畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (7): 2877-2889.doi: 10.11843/j.issn.0366-6964.2024.07.009
收稿日期:
2024-01-05
出版日期:
2024-07-23
发布日期:
2024-07-24
通讯作者:
王守伟
E-mail:xyskylxj8907@163.com;cmrcwsw@126.com
作者简介:
梁小娟(1989-),女,河南开封人,博士,高级工程师,主要从事动物遗传育种与繁殖研究,E-mail:xyskylxj8907@163.com
基金资助:
Xiaojuan LIANG(), Yushuang LI, Yingying LI, Shouwei WANG*(
)
Received:
2024-01-05
Online:
2024-07-23
Published:
2024-07-24
Contact:
Shouwei WANG
E-mail:xyskylxj8907@163.com;cmrcwsw@126.com
摘要:
旨在建立北京黑猪脂肪前体细胞的分离培养及成脂诱导分化培养体系,为研究猪脂肪沉积的分子机制提供试验材料,为生物培育肉的制备提供技术指导。本研究采集1头7日龄健康的北京黑猪公猪的颈部皮下脂肪组织,使用机械法联合Ⅰ型胶原酶消化法分离脂肪前体细胞。对获得的脂肪前体细胞进行形态观察、生长曲线绘制、免疫荧光鉴定、成脂诱导分化、油红O染色、BODIPY染色、甘油三酯含量测定及使用实时荧光定量PCR和Western blot技术检测成脂分化相关基因的表达。结果表明,分离的北京黑猪脂肪前体细胞贴壁后呈长梭形,细胞生长曲线呈S型。免疫荧光结果表明,PREF1表达为阳性,表明分离的细胞的确为脂肪前体细胞。在相同的诱导试剂组合条件下,使用10% FBS比2% FBS成脂诱导分化效果更好。在相同血清浓度的情况下,鸡尾酒法与油酸钠、罗格列酮共同联用的细胞分化效果较好。分化8 d的细胞中出现大量的脂滴,脂滴经油红O染色呈红色,经BODIPY染色呈绿色。且分化8 d的细胞中甘油三酯的含量显著升高(P < 0.001)。qPCR结果显示,PPARγ、CEBPα、ACCα、LPL、SCD和FABP4在分化2 d时表达量均显著升高(P < 0.05),4~6 d达到高峰,8 d时表达量降低。Western blot结果表明,PPARγ、CEBPα、FABP4、APN在细胞分化过程中表达逐渐上调。PREF1在细胞分化过程中表达逐渐下调。在三维培养情况下,使用10% FBS,鸡尾酒法与油酸钠、罗格列酮共同联用也能使脂肪前体细胞分化为成熟的脂肪细胞,分化8 d的细胞中脂滴经BODIPY和油红O染色后分别呈绿色和红色,且PPARγ、CEBPα、ACCα、LPL、SCD和FABP4在分化8 d的细胞中的表达量显著上调(P < 0.001)。综上所述,本研究成功建立了北京黑猪脂肪前体细胞的分离与培养体系,并筛选出适合二维和三维培养的成脂诱导分化方法,为进一步研究猪脂肪沉积的分子机制和改善肉品质奠定基础,也为细胞培育肉的制备提供技术指导。
中图分类号:
梁小娟, 李雨爽, 李莹莹, 王守伟. 北京黑猪脂肪前体细胞的分离培养及成脂诱导分化研究[J]. 畜牧兽医学报, 2024, 55(7): 2877-2889.
Xiaojuan LIANG, Yushuang LI, Yingying LI, Shouwei WANG. Isolation, Culture and Adipogenic Differentiation of Beijing Black Pig Preadipocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2877-2889.
