畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4278-4289.doi: 10.11843/j.issn.0366-6964.2024.10.004
收稿日期:
2023-12-05
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
朱家桥
E-mail:kcshen1999@163.com;jqzhu1998@163.com
作者简介:
沈可成(1999-), 男, 浙江绍兴人, 硕士, 主要从事动物生殖发育研究, E-mail: kcshen1999@163.com
基金资助:
Kecheng SHEN1(), Jiaqiao ZHU1,2,*(
), Zongping LIU1,2
Received:
2023-12-05
Online:
2024-10-23
Published:
2024-11-04
Contact:
Jiaqiao ZHU
E-mail:kcshen1999@163.com;jqzhu1998@163.com
摘要:
干细胞在疾病发生、细胞治疗、药物筛选和临床应用等方面具有巨大价值。自日本科学家Shinya Yamanaka发现诱导多能干细胞以来,相关的研究立即成为研究热点并持续至今。小鼠干细胞的研究为其它动物的相关研究开辟了道路,但在药物筛选和疾病治疗等方面有很大局限性。非人灵长类与人类具有更高的基因同源性,在生理、病理、生殖、药理、神经等多方面与人类高度相似,是研究人类疾病和开发人用药物的理想动物模型。非人灵长类研究也是新药在进入临床实验前必须的一个环节。非人灵长类干细胞的研究在疾病的机理研究和药物开发中越发重要,同时避免了伦理问题。本文从体外培养系统的优化和诱导分化的方法两个方面对非人灵长类多能干细胞的相关研究进行了综述,以期为非人灵长类干细胞进一步深入研究提供参考。
中图分类号:
沈可成, 朱家桥, 刘宗平. 非人灵长类多能干细胞体外培养和诱导分化的研究进展[J]. 畜牧兽医学报, 2024, 55(10): 4278-4289.
Kecheng SHEN, Jiaqiao ZHU, Zongping LIU. Research Progress on in vitro Culture and Induced Differentiation of Non-human Primate Pluripotent Stem Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4278-4289.
表 1
饲养层细胞的各种替代物"
种类 Type | 名称 Name | 成分 Ingredient | 来源 Souece | 特点 Peculiarity | 应用 Application | 参考文献 Reference |
生物类基质 Biological matrix | 明胶 | 明胶 | 胶原蛋白提取物 | 廉价, 但细胞存活率低,分化迅速 | 常用于定向分化 | [ |
Geltrex | 主要为层黏连蛋白和Ⅳ胶原 | 鼠Engelbreth-Holm-Swarm肿瘤提取物 | 可维持NHP-PSCs 稳定传代不分化但有引入异源物质的风险 | 广泛适用于传代 培养和定向分化 | ||
Matrigel | 小鼠肉瘤提取物 | [ | ||||
人工合成基质 Artificial synthetic matrix | PMEDSAH | 氢氧化铵聚合物 | 人工合成 | 化学成分明确且能 保持hESCs的增殖和未分化状态, 可以根据不同干细胞的特点定制 | 目前多用于各种人源干细胞的培养,很少用于NHP-PSCs的培养 | [ |
APMAAm 水凝胶 | 氨基丙基甲基丙烯酰胺 | 人工合成 |
表 2
NHP-PSCs向心血管系统细胞的诱导分化的方法"
细胞系 Cell line | 目标细胞 Goal | 诱导方法 Method | 诱导条件 Conditions | 应用效果 Application effect | 参考文献 Reference |
ESC系 | 血管母细胞 | 拟胚体分化法 | BMP4、FLT3L、SCF、血小板生成素、FGF、VEGF和KSR | 可将拟胚体分化为血管母细胞,后将其接种到体外培养的损伤股动脉中,可进一步分化成血管内皮细胞 | [ |
iPSCs系 | 心肌细胞 | 分步诱导法 | Matrigel基质胶、激活素A和BMP4 | 诱导分化而来的心肌细胞经同种移植后可以改善心脏收缩功能,但移植受体会出现心动过速 | [ |
ESC系和iPSCs系 | 造血细胞 | 拟胚体分化法和基质细胞共培养法 | FBS、PSG、ITS、MTG、抗坏血酸磷酸酯、VEGF,以及SCF和FLT3L | 可以将PSCs诱导分化为造血祖细胞,再用细胞因子或T细胞受体诱导成各种类型的T细胞 | [ |
表 3
NHP-PSCs向神经细胞的诱导分化的方法"
细胞系 Cell line | 目标细胞 Goal | 诱导方法 Method | 诱导条件 Conditions | 应用效果 Application effect | 参考文献 Reference |
