畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (8): 3482-3492.doi: 10.11843/j.issn.0366-6964.2024.08.021
梁小娟(), 李雨爽, 付周, 唐铎, 李莹莹, 王守伟*(
)
收稿日期:
2024-01-29
出版日期:
2024-08-23
发布日期:
2024-08-28
通讯作者:
王守伟
E-mail:xyskylxj8907@163.com;cmrcwsw@126.com
作者简介:
梁小娟(1989-),女,河南开封人,博士,高级工程师,主要从事动物遗传育种与繁殖研究,E-mail: xyskylxj8907@163.com
基金资助:
Xiaojuan LIANG(), Yushuang LI, Zhou FU, Duo TANG, Yingying LI, Shouwei WANG*(
)
Received:
2024-01-29
Online:
2024-08-23
Published:
2024-08-28
Contact:
Shouwei WANG
E-mail:xyskylxj8907@163.com;cmrcwsw@126.com
摘要:
旨在建立鸽脂肪前体细胞的体外分离、培养、鉴定和成脂诱导分化的方法。本研究采集3只健康的1日龄银王鸽皮下脂肪组织,利用I型胶原酶进行消化以分离脂肪前体细胞,在脂肪前体细胞常规分离法基础上进行分离方法改良,对获得的脂肪前体细胞进行原代和传代培养,并观察细胞形态,通过免疫荧光鉴定特异性标记DLK1,确认脂肪前体细胞。通过在培养基中添加胰岛素和油酸钠进行成脂诱导分化,使用BODIPY493/503染色观察细胞中的脂滴分布情况,通过甘油三酯测定试剂盒检测细胞中甘油三酯的含量,采用实时荧光定量PCR和Western blot技术检测脂肪前体细胞成脂分化过程中分化相关基因的表达。研究结果表明,鸽脂肪前体细胞呈梭形,改良分离法比常规分离法能够获得更多的脂肪前体细胞;与37 ℃相比,在41 ℃培养温度下,获得的脂肪前体细胞数目显著增加(P < 0.001)。免疫荧光结果表明,DLK1表达为阳性,说明获得的是脂肪前体细胞。BODIPY493/503染色结果显示,分化6 d的细胞中产生大量的脂滴。且随着分化时间的增加,细胞中甘油三酯的相对含量也显著增加(P < 0.01)。qPCR结果显示,在添加诱导剂2 d时,PPARγ、SCD、DGAT2、PLIN2、FASN、AFABP、LPL基因的表达量显著上调(P < 0.05),之后随分化时间的增加表达逐渐上调;SREBF1基因在分化2 d时表达量显著上调(P < 0.05),之后表达量不变;ACACA基因在分化2 d时,表达量显著增加(P < 0.05),在分化4 d时表达量达到高峰。Western blot结果表明,在分化2 d时,PPARγ、LPL和PLIN2的表达量显著上调(P < 0.05),之后随着分化时间的延长,表达量进一步升高。综上所述,本研究改良了脂肪前体细胞常规分离法,成功分离获得鸽脂肪前体细胞,且筛选出最适培养温度。获得的鸽脂肪前体细胞经胰岛素和油酸钠诱导后能高效地分化为成熟的脂肪细胞。本研究为鸽脂肪代谢分子调控机制的研究提供了良好的细胞模型,同时也为鸽生物培育肉的制备提供种子细胞和技术指导。
中图分类号:
梁小娟, 李雨爽, 付周, 唐铎, 李莹莹, 王守伟. 鸽脂肪前体细胞的分离培养及成脂诱导分化研究[J]. 畜牧兽医学报, 2024, 55(8): 3482-3492.
Xiaojuan LIANG, Yushuang LI, Zhou FU, Duo TANG, Yingying LI, Shouwei WANG. Isolation, Culture and Adipogenic Differentiation of Pigeon Preadipocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3482-3492.