表 1
诱导分化培养基和维持分化培养基"
组别Group | 诱导分化培养基Induction differentiation media | 维持分化培养基Maintenance differentiation media |
Group 1 | DMEM+cocktail+NaOL+2% FBS | DMEM+INS+NaOL+2% FBS |
Group 2 | DMEM+cocktail+NaOL+RSG+2% FBS | DMEM+INS+NaOL+RSG+2% FBS |
Group 3 | DMEM+cocktail+2% FBS | DMEM+INS+2% FBS |
Group 4 | DMEM+cocktail+RSG+2% FBS | DMEM+INS+RSG+2% FBS |
Group 5 | DMEM+cocktail+NaOL+10% FBS | DMEM+INS+NaOL+10% FBS |
Group 6 | DMEM+cocktail+NaOL+RSG+10% FBS | DMEM+INS+NaOL+RSG+10% FBS |
Group 7 | DMEM+cocktail+10% FBS | DMEM+INS+10% FBS |
Group 8 | DMEM+cocktail+RSG+10% FBS | DMEM+INS+RSG+10% FBS |
表 2
荧光定量PCR引物序列"
基因Gene | 上游引物序列(5′→3′) Forward primers sequence | 下游引物序列(5′→3′) Reverse primers sequence |
PPARγ | CCAGCATTTCCACTCCACACTA | GACACAGGCTCCACTTTGATG |
CEBPα | AGCCAAGAAGTCGGTAGA | CGGTCATTGTCACTGGTC |
ACCα | TCAGAAGGAGGAGGAGGGAA | ATGACGGGACTGTTTGGCTA |
SCD | CTTCCTGATCATTGCCAACA | GCAAACCACCCTTCTCTTTG |
LPL | GTTGAGGACACTTGCCATCT | CCTCTTGTATAGGGCAGCCAC |
FABP4 | AAGAAGTGGGAGTGGGCTTT | TTCCTGGCCCAATTTGAAGG |
18S rRNA | GTAACCCGTTGAACCCCATT | CCATCCAATCGGTAGTAGCG |
1 |
BRYANT C J . Culture, meat, and cultured meat[J]. J Anim Sci, 2020, 98 (8): skaa172.
doi: 10.1093/jas/skaa172 |
2 |
CHEN L , GUTTIERES D , KOENIGSBERG A , et al. Large-scale cultured meat production: trends, challenges and promising biomanufacturing technologies[J]. Biomaterials, 2022, 280, 121274.
doi: 10.1016/j.biomaterials.2021.121274 |
3 |
SEAH J S H , SINGH S , TAN L P , et al. Scaffolds for the manufacture of cultured meat[J]. Crit Rev Biotechnol, 2022, 42 (2): 311- 323.
doi: 10.1080/07388551.2021.1931803 |
4 |
SUGⅡ S , WONG C Y Q , LWIN A K O , et al. Alternative fat: redefining adipocytes for biomanufacturing cultivated meat[J]. Trends Biotechnol, 2023, 41 (5): 686- 700.
doi: 10.1016/j.tibtech.2022.08.005 |
5 |
HANDRAL H K , TAY S H , CHAN W W , et al. 3D printing of cultured meat products[J]. Crit Rev Food Sci Nutr, 2022, 62 (1): 272- 281.
doi: 10.1080/10408398.2020.1815172 |
6 |
SHAIKH S , LEE E , AHMAD K , et al. Cell types used for cultured meat production and the importance of myokines[J]. Foods, 2021, 10 (10): 2318.
doi: 10.3390/foods10102318 |
7 |
LI C H , YANG I H , KE C J , et al. The production of fat-containing cultured meat by stacking aligned muscle layers and adipose layers formed from gelatin-soymilk scaffold[J]. Front Bioeng Biotechnol, 2022, 10, 875069.
doi: 10.3389/fbioe.2022.875069 |
8 |
BOMKAMP C , MUSGROVE L , MARQUES D M C , et al. Differentiation and maturation of muscle and fat cells in cultivated seafood: lessons from developmental biology[J]. Mar Biotechnol (NY), 2023, 25 (1): 1- 29.