ESC系ESC | 神经祖细胞 | 拟胚体分化法 | ITS、纤连蛋白、黏连蛋白、bFGF和N-2 | 90%为表达巢蛋白(nestin)的神经祖细胞,但胰腺前体细胞和某些成熟组织也表达nestin,需要其他标志物如SOX2、occludin等共同确定 | [ |
iPSCs系iPSCs | 多巴胺分泌神经细胞 | 基质细胞共培养法 | KSR, 丙酮酸盐, 非必需氨基酸, 2-巯基乙醇 | 35%的细胞被成功诱导分化,但诱导效率仅仅是诱导小鼠ESCs的一半 | [ |
ESC系ESC | 端脑神经细胞 | 拟胚体分化法 | Wnt抑制剂, Nodal抑制剂、Wnt3a、Shh | 可定向诱导为大脑皮质或大脑基底核 | [ |
表 4
NHP-PSCs向其他细胞的诱导分化的方法"
细胞系 Cell line | 目标细胞 Goal | 诱导方法 Method | 诱导条件 Conditions | 应用效果 Application effect | 参考文献 Reference |
ESC系ESC | 肝细胞样细胞 | 拟胚体分化法 | aFGF、HGF、Y-27632、FGF-4、BMP2、激活素A、ITS、肿瘤抑制因子、人胰岛素和地塞米松等 | 诱导细胞呈现肝细胞特异性形态,而且不同程度的表达多种肝细胞标志分子 | [ |
ESC系和iPSCs系ESC and iPSCs | 胰岛素分泌细胞 | 多步诱导法 | 激活素A和WNT3A,RA、KGF、EGF、SB431542、HGF、IFG1、exendin4和烟酰胺等 | 细胞表达胰岛细胞的标志分子,移植到糖尿病模型小鼠后能使50%的小鼠恢复血糖 | [ |
iPSCs系iPSCs | 肌源性祖细胞 | 多步诱导法 | 过表达PAX7、SB-431542、LDN-193189、dox、LY-374973、forskolin等 | 细胞最终分化为肌管;将肌源性祖细胞分别移植到小鼠和猴体内能促进肌肉的再生 | [ |
ESC系ESC | 类囊胚 | 多步诱导法 | bFGF、激活素A、CHIR99021、PD0325901、A83-01、IWR1、TSA、DZNep等 | 成功实现了食蟹猴类囊胚的体外构建;经同种移植后,这一类囊胚可以着床并引发妊娠反应 | [ |
1 |
EVANS M J , KAUFMAN M H . Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292 (5819): 154- 156.
doi: 10.1038/292154a0 |
2 |
THOMSON J A , KALISHMAN J , GOLOS T G , et al. Isolation of a primate embryonic stem cell line[J]. Proc Natl Acad Sci U S A, 1995, 92 (17): 7844- 7848.
doi: 10.1073/pnas.92.17.7844 |
3 |
THOMSON J A , ITSKOVITZ-ELDOR J , SHAPIRO S S , et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282 (5391): 1145- 1147.
doi: 10.1126/science.282.5391.1145 |
4 |
TAKAHASHI K , YAMANAKA S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126 (4): 663- 676.
doi: 10.1016/j.cell.2006.07.024 |
5 |
POETSCH M S , STRANO A , GUAN K M . Human induced pluripotent stem cells: from cell origin, genomic stability, and epigenetic memory to translational medicine[J]. Stem Cells, 2022, 40 (6): 546- 555.
doi: 10.1093/stmcls/sxac020 |
6 |
LIU H S , ZHU F F , YONG J , et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell, 2008, 3 (6): 587- 590.
doi: 10.1016/j.stem.2008.10.014 |
7 |
OOTO S , HARUTA M , HONDA Y , et al. Induction of the differentiation of lentoids from primate embryonic stem cells[J]. Invest Ophthalmol Vis Sci, 2003, 44 (6): 2689- 2693.
doi: 10.1167/iovs.02-1168 |
8 |
HONGISTO H , VUORISTO S , MIKHAILOVA A , et al. Laminin-511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture[J]. Stem Cell Res, 2012, 8 (1): 97- 108.