表 1
荧光定量PCR引物序列"
基因Gene | 上游引物序列(5′→3′) Forward primer sequence | 下游引物序列(5′→3′) Reverse primer sequence |
PPARγ | CAAAGCTCACGAGGACCCTT | GCGTTATGCGACATCCCAAC |
SREBF1 | CCGTCAAGACAGATGCTGGT | TAGCGTTTCTCGATGGCGTT |
ACACA | TGGGGTCTGAGGAGATGGAA | CTTCCCCCGGCTCTGATAAC |
SCD | GGCTGGCGCTTCAACTTAAC | AAGCAGGAACTCAGCCACTC |
LPL | AGAAGGGTCTTTGCCTGAGC | GGCATCTGAGCACGAGTCTT |
AFABP | CCAGGAAAATGGCTGGTGTG | TCTTTCCCATCCCACTTCTGC |
DGAT2 | TGAGTCCCTGAATTGCACCC | TCCCCGAAGGAGTAGACAGG |
PLIN2 | CTGCCTCACACTGGTCTCAA | GGGTAAAAGGGACCTACCAGC |
FASN | GAAGCTCCAAGCCAGTTTGC | CAGAGGCTTCACCACACCAT |
18S | GTAACCCGTTGAACCCCATT | CCATCCAATCGGTAGTAGCG |
1 |
ZHAO X Y , HU H M , WANG C , et al. A comparison of methods for effective differentiation of the frozen-thawed 3T3-L1 cells[J]. Anal Biochem, 2019, 568, 57- 64.
doi: 10.1016/j.ab.2018.12.020 |
2 |
BRYANT C J . Culture, meat, and cultured meat[J]. J Anim Sci, 2020, 98 (8): skaa172.
doi: 10.1093/jas/skaa172 |
3 |
CHEN L , GUTTIERES D , KOENIGSBERG A , et al. Large-scale cultured meat production: trends, challenges and promising biomanufacturing technologies[J]. Biomaterials, 2022, 280, 121274.
doi: 10.1016/j.biomaterials.2021.121274 |
4 |
DUTTA S D , GANGULY K , JEONG M S , et al. Bioengineered lab-grown meat-like constructs through 3D bioprinting of antioxidative protein hydrolysates[J]. ACS Appl Mater Interfaces, 2022, 14 (30): 34513- 34526.
doi: 10.1021/acsami.2c10620 |
5 |
SINGH A , KUMAR V , SINGH S K , et al. Recent advances in bioengineered scaffold for in vitro meat production[J]. Cell Tissue Res, 2023, 391 (2): 235- 247.
doi: 10.1007/s00441-022-03718-6 |
6 |
SEAH J S H , SINGH S , TAN L P , et al. Scaffolds for the manufacture of cultured meat[J]. Crit Rev Biotechnol, 2022, 42 (2): 311- 323.
doi: 10.1080/07388551.2021.1931803 |
7 |
SUGII S , WONG C Y Q , LWIN A K O , et al. Alternative fat: redefining adipocytes for biomanufacturing cultivated meat[J]. Trends Biotechnol, 2023, 41 (5): 686- 700.
doi: 10.1016/j.tibtech.2022.08.005 |
8 |
JARA T C , PARK K , VAHMANI P , et al. Stem cell-based strategies and challenges for production of cultivated meat[J]. Nat Food, 2023, 4 (10): 841- 853.
doi: 10.1038/s43016-023-00857-z |
9 |
SHAIKH S , LEE E , AHMAD K , et al. Cell types used for cultured meat production and the importance of myokines[J]. Foods, 2021, 10 (10): 2318.
doi: 10.3390/foods10102318 |
10 |
LI C H , YANG I H , KE C J , et al. The production of fat-containing cultured meat by stacking aligned muscle layers and adipose Layers formed from gelatin-soymilk scaffold[J]. Front Bioeng Biotechnol, 2022, 10, 875069.
doi: 10.3389/fbioe.2022.875069 |
11 |
BOMKAMP C , MUSGROVE L , MARQUES D M C , et al. Differentiation and maturation of muscle and fat cells in cultivated seafood: lessons from developmental biology[J]. Mar Biotechnol (NY), 2023, 25 (1): 1- 29.
doi: 10.1007/s10126-022-10174-4 |
12 | MEHTA F , THEUNISSEN R , POST M J . Adipogenesis from bovine precursors[J]. Methods Mol Biol, 2019, 1889, 111- 125. |
13 |
CUI T T , HUANG J X , SUN Y N , et al. KLF2 inhibits chicken preadipocyte differentiation at least in part via directly repressing PPARγ transcript variant 1 expression[J]. Front Cell Dev Biol, 2021, 9, 627102.
doi: 10.3389/fcell.2021.627102 |
14 |
陈兰, 张涛, 丁浩, 等. Kruppel样因子15对和盈黑鸡前体脂肪细胞增殖分化的影响[J]. 畜牧兽医学报, 2022, 53 (7): 2118- 2129.
doi: 10.11843/j.issn.0366-6964.2022.07.009 |
CHEN L , ZHANG T , DING H , et al. Effects of Krüppel-like factor 15 gene on proliferation and differentiation of preadipocytes of heying black chickens[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (7): 2118- 2129.