doi: 10.1007/s10126-022-10174-4 |
9 | MEHTA F , THEUNISSEN R , POST M J . Adipogenesis from bovine precursors[J]. Methods Mol Biol, 2019, 1889, 111- 125. |
10 | 王森, 师俊华, 王之盛, 等. 牦牛不同部位前体脂肪细胞分离鉴定及分化关键基因表达研究[J]. 畜牧兽医学报, 2022, 53 (3): 755- 765. |
WANG S , SHI J H , WANG Z S , et al. Isolation and identification of preadipocytes from different parts of yak and expression of key genes for differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (3): 755- 765. | |
11 | 郭红芳, 昝林森, 孙永刚. 牛前体脂肪细胞的分离培养及诱导分化[J]. 西北农林科技大学学报: 自然科学版, 2014, 42 (2): 1-6, 12. |
GUO H F , ZAN L S , SUN Y G . Primary culture and differentiation of bovine preadipocytes[J]. Journal of Northwest A&F University: Natural Science Edition, 2014, 42 (2): 1-6, 12. | |
12 | 张萌萌, 魏胜娟, 王艺如, 等. 牛肌内前体脂肪细胞的分离培养及分化相关基因的表达规律研究[J]. 畜牧与兽医, 2018, 50 (5): 1- 6. |
ZHANG M M , WEI S J , WANG Y R , et al. Primary culture and expression of differentiation-related genes in bovine intramuscular preadipocytes[J]. Animal Husbandry & Veterinary Medicine, 2018, 50 (5): 1- 6. | |
13 | 孟金花, 蔡刚志, 肖红卫, 等. 猪肌内脂肪前体细胞分离培养和成脂诱导分化研究[J]. 中国畜牧杂志, 2019, 55 (12): 98- 101. |
MENG J H , CAI G Z , XIAO H W , et al. Isolation, culture, and differentiation of porcine intramuscular preadipocytes[J]. Chinese Journal of Animal Science, 2019, 55 (12): 98- 101. | |
14 | 刘敏, 张雪莲, 张万锋, 等. '马身猪'皮下前体脂肪细胞的分离培养及成脂诱导分化研究[J]. 新疆农业大学学报, 2019, 42 (3): 175- 181. |
LIU M , ZHANG X L , ZHANG W F , et al. Isolation, culture and differentiation of 'mashen' pig subcutaneous preadipocyte[J]. Journal of Xinjiang Agricultural University, 2019, 42 (3): 175- 181. | |
15 | 朴政玉, 金一, 于永生, 等. 松辽黑猪前体脂肪细胞分离及诱导分化[J]. 吉林农业大学学报, 2020, 42 (3): 337- 342. |
PIAO Z Y , JIN Y , YU Y S , et al. Isolation and induced differentiation of preadipocytes from songliao black pig[J]. Journal of Jilin Agricultural University, 2020, 42 (3): 337- 342. | |
16 | 张宁芳, 成志敏, 乐宝玉, 等. 猪肌源性前体脂肪细胞的分离培养和成脂诱导分化研究[J]. 畜牧兽医学报, 2018, 49 (12): 2612- 2621. |
ZHANG N F , CHENG Z M , LE B Y , et al. Isolation, culture and adipogenic differention of pig myogenic preadipocytes cell[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49 (12): 2612- 2621. | |
17 | 郑月英, 魏胜娟, 董书圣, 等. 梅山猪前体脂肪细胞的分离培养及分化相关基因的表达规律研究[J]. 畜牧与兽医, 2017, 49 (6): 9- 14. |
ZHENG Y Y , WEI S J , DONG S S , et al. Primary culture and differentiation related gene expressions of meishan pig preadipocytes[J]. Animal Husbandry & Veterinary Medicine, 2017, 49 (6): 9- 14. | |
18 | 陈妍, 张国华, 陆会宁, 等. 八眉猪肌内前体脂肪细胞的分离培养及诱导分化[J]. 广东农业科学, 2014, 41 (13): 110-113, 123. |
CHEN Y , ZHANG G H , LU H N , et al. Culture and induced differentiation of intramuscular preadipocytes from bamei pigs in vitro[J]. Guangdong Agricultural Sciences, 2014, 41 (13): 110-113, 123. | |
19 | 刘海峰, 张煦, 李明洲, 等. 罗格列酮对猪脂肪前体细胞分化过程中聚脂相关基因表达模式的影响[J]. 遗传, 2009, 31 (7): 719- 724. |
LIU H F , ZHANG X , LI M Z , et al. Effects of rosiglitazone on expression patterns of the genes involved in adipogenesis during porcine preadipocytes differentiation[J]. Hereditas (Beijing), 2009, 31 (7): 719- 724. | |
20 | 徐小春, 陈文娟, 赵瑞, 等. 滩羊肌内前体脂肪细胞的分离培养及分化相关基因的表达规律研究[J]. 家畜生态学报, 2020, 41 (11): 35- 41. |
XU X C , CHEN W J , ZHAO R , et al. Culture and induced differentiation of intramuscular preadipocytes and expression of related genes from tan sheep[J]. Acta Ecologae Animalis Domastici, 2020, 41 (11): 35- 41. | |
21 | 耿晓晖, 富俊才, 韩凯, 等. 绵羊肌内脂肪前体细胞的体外培养及分选[J]. 中国农业大学学报, 2014, 19 (5): 110- 115. |
GENG X H , FU J C , HAN K , et al. In vitro culture and purification of ovine intramuscular preadipocyte[J]. Journal of China Agricultural University, 2014, 19 (5): 110- 115. | |
22 | 崔京京, 富俊才, 孙岩, 等. 绵羊前体脂肪细胞的分离培养及诱导分化[J]. 中国畜牧杂志, 2012, 48 (1): 22- 26. |
CUI J J , FU J C , SUN Y , et al. Isolation, culture, and differentiation of ovine preadipocytes[J]. Chinese Journal of Animal Science, 2012, 48 (1): 22- 26. | |
23 | 郭菊, 朱继红, 辛国省, 等. 滩羊前体脂肪细胞的体外分离及载体构建[J]. 黑龙江畜牧兽医, 2021, (17): 11-16, 142-144. |
GUO J , ZHU J H , XIN G S , et al. Separation and carrier construction of tan sheep preadipocyte in vitro[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021, (17): 11-16, 142-144. | |
24 |
MATSUBARA Y , ENDO T , KANO K . Fatty acids but not dexamethasone are essential inducers for chick adipocyte differentiation in vitro[J]. Comp Biochem Physiol Part A Mol Integr Physiol, 2008, 151 (4): 511- 518.