doi: 10.1016/j.scr.2011.08.005 |
9 |
EISELLEOVA L , PETERKOVA I , NERADIL J , et al. Comparative study of mouse and human feeder cells for human embryonic stem cells[J]. Int J Dev Biol, 2008, 52 (4): 353- 363.
doi: 10.1387/ijdb.082590le |
10 |
MARTIN M J , MUOTRI A , GAGE F , et al. Human embryonic stem cells express an immunogenic nonhuman sialic acid[J]. Nat Med, 2005, 11 (2): 228- 232.
doi: 10.1038/nm1181 |
11 |
CHIEN C Y , LIN J C , HUANG C Y , et al. In situ hydrogelation of cellular monolayers enables conformal biomembrane functionalization for Xeno-free feeder substrate engineering[J]. Adv Healthc Mater, 2023, 12 (8): e2201708.
doi: 10.1002/adhm.202201708 |
12 |
NAVARA C S , CHAUDHARI S , MCCARREY J R . Optimization of culture conditions for the derivation and propagation of baboon (Papio anubis) induced pluripotent stem cells[J]. PLoS One, 2018, 13 (3): e0193195.
doi: 10.1371/journal.pone.0193195 |
13 |
XU C H , INOKUMA M S , DENHAM J , et al. Feeder-free growth of undifferentiated human embryonic stem cells[J]. Nat Biotechnol, 2001, 19 (10): 971- 974.
doi: 10.1038/nbt1001-971 |
14 |
KLEINMAN H K , MCGARVEY M L , LIOTTA L A , et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma[J]. Biochemistry, 1982, 21 (24): 6188- 6193.
doi: 10.1021/bi00267a025 |
15 |
VILLA-DIAZ L G , NANDIVADA H , DING J , et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells[J]. Nat Biotechnol, 2010, 28 (6): 581- 583.
doi: 10.1038/nbt.1631 |
16 |
YIN S , CAO Y . Hydrogels for large-scale expansion of stem cells[J]. Acta Biomater, 2021, 128, 1- 20.
doi: 10.1016/j.actbio.2021.03.026 |
17 |
IRWIN E F , GUPTA R , DASHTI D C , et al. Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells[J]. Biomaterials, 2011, 32 (29): 6912- 6919.
doi: 10.1016/j.biomaterials.2011.05.058 |
18 |
RICHARDS M , TAN S , FONG C Y , et al. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells[J]. Stem Cells, 2003, 21 (5): 546- 556.
doi: 10.1634/stemcells.21-5-546 |
19 |
AMIT M , CARPENTER M K , INOKUMA M S , et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture[J]. Dev Biol, 2000, 227 (2): 271- 278.
doi: 10.1006/dbio.2000.9912 |
20 |
NAKAMURA T , YABUTA Y , OKAMOTO I , et al. Single-cell transcriptome of early embryos and cultured embryonic stem cells of cynomolgus monkeys[J]. Sci Data, 2017, 4 (1): 170067.
doi: 10.1038/sdata.2017.67 |
21 |
PEI Y , MA J , ZHANG X , et al. Serum-free culture of rhesus monkey embryonic stem cells[J]. Arch Androl, 2003, 49 (5): 331- 342.
doi: 10.1080/01485010390204959 |
22 |
KISHIMOTO K , SHIMADA A , SHINOHARA H , et al. Establishment of novel common marmoset embryonic stem cell lines under various conditions[J]. Stem Cell Res, 2021, 53, 102252.
doi: 10.1016/j.scr.2021.102252 |
23 |
WILLIAMS R L , HILTON D J , PEASE S , et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells[J]. Nature, 1988, 336 (6200): 684- 687.
doi: 10.1038/336684a0 |
24 |
WU B J , LI Y X , LI B J , et al. DNMTs play an important role in maintaining the pluripotency of leukemia inhibitory factor-dependent embryonic stem cells[J]. Stem Cell Rep, 2021, 16 (3): 582- 596.
doi: 10.1016/j.stemcr.2021.01.017 |
25 | CHEN G F , YIN S S , ZENG H L , et al. Regulation of embryonic stem cell self-renewal[J]. Life (Basel), 2022, 12 (8): 1151. |
26 |
SATO N , SANJUAN I M , HEKE M , et al. Molecular signature of human embryonic stem cells and its comparison with the mouse[J]. Dev Biol, 2003, 260 (2): 404- 413.