doi: 10.11843/j.issn.0366-6964.2022.07.009 |
|
15 | 王东雪, 贺月华, 王春秀, 等. TIMP3对鸡前脂肪细胞增殖与分化的影响[J]. 中国畜牧杂志, 2024, 60 (4): 154- 160. |
WANG D X , HE Y H , WANG C X , et al. Effects of TIMP3 on proliferation and differentiation of chicken preadipocytes[J]. Chinese Journal of Animal Science, 2024, 60 (4): 154- 160. | |
16 |
WANG Z , YIN Z T , ZHANG F , et al. Dynamics of transcriptome changes during subcutaneous preadipocyte differentiation in ducks[J]. BMC Genomics, 2019, 20 (1): 688.
doi: 10.1186/s12864-019-6055-9 |
17 | 尚圆圆, 张小辉, 户运奇, 等. 肌肉组织液对番鸭脂肪细胞增殖分化和脂质沉积的影响[J]. 中国家禽, 2023, 45 (12): 16- 20. |
SHANG Y Y , ZHANG X H , HU Y Q , et al. Effect of muscle tissue fluid on proliferation, differentiation and lipid deposition of muscovy duck adipocytes[J]. China Poultry, 2023, 45 (12): 16- 20. | |
18 |
HUO W R , WENG K Q , GU T T , et al. Identification and characterization of the adipogenesis in intramuscular and subcutaneous adipocytes of the goose (Anser cygnoides)[J]. Anim Biotechnol, 2022, 33 (6): 1181- 1189.
doi: 10.1080/10495398.2021.1880420 |
19 |
史明月, 张雪莲, 杨晓奋, 等. NR1H3基因调控猪前体脂肪细胞分化的研究[J]. 畜牧兽医学报, 2022, 53 (7): 2094- 2103.
doi: 10.11843/j.issn.0366-6964.2022.07.007 |
SHI M Y , ZHANG X L , YANG X F , et al. Study on NR1H3 gene regulating differentiation of porcine preadipocyte[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (7): 2094- 2103.
doi: 10.11843/j.issn.0366-6964.2022.07.007 |
|
20 |
王森, 师俊华, 王之盛, 等. 牦牛不同部位前体脂肪细胞分离鉴定及分化关键基因表达研究[J]. 畜牧兽医学报, 2022, 53 (3): 755- 765.
doi: 10.11843/j.issn.0366-6964.2022.03.009 |
WANG S , SHI J H , WANG Z S , et al. Isolation and identification of preadipocytes from different parts of yak and expression of key genes for differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (3): 755- 765.
doi: 10.11843/j.issn.0366-6964.2022.03.009 |
|
21 |
张寒月, 赵丹, 梁煜, 等. miR-150靶向AOC3调控绵羊前体脂肪细胞分化的研究[J]. 畜牧兽医学报, 2023, 54 (8): 3262- 3274.
doi: 10.11843/j.issn.0366-6964.2023.08.013 |
ZHANG H Y , ZHAO D , LIANG Y , et al. miR-150 Regulates ovine preadipocyte differentiation by targeting AOC3[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3262- 3274.
doi: 10.11843/j.issn.0366-6964.2023.08.013 |
|
22 | QIU B , SIMON M C . BODIPY 493/503 staining of neutral lipid droplets for microscopy and quantification by flow cytometry[J]. Bio Protoc, 2016, 6 (17): e1912. |
23 |
YAP W S , CHOUDHURY D , SUNTORNNOND R . Towards biomanufacturing of cultured meat[J]. Trends Biotechnol, 2023, 41 (3): 292- 294.
doi: 10.1016/j.tibtech.2023.01.014 |
24 |
LIU P P , SONG W J , BASSEY A P , et al. Preparation and quality evaluation of cultured fat[J]. J Agric Food Chem, 2023, 71 (9): 4113- 4122.
doi: 10.1021/acs.jafc.2c08004 |
25 |
KIM D H , LEE J , SUH Y , et al. Adipogenic and myogenic potentials of chicken embryonic fibroblasts in vitro: combination of fatty acids and insulin induces adipogenesis[J]. Lipids, 2020, 55 (2): 163- 171.
doi: 10.1002/lipd.12220 |
26 |
KIM D H , LEE J , SUH Y , et al. Research note: all-trans retinoic acids induce adipogenic differentiation of chicken embryonic fibroblasts and preadipocytes[J]. Poult Sci, 2020, 99 (12): 7142- 7146.