doi: 10.1016/j.cbpa.2008.07.002 |
25 | 金鑫, 张军芳, 李香子, 等. 油酸对延边黄牛前脂肪细胞分化过程的影响[J]. 内蒙古大学学报: 自然科学版, 2020, 51 (2): 184- 190. |
JIN X , ZHANG J F , LI X Z , et al. Effect of oleic acid on the differentiation of preadipocytes of yanbian yellow cattle[J]. Journal of Inner Mongolia University: Natural Science Edition, 2020, 51 (2): 184- 190. | |
26 | 尹云厚, 张军芳, 郭盼盼, 等. 油酸对延边牛前体脂肪细胞分化及成脂相关基因表达的影响[J]. 中国兽医学报, 2022, 42 (12): 2479-2484, 2494. |
YIN Y H , ZHANG J F , GUO P P , et al. Effects of oleic acid on differentiation of preadipocytes and expression of adipo-genic genes in Yanbian cattle[J]. Chinese Journal of Veterinary Science, 2022, 42 (12): 2479-2484, 2494. | |
27 |
YANG W J , LIU Z , ZHAO Q Q , et al. Population genetic structure and selection signature analysis of Beijing black pig[J]. Front Genet, 2022, 13, 860669.
doi: 10.3389/fgene.2022.860669 |
28 |
HOU X H , ZHANG R , YANG M , et al. Characteristics of transcriptome and metabolome concerning intramuscular fat content in Beijing black pigs[J]. J Agric Food Chem, 2023, 71 (42): 15874- 15883.
doi: 10.1021/acs.jafc.3c02669 |
29 |
YAP W S , CHOUDHURY D , SUNTORNNOND R . Towards biomanufacturing of cultured meat[J]. Trends Biotechnol, 2023, 41 (3): 292- 294.
doi: 10.1016/j.tibtech.2023.01.014 |
30 |
ROSENFELD D L , TOMIYAMA A J . Toward consumer acceptance of cultured meat[J]. Trends Cogn Sci, 2023, 27 (8): 689- 691.
doi: 10.1016/j.tics.2023.05.002 |
31 |
PAWAR D , LO PRESTI D , SILVESTRI S , et al. Current and future technologies for monitoring cultured meat: a review[J]. Food Res Int, 2023, 173, 113464.
doi: 10.1016/j.foodres.2023.113464 |
32 |
LIU P P , SONG W J , BASSEY A P , et al. Preparation and quality evaluation of cultured fat[J]. J Agric Food Chem, 2023, 71 (9): 4113- 4122.
doi: 10.1021/acs.jafc.2c08004 |
33 | FARRAR J S , MARTIN R K . Isolation of the stromal vascular fraction from adipose tissue and subsequent differentiation into white or beige adipocytes[J]. Methods Mol Biol, 2022, 2455, 103- 115. |
34 | LARSEN T J , JESPERSEN N Z , SCHEELE C . Adipogenesis in primary cell culture[J]. Handb Exp Pharmacol, 2019, 251, 73- 84. |
35 |
ZHAO X T , LIU H T , PAN Y J , et al. Identification of potential candidate genes from co-expression module analysis during preadipocyte differentiation in landrace pig[J]. Front Genet, 2022, 12, 753725.