doi: 10.1016/S0012-1606(03)00256-2 |
27 |
MOSSAHEBI-MOHAMMADI M , QUAN M Y , ZHANG J S , et al. FGF signaling pathway: a key regulator of stem cell pluripotency[J]. Front Cell Dev Biol, 2020, 8, 79.
doi: 10.3389/fcell.2020.00079 |
28 |
LI M , BELMONTE J C I . Ground rules of the pluripotency gene regulatory network[J]. Nat Rev Genet, 2017, 18 (3): 180- 191.
doi: 10.1038/nrg.2016.156 |
29 |
SATO N , MEIJER L , SKALTSOUNIS L , et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor[J]. Nat Med, 2004, 10 (1): 55- 63.
doi: 10.1038/nm979 |
30 |
FURLAN G , HUYGHE A , COMBÉMOREL N , et al. Molecular versatility during pluripotency progression[J]. Nat Commun, 2023, 14 (1): 68.
doi: 10.1038/s41467-022-35775-4 |
31 |
JAMES D , LEVINE A J , BESSER D , et al. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells[J]. Development, 2005, 132 (6): 1273- 1282.
doi: 10.1242/dev.01706 |
32 |
WEI Y L , ZHANG E , YU L Q , et al. Dissecting embryonic and extraembryonic lineage crosstalk with stem cell co-culture[J]. Cell, 2023, 186 (26): 5859- 5875.24.
doi: 10.1016/j.cell.2023.11.008 |
33 |
AMIT M , SHARIKI C , MARGULETS V , et al. Feeder layer- and serum-free culture of human embryonic stem cells[J]. Biol Reprod, 2004, 70 (3): 837- 845.
doi: 10.1095/biolreprod.103.021147 |
34 |
STAUSKE M , RODRIGUEZ POLO I , HAAS W , et al. Non-human primate iPSC generation, cultivation, and cardiac differentiation under chemically defined conditions[J]. Cells, 2020, 9 (6): 1349.
doi: 10.3390/cells9061349 |
35 |
PETKOV S , DRESSEL R , RODRIGUEZ-POLO I , et al. Controlling the switch from neurogenesis to pluripotency during marmoset monkey somatic cell reprogramming with self-replicating mRNAs and small molecules[J]. Cells, 2020, 9 (11): 2422.
doi: 10.3390/cells9112422 |
36 |
OHGUSHI M , MATSUMURA M , EIRAKU M , et al. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells[J]. Cell Stem Cell, 2010, 7 (2): 225- 239.
doi: 10.1016/j.stem.2010.06.018 |
37 |
WATANABE K , UENO M , KAMIYA D , et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells[J]. Nat Biotechnol, 2007, 25 (6): 681- 686.
doi: 10.1038/nbt1310 |
38 |
PAKZAD M , TOTONCHI M , TAEI A , et al. Presence of a ROCK inhibitor in extracellular matrix supports more undifferentiated growth of feeder-free human embryonic and induced pluripotent stem cells upon passaging[J]. Stem Cell Rev Rep, 2010, 6 (1): 96- 107.
doi: 10.1007/s12015-009-9103-z |
39 |
ONO T , SUZUKI Y , KATO Y , et al. A single-cell and feeder-free culture system for monkey embryonic stem cells[J]. PLoS ONE, 2014, 9 (2): e88346.
doi: 10.1371/journal.pone.0088346 |
40 |
ZHAO X Y , LI W , LV Z , et al. iPS cells produce viable mice through tetraploid complementation[J]. Nature, 2009, 461 (7260): 86- 90.
doi: 10.1038/nature08267 |
41 |
ROTH G A , MENSAH G A , JOHNSON C O , et al. Global burden of cardiovascular diseases and risk factors, 1990-2019:update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76 (25): 2982- 3021.
doi: 10.1016/j.jacc.2020.11.010 |
42 |
SKOVRONSKY D M , LEE V M Y , TROJANOWSKI J Q . Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications[J]. Annu Rev Pathol: Mech Dis, 2006, 1 (1): 151- 170.