doi: 10.1016/j.psj.2020.09.006 |
27 | LI G X , CHEN Y , JIN W J , et al. Effects of miR-125b-5p on preadipocyte proliferation and differentiation in chicken[J]. Mol Biol Rep, 2021, 48 (1): 491- 502. |
28 | SUN G R , ZHANG M , SUN J W , et al. Krüppel-like factor KLF9 inhibits chicken intramuscular preadipocyte differentiation[J]. Br Poult Sci, 2019, 60 (6): 790- 797. |
29 | WANG L D , HU X D , WANG S S , et al. MicroRNA analysis reveals the role of miR-214 in duck adipocyte differentiation[J]. Anim Biosci, 2022, 35 (9): 1327- 1339. |
30 | PAN Z Y , LI X W , WU D S , et al. The duck RXRA gene promotes adipogenesis and correlates with feed efficiency[J]. Animals (Basel), 2023, 13 (4): 680. |
31 | LEE J , KIM D H , SUH Y , et al. Research note: potential usage of DF-1 cell line as a new cell model for avian adipogenesis[J]. Poult Sci, 2021, 100 (5): 101057. |
32 | SUN Y H , ZHAI G Y , LI R , et al. RXRα positively regulates expression of the chicken PLIN1 gene in a PPARγ-independent manner and promotes adipogenesis[J]. Front Cell Dev Biol, 2020, 8, 349. |
33 | SUN Y N , XU H , LI J W , et al. Genome-wide survey identifies TNNI2 as a target of KLF7 that inhibits chicken adipogenesis via downregulating FABP4[J]. Biochim Biophys Acta Gene Regul Mech, 2023, 1866 (1): 194899. |
34 | ZHANG X Y , CHENG B H , MA Y Y , et al. Genome-wide survey and functional analysis reveal TCF21 promotes chicken preadipocyte differentiation by directly upregulating HTR2A[J]. Biochem Biophys Res Commun, 2022, 587, 131- 138. |
35 | WANG W , ZHANG T M , WU C Y , et al. Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR[J]. PLoS One, 2017, 12 (5): e0177348. |
36 | LI X Q , SUN D D , WANG Z , et al. Transcriptional regulatory mechanism of NR2F2 and ZNF423 in avian preadipocyte differentiation[J]. Gene, 2023, 897, 148106. |
37 | ZHANG J , CAI B L , MA M T , et al. ALDH1A1 inhibits chicken preadipocytes' proliferation and differentiation via the PPARγ pathway in vitro and in vivo[J]. Int J Mol Sci, 2020, 21 (9): 3150. |
38 | ZHANG M , MA X F , ZHAI Y H , et al. Comprehensive transcriptome analysis of lncRNAs reveals the role of lncAD in chicken intramuscular and abdominal adipogenesis[J]. J Agric Food Chem, 2020, 68 (11): 3678- 3688. |
39 | ZHANG M , LI F , MA X F , et al. Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro[J]. BMC Genomics, 2019, 20 (1): 743. |
40 | WANG L D , LIANG W S , WANG S S , et al. Circular RNA expression profiling reveals that circ-PLXNA1 functions in duck adipocyte differentiation[J]. PLoS One, 2020, 15 (7): e0236069. |