doi: 10.3389/fgene.2021.753725 |
36 | 刘琴, 王丽平, 喻晶, 等. 组织块贴壁法扩增兔脂肪干细胞[J]. 中国组织工程研究, 2014, 18 (1): 88- 93. |
LIU Q , WANG L P , YU J , et al. Amplification of rabbit adipose-derived stem cells using explants culture method[J]. Chinese Journal of Tissue Engineering Research, 2014, 18 (1): 88- 93. | |
37 | 李惠侠, 罗肖, 刘荣鑫, 等. 用成熟脂肪建立一种新的猪前体脂肪细胞培养模型[J]. 中国生物化学与分子生物学报, 2009, 25 (3): 270- 275. |
LI H X , LUO X , LIU R X , et al. Novel preadipocyte cell model established via pig mature adipocytes[J]. Chinese Journal of Biochemistry and Molecular Biology, 2009, 25 (3): 270- 275. | |
38 |
LI M , ZHANG N , LI J , et al. MiR-23b promotes porcine preadipocyte differentiation via SESN3 and ACSL4[J]. Cells, 2022, 11 (15): 2339.
doi: 10.3390/cells11152339 |
39 |
ZHAO Y , PAN J F , CAO C W , et al. RNF20 affects porcine adipocyte differentiation via regulation of mitotic clonal expansion[J]. Cell Prolif, 2021, 54 (12): e13131.
doi: 10.1111/cpr.13131 |
40 |
LIU L L , WANG Y , LIANG X J , et al. Stearoyl-CoA desaturase is essential for porcine adipocyte differentiation[J]. Int J Mol Sci, 2020, 21 (7): 2446.
doi: 10.3390/ijms21072446 |
41 |
BOHAN A E , PURVIS K N , BARTOSH J L , et al. The proliferation and differentiation of primary pig preadipocytes is suppressed when cultures are incubated at 37℃ elsius compared to euthermic conditions in pigs[J]. Adipocyte, 2014, 3 (4): 322- 332.
doi: 10.4161/21623945.2014.981434 |
42 |
CHENG B H , WU M Q , XU S S , et al. Cocktail supplement with rosiglitazone: a novel inducer for chicken preadipocyte differentiation in vitro[J]. Biosci Rep, 2016, 36 (6): e00401.
doi: 10.1042/BSR20160049 |
43 |
MALODOBRA-MAZUR M , CIERZNIAK A , DOBOSZ T . Oleic acid influences the adipogenesis of 3T3-L1 cells via DNA methylation and may predispose to obesity and obesity-related disorders[J]. Lipids Health Dis, 2019, 18 (1): 230.
doi: 10.1186/s12944-019-1173-6 |
44 | ZHENG Q T , LIN J , HUANG J J , et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J]. Proc Natl Acad Sci U S A, 2017, 114 (45): E9474- E9482. |
45 |
BOONE C , GRÉGOIRE F , REMACLE C . Culture of porcine stromal-vascular cells in serum-free medium: differential action of various hormonal agents on adipose conversion[J]. J Anim Sci, 2000, 78 (4): 885- 895.
doi: 10.2527/2000.784885x |
46 | 朱惠娟, 邓洁英, 龚凤英, 等. 无血清原代培养人前脂肪细胞并诱导分化[J]. 基础医学与临床, 2006, 26 (7): 770- 773. |
ZHU H J , DENG J Y , GONG F Y , et al. Primary culture of human preadipocyte in a serum-free medium[J]. Basic & Clinical Medicine, 2006, 26 (7): 770- 773. | |
47 |
VOLZ A C , KLUGER P J . Completely serum-free and chemically defined adipocyte development and maintenance[J]. Cytotherapy, 2018, 20 (4): 576- 588.
doi: 10.1016/j.jcyt.2018.01.004 |
48 |
PANELLA S , MUOIO F , JOSSEN V , et al. Chemically defined xeno- and serum-free cell culture medium to grow Human adipose stem cells[J]. Cells, 2021, 10 (2): 466.