doi: 10.1146/annurev.pathol.1.110304.100113 |
43 |
LI W Q , HUANG L H , LIN W Y , et al. Engraftable neural crest stem cells derived from cynomolgus monkey embryonic stem cells[J]. Biomaterials, 2015, 39, 75- 84.
doi: 10.1016/j.biomaterials.2014.10.056 |
44 |
DOMINGUES S , MASSON Y , MARTEYN A , et al. Differentiation of nonhuman primate pluripotent stem cells into functional keratinocytes[J]. Stem Cell Res Ther, 2017, 8 (1): 285.
doi: 10.1186/s13287-017-0741-9 |
45 |
COX L A , OLIVIER M , SPRADLING-REEVES K , et al. Nonhuman primates and translational research—cardiovascular disease[J]. ILAR J, 2017, 58 (2): 235- 250.
doi: 10.1093/ilar/ilx025 |
46 |
LIANG P , SALLAM K , WU H D , et al. Patient-specific and genome-edited induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of Brugada Syndrome[J]. J Am Coll Cardiol, 2016, 68 (19): 2086- 2096.
doi: 10.1016/j.jacc.2016.07.779 |
47 |
HONG S G , WINKLER T , WU C F , et al. Path to the clinic: assessment of iPSC-based cell therapies in vivo in a nonhuman primate model[J]. Cell Rep, 2014, 7 (4): 1298- 1309.
doi: 10.1016/j.celrep.2014.04.019 |
48 |
D'SOUZA S S , MAUFORT J , KUMAR A , et al. GSK3β inhibition promotes efficient myeloid and lymphoid hematopoiesis from non-human primate-induced pluripotent stem cells[J]. Stem Cell Rep, 2016, 6 (2): 243- 256.
doi: 10.1016/j.stemcr.2015.12.010 |
49 |
SHI Q , HODARA V , SIMERLY C R , et al. Ex vivo reconstitution of arterial endothelium by embryonic stem cell-derived endothelial progenitor cells in baboons[J]. Stem Cells Dev, 2013, 22 (4): 631- 642.
doi: 10.1089/scd.2012.0313 |
50 |
SHIBA Y , GOMIBUCHI T , SETO T , et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts[J]. Nature, 2016, 538 (7625): 388- 391.
doi: 10.1038/nature19815 |
51 | IRIGUCHI S , KANEKO S . In vitro differentiation of T cells: from nonhuman primate-induced pluripotent stem cells[J]. Methods Mol Biol, 2019, 2048, 93- 106. |
52 |
LENDAHL U , ZIMMERMAN L B , MCKAY R D G . CNS stem cells express a new class of intermediate filament protein[J]. Cell, 1990, 60 (4): 585- 595.
doi: 10.1016/0092-8674(90)90662-X |
53 |
SAKAKIBARA S , IMAI T , HAMAGUCHI K , et al. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell[J]. Dev Biol, 1996, 176 (2): 230- 242.
doi: 10.1006/dbio.1996.0130 |
54 |
MITALIPOV S , KUO H C , BYRNE J , et al. Isolation and characterization of novel rhesus monkey embryonic stem cell lines[J]. Stem Cells, 2006, 24 (10): 2177- 2186.
doi: 10.1634/stemcells.2006-0125 |
55 |
WEI R , YANG J , HOU W F , et al. Insulin-producing cells derived from human embryonic stem cells: comparison of definitive endoderm- and nestin-positive progenitor-based differentiation strategies[J]. PLoS ONE, 2013, 8 (8): e72513.
doi: 10.1371/journal.pone.0072513 |
56 |
WANG Q L , WU H , HU J , et al. Nestin is required for spindle assembly and cell-cycle progression in glioblastoma cells[J]. Mol Cancer Res, 2021, 19 (10): 1651- 1665.
doi: 10.1158/1541-7786.MCR-20-0994 |
57 |
YANG J L , FAN H , FU F F , et al. Transient neurogenesis in ischemic cortex from Sox2+ astrocytes[J]. Neural Regen Res, 2023, 18 (7): 1521- 1526.
doi: 10.4103/1673-5374.357910 |
58 |
WATTERS A K , ROM S , HILL J D , et al. Identification and dynamic regulation of tight junction protein expression in human neural stem cells[J]. Stem Cells Dev, 2015, 24 (12): 1377- 1389.
