畜牧兽医学报, 2024, 55(9): 3843-3852. |
[3] | 陈南珠, 李俊良, 余大为, 周心仪, 王晶, 邹惠影, 杜卫华. 猪MKRN3基因的印记表达和DNA甲基化状态分析[J]. 畜牧兽医学报, 2024, 55(9): 3853-3863. |
[4] | 杨柏高, 龙熙, 张亮, 徐皆欢, 戴建军, 赵学明, 潘红梅. 基于Smart-seq2探究玻璃化冷冻对猪孤雌激活囊胚基因表达的影响[J]. 畜牧兽医学报, 2024, 55(9): 3936-3946. |
[5] | 任聪, 张虎, 王钰明, 解竞静, 萨仁娜, 赵峰. 仿生消化法估测生长猪饲料有效能的准确性及可加性研究[J]. 畜牧兽医学报, 2024, 55(9): 3988-4000. |
[6] | 高力国, 申翰钦, 陈诒全, 陈胜, 蔺文成, 陈峰. 猪轮状病毒重组VP6*蛋白的原核表达及间接ELISA检测方法的建立[J]. 畜牧兽医学报, 2024, 55(9): 4021-4028. |
[7] | 朋璐, 张衡, 庞思琪, 乔竹林, 张小芬, 谭臣, 宋云峰, 周锐, 黎璐. 利用大蜡螟幼虫和小鼠感染模型筛选猪链球菌血清2、3和9型三价灭活疫苗候选菌株[J]. 畜牧兽医学报, 2024, 55(9): 4077-4090. |
[8] | 付艺乾, 梁东阁, 王铭洋, 潘佳佳, 杨彦宾, 曾磊, 康相涛. 干扰素调节因子敲减细胞系的构建及其对猪伪狂犬病病毒增殖的影响[J]. 畜牧兽医学报, 2024, 55(9): 4100-4109. |
[9] | 彭宁, 梁雅旭, 龙菲, 余东明, 钟翔. 白藜芦醇对轮状病毒感染猪肠上皮细胞IPEC-J2的抑制效应[J]. 畜牧兽医学报, 2024, 55(9): 4213-4225. |
[10] | 冯露, 田宏, 郑海学, 石正旺, 罗俊聪, 张晓阳, 尉娟娟, 周静, 廖焕程, 王婉莹. 基于酶促重组酶扩增的非洲猪瘟病毒检测方法[J]. 畜牧兽医学报, 2024, 55(9): 4226-4231. |
[11] | 戴舒颖, 刘青, 李爱国, 余博, 陈洪波. 牛体外胚胎生产过程中培养液添加物研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3309-3320. |
[12] | 夏振涛, 王楠, 王婉洁, 周期律, 黄雷, 牟玉莲. pAPN基因敲除的IPEC-J2介导的TGEV感染特征分析[J]. 畜牧兽医学报, 2024, 55(8): 3395-3407. |
[13] | 王怡, 高娟, 胡悦旻, 杨跃飞, 范博钧, 鞠辉明. 短期血清饥饿胁迫对猪骨骼肌卫星细胞代谢及自噬发生的影响[J]. 畜牧兽医学报, 2024, 55(8): 3408-3417. |
[14] | 杨程, 刘野, 程宁, 王凯月, 李欣蕾, 孙久英, 韩俊平, 李文军, 王欢欢, 邵笑, 程雪娇, 孙英峰. 一株PRRSV-2谱系1.8与1.5重组毒株的基因组特征分析[J]. 畜牧兽医学报, 2024, 55(8): 3570-3578. |
[15] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||