41 | SHIPP S L , CLINE M A , GILBERT E R . Promotion of adipogenesis by neuropeptide Y during the later stages of chicken preadipocyte differentiation[J]. Physiol Rep, 2016, 4 (21): e13006. |
42 | HE J , TIAN Y , LI J J , et al. Expression pattern of adipocyte fatty acid-binding protein gene in different tissues and its regulation of genes related to adipocyte differentiation in duck[J]. Poult Sci, 2012, 91 (9): 2270- 2274. |
43 | SHANG Z C , GUO L , WANG N , et al. Oleate promotes differentiation of chicken primary preadipocytes in vitro[J]. Biosci Rep, 2014, 34 (1): e00093. |
44 | KIM D H , LEE J , SUH Y , et al. Research note: adipogenic differentiation of embryonic fibroblasts of chicken, turkey, duck, and quail in vitro by medium containing chicken serum alone[J]. Poult Sci, 2021, 100 (8): 101277. |
45 | MATSUBARA Y , ENDO T , KANO K . Fatty acids but not dexamethasone are essential inducers for chick adipocyte differentiation in vitro[J]. Comp Biochem Physiol A Mol Integr Physiol, 2008, 151 (4): 511- 518. |
[1] | 陈静, 吴薛蓓, 苗冬枝, 张弛, 郭振玉, 王莹. 产蛋间隔前期鸽卵泡转录组比较分析揭示卵泡发育相关基因[J]. 畜牧兽医学报, 2024, 55(8): 3503-3515. |
[2] | 梁小娟, 李雨爽, 李莹莹, 王守伟. 北京黑猪脂肪前体细胞的分离培养及成脂诱导分化研究[J]. 畜牧兽医学报, 2024, 55(7): 2877-2889. |
[3] | 魏苗伊, 吴世海, 杨富琳, 余宸昀, 孙志刚, 刘馨媛, 徐媛媛, 梁冰冰, 李复煌, 孙鸿, 刘晓晔, 董虹. 中药龙胆草抗鸽毛滴虫的临床药效分析[J]. 畜牧兽医学报, 2024, 55(2): 785-796. |
[4] | 张靖鹏, 陈翠腾, 林琳, 付环茹, 李兆龙, 江斌, 黄瑜, 万春和. 鸽微RNA病毒实时荧光定量RT-PCR检测方法的建立[J]. 畜牧兽医学报, 2024, 55(2): 860-866. |
[5] | 王明礼, 王猛, 李延森, 徐善金, 韩国锋, 李春梅. 不同粗蛋白水平人工鸽乳对乳鸽生长性能、血清抗氧化水平及肠道发育的影响[J]. 畜牧兽医学报, 2023, 54(4): 1545-1554. |
[6] | 陶洁, 李本强, 程靖华, 石迎, 刘佩红, 刘惠莉. 肉鸽肠道微生物菌群差异分析和抗生素耐药基因预测[J]. 畜牧兽医学报, 2023, 54(12): 5293-5300. |
[7] | 杨梦林, 郑世奇, 彭凯, 王玮, 黄燕华, 彭杰. 鸽源鼠伤寒沙门菌的分离鉴定及致病性分析[J]. 畜牧兽医学报, 2023, 54(11): 4880-4888. |
[8] | 史明月, 张雪莲, 杨晓奋, 牛瑾, 邢建东, 路畅, 高鹏飞, 郭晓红, 李步高, 曹果清. NR1H3基因调控猪前体脂肪细胞分化的研究[J]. 畜牧兽医学报, 2022, 53(7): 2094-2103. |
[9] | 孟珊, 杨阳, 李睿霄, 姬梦婷, 张娜, 路畅, 蔡春波, 高鹏飞, 郭晓红, 曹果清, 李步高. lncRNA-6617调控猪肌内前体脂肪细胞分化的筛选与功能研究[J]. 畜牧兽医学报, 2022, 53(6): 1712-1722. |
[10] | 王飞, 张禾, 蔡淯涵, 黄中佐, 严沛洁, 王李格, 孙鸿, 李复煌, 何诚. 卵黄抗体对鸽毛滴虫与白色念珠菌感染的治疗效果[J]. 畜牧兽医学报, 2022, 53(2): 658-662. |
[11] | 韩鹏敏, 张然, 边世雄, 李云雷, 倪爱心, 王园美, 宗云鹤, 赵金蒙, 袁经纬, 孙研研, 李建慧, 陈继兰, 麻慧. 屎肠球菌和枯草芽孢杆菌对乳鸽生长性能、屠宰性能和免疫功能的影响[J]. 畜牧兽医学报, 2022, 53(11): 3880-3891. |
[12] | 蔡春波, 刘敏, 杨阳, 张万锋, 高鹏飞, 曹果清, 李步高, 郭晓红. miR-186-5p调控猪原代前体脂肪细胞增殖和分化的研究[J]. 畜牧兽医学报, 2021, 52(5): 1247-1257. |
[13] | 杨阳, 张雪莲, 张万锋, 李文霞, 李文新, 蔡春波, 路畅, 高鹏飞, 郭晓红, 李步高, 曹果清. 猪C1QTNF3基因可变剪接体的鉴定及介导miR-101调控成脂分化的研究[J]. 畜牧兽医学报, 2021, 52(11): 3042-3052. |
[14] | 边世雄, 孙研研, 麻慧, 陈继兰. 鸽乳的组成及其生成调控机制的研究进展[J]. 畜牧兽医学报, 2020, 51(9): 2048-2058. |
[15] | 倪爱心, 李云雷, 葛平壮, 王攀林, Adamu Mani Isa, 石雷, 范静, 孙研研, 孙鸿, 麻慧, 陈继兰. 鸽毛滴虫外泌体的分离鉴定及蛋白质谱分析[J]. 畜牧兽医学报, 2020, 51(7): 1737-1747. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||