doi: 10.1089/scd.2014.0497 |
59 |
KAWASAKI H , SUEMORI H , MIZUSEKI K , et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity[J]. Proc Natl Acad Sci U S A, 2002, 99 (3): 1580- 1585.
doi: 10.1073/pnas.032662199 |
60 | KAWASAKI H , MIZUSEKI K , SASAI Y . Selective neural induction from ES cells by stromal cell-derived inducing activity and its potential therapeutic application in Parkinson's disease[J]. Methods Mol Biol, 2002, 185, 217- 227. |
61 |
WATANABE K , KAMIYA D , NISHIYAMA A , et al. Directed differentiation of telencephalic precursors from embryonic stem cells[J]. Nat Neurosci, 2005, 8 (3): 288- 296.
doi: 10.1038/nn1402 |
62 |
RADTKE N D , ARAMANT R B , SEILER M J , et al. Vision change after sheet transplant of fetal retina with retinal pigment epithelium to a patient with retinitis pigmentosa[J]. Arch Ophthalmol, 2004, 122 (8): 1159- 1165.
doi: 10.1001/archopht.122.8.1159 |
63 |
LIU Y , LEE R K . Cell transplantation to replace retinal ganglion cells faces challenges - the Switchboard Dilemma[J]. Neural Regen Res, 2021, 16 (6): 1138- 1143.
doi: 10.4103/1673-5374.300329 |
64 |
LAMBA D A , KARL M O , WARE C B , et al. Efficient generation of retinal progenitor cells from human embryonic stem cells[J]. Proc Natl Acad Sci U S A, 2006, 103 (34): 12769- 12774.
doi: 10.1073/pnas.0601990103 |
65 |
IKEDA H , OSAKADA F , WATANABE K , et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells[J]. Proc Natl Acad Sci U S A, 2005, 102 (32): 11331- 11336.
doi: 10.1073/pnas.0500010102 |
66 |
OSAKADA F , IKEDA H , MANDAI M , et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells[J]. Nat Biotechnol, 2008, 26 (2): 215- 224.
doi: 10.1038/nbt1384 |
67 |
HIKABE O , HAMAZAKI N , NAGAMATSU G , et al. Reconstitution in vitro of the entire cycle of the mouse female germ line[J]. Nature, 2016, 539 (7628): 299- 303.
doi: 10.1038/nature20104 |
68 |
ISHIKURA Y , OHTA H , SATO T , et al. In vitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells[J]. Cell Stem Cell, 2021, 28 (12): 2167-2179, e9.
doi: 10.1016/j.stem.2021.08.005 |
69 |
OIKAWA M , KOBAYASHI H , SANBO M , et al. Functional primordial germ cell-like cells from pluripotent stem cells in rats[J]. Science, 2022, 376 (6589): 176- 179.
doi: 10.1126/science.abl4412 |
70 | SAITOU M , YAMAJI M . Primordial germ cells in mice[J]. Cold Spring Harb Perspect Biol, 2012, 4 (11): a008375. |
71 |
SAITOU M , MIYAUCHI H . Gametogenesis from pluripotent stem cells[J]. Cell Stem Cell, 2016, 18 (6): 721- 735.
doi: 10.1016/j.stem.2016.05.001 |
72 |
ARAMAKI S , HAYASHI K , KURIMOTO K , et al. A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants[J]. Dev Cell, 2013, 27 (5): 516- 529.
doi: 10.1016/j.devcel.2013.11.001 |
73 |
SASAKI K , YOKOBAYASHI S , NAKAMURA T , et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells[J]. Cell Stem Cell, 2015, 17 (2): 178- 194.
doi: 10.1016/j.stem.2015.06.014 |
74 | IRIE N , WEINBERGER L , TANG W W C , et al. SOX17 is a critical specifier of human primordial germ cell fate[J]. Cell, 2015, 160 (1/2): 253- 268. |
75 |
CAO J , LI W J , LI J , et al. Live birth of chimeric monkey with high contribution from embryonic stem cells[J]. Cell, 2023, 186 (23): 4996-5014, e24.
doi: 10.1016/j.cell.2023.10.005 |
76 |
MACCARTHY C M , WU G M , MALIK V , et al. Highly cooperative chimeric super-SOX induces naive pluripotency across species[J]. Cell Stem Cell, 2024, 31 (1): 127-147, e9.