doi: 10.3390/cells10020466 |
49 | 刘海峰, 李学伟, 王滔, 等. 血清对猪前脂肪细胞分化过程中聚脂相关基因表达的影响[J]. 畜牧兽医学报, 2009, 40 (12): 1718- 1726. |
LIU H F , LI X W , WANG T , et al. Effects of Serum on expression models of the genes involved in adipogenesis during porcine preadipocyte differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2009, 40 (12): 1718- 1726. | |
50 |
LIU Y , WANG R , DING S J , et al. Engineered meatballs via scalable skeletal muscle cell expansion and modular micro-tissue assembly using porous gelatin micro-carriers[J]. Biomaterials, 2022, 287, 121615.
doi: 10.1016/j.biomaterials.2022.121615 |
51 |
ZAGURY Y , IANOVICI I , LANDAU S , et al. Engineered marble-like bovine fat tissue for cultured meat[J]. Commun Biol, 2022, 5 (1): 927.
doi: 10.1038/s42003-022-03852-5 |
52 |
YEN F C , GLUSAC J , LEVI S , et al. Cultured meat platform developed through the structuring of edible microcarrier-derived microtissues with oleogel-based fat substitute[J]. Nat Commun, 2023, 14 (1): 2942.
doi: 10.1038/s41467-023-38593-4 |
[1] | 祝雪丽, 张龙超, 王立贤, 蒲蕾, 刘欣. 北京黑猪AQP9和RPS10基因多态性及其与背膘厚的关联分析[J]. 畜牧兽医学报, 2024, 55(1): 87-98. |
[2] | 牛乃琪, 赵润泽, 宗文成, 刘先策, 刘海, 石国华, 井西涛, 张龙超. 北京黑猪GREB1L和MIB1基因多态性与肋骨数及胴体性状的关联分析[J]. 畜牧兽医学报, 2024, 55(1): 79-86. |
[3] | 苏艳芳, 杨曼, 牛乃琪, 侯欣华, 张龙超. 北京黑猪FABP3和SCD基因多态性与肉品质性状关联分析[J]. 畜牧兽医学报, 2023, 54(3): 966-975. |
[4] | 牛乃琪, 苏艳芳, 杨曼, 侯欣华, 王立刚, 张龙超. 北京黑猪HoxB簇基因多态性与脊椎数及胴体性状的关联分析[J]. 畜牧兽医学报, 2023, 54(1): 113-121. |
[5] | 张润, 刘海, 杨曼, 张龙超, 王源. 北京黑猪肌内脂肪含量高、低组间脂质组差异分析[J]. 畜牧兽医学报, 2022, 53(9): 3262-3271. |
[6] | 田威龙, 兰干球, 张龙超, 王立贤, 梁晶, 刘欣. 北京黑猪DKK3和CCR1基因多态性检测及其与背膘厚的关联分析[J]. 畜牧兽医学报, 2022, 53(7): 2083-2093. |
[7] | 牛乃琪, 刘倩, 侯欣华, 刘欣, 王立刚, 赵福平, 高红梅, 石丽君, 王立贤, 张龙超. 北京黑猪NR6A1、VSX2、VRTN、LTBP2基因多态性与脊椎数及胴体性状的关联分析[J]. 畜牧兽医学报, 2022, 53(6): 2005-2014. |
[8] | 侯任达, 张润, 牛乃琪, 杨曼, 黄晓宇, 李慧慧, 张龙超. 北京黑猪FUBP3和USP43基因多态性与眼肌面积性状的关联分析[J]. 畜牧兽医学报, 2022, 53(12): 4197-4206. |
[9] | 孙成娟, 许厚强, 段志强, 陈伟, 赵佳福, 周迪. 从江香猪FoxO 4基因真核表达载体的构建及其在皮下脂肪前体细胞中的表达[J]. 畜牧兽医学报, 2017, 48(12): 2268-2276. |
[10] | 高霞,李方正,郇延军,刘志敏,李秀,姜忠玲,牛德勋,宋学雄. 猪DFAT细胞成脂再分化过程中KLF2和PPARγ的表达[J]. 畜牧兽医学报, 2017, 48(1): 68-74. |
[11] | 马小军,程笃学,王立刚,刘欣,宋欣,梁晶,张龙超. 利用超声波图像活体预测北京黑猪肌内脂肪含量[J]. 畜牧兽医学报, 2012, 43(10): 1511-1518. |
[12] | 罗仍卓么;;王立贤;孙世铎. 北京黑猪RBP4基因与繁殖性状的关联分析[J]. 畜牧兽医学报, 2008, 39(5): 536-539. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||