doi: 10.1016/j.stem.2023.11.010 |
77 |
SAKAI Y , NAKAMURA T , OKAMOTO I , et al. Induction of the germ cell fate from pluripotent stem cells in cynomolgus monkeys[J]. Biol Reprod, 2020, 102 (3): 620- 638.
doi: 10.1093/biolre/ioz205 |
78 |
YOSHIMATSU S , NAKAJIMA M , IGUCHI A , et al. Non-viral induction of transgene-free iPSCs from somatic fibroblasts of multiple mammalian species[J]. Stem Cell Reports, 2021, 16 (4): 754- 770.
doi: 10.1016/j.stemcr.2021.03.002 |
79 |
SEITA Y , CHENG K R , MCCARREY J R , et al. Efficient generation of marmoset primordial germ cell-like cells using induced pluripotent stem cells[J]. Elife, 2023, 12, e82263.
doi: 10.7554/eLife.82263 |
80 |
SHONO M , KISHIMOTO K , HIKABE O , et al. Induction of primordial germ cell-like cells from common marmoset embryonic stem cells by inhibition of WNT and retinoic acid signaling[J]. Sci Rep, 2023, 13 (1): 3186.
doi: 10.1038/s41598-023-29850-z |
81 |
FANG R G , LIU K , ZHAO Y , et al. Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts[J]. Cell Stem Cell, 2014, 15 (4): 488- 497.
doi: 10.1016/j.stem.2014.09.004 |
82 |
ZHANG P Y , XUE S R , GUO R R , et al. Mapping developmental paths of monkey primordial germ-like cells differentiation from pluripotent stem cells by single cell ribonucleic acid sequencing analysis†[J]. Biol Reprod, 2022, 107 (1): 237- 249.
doi: 10.1093/biolre/ioac133 |
83 |
YU D C W , WU F C , WU C E , et al. Human pluripotent stem cell-derived DDX4 and KRT-8 positive cells participate in ovarian follicle-like structure formation[J]. iScience, 2021, 24 (1): 102003.
doi: 10.1016/j.isci.2020.102003 |
84 |
GKOUNTELA S , LI Z W , VINCENT J J , et al. The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germ line reprogramming, imprint erasure and in vitro differentiation[J]. Nat Cell Biol, 2013, 15 (1): 113- 122.
doi: 10.1038/ncb2638 |
85 |
SOSA E , CHEN D , ROJAS E J , et al. Differentiation of primate primordial germ cell-like cells following transplantation into the adult gonadal niche[J]. Nat Commun, 2018, 9 (1): 5339.
doi: 10.1038/s41467-018-07740-7 |
86 |
EASLEY C A , PHILLIPS B T , MCGUIRE M M , et al. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells[J]. Cell Rep, 2012, 2 (3): 440- 446.
doi: 10.1016/j.celrep.2012.07.015 |
87 | KHAMPANG S , CHO I K , PUNYAWAI K , et al. Blastocyst development after fertilization with in vitro spermatids derived from nonhuman primate embryonic stem cells[J]. F S Sci, 2021, 2 (4): 365- 375. |
88 |
ZHANG D H , JIANG W , LIU M , et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells[J]. Cell Res, 2009, 19 (4): 429- 438.
doi: 10.1038/cr.2009.28 |
89 |
MAEHR R , CHEN S B , SNITOW M , et al. Generation of pluripotent stem cells from patients with type 1 diabetes[J]. Proc Natl Acad Sci U S A, 2009, 106 (37): 15768- 15773.
doi: 10.1073/pnas.0906894106 |
90 |
TATEISHI K , HE J , TARANOVA O , et al. Generation of insulin-secreting islet-like clusters from human skin fibroblasts[J]. J Biol Chem, 2008, 283 (46): 31601- 31607.
doi: 10.1074/jbc.M806597200 |
91 |
KAGAWA H , JAVALI A , KHOEI H H , et al. Human blastoids model blastocyst development and implantation[J]. Nature, 2022, 601 (7894): 600- 605.
doi: 10.1038/s41586-021-04267-8 |
92 |
YU L Q , WEI Y L , DUAN J L , et al. Blastocyst-like structures generated from human pluripotent stem cells[J]. Nature, 2021, 591 (7851): 620- 626.
doi: 10.1038/s41586-021-03356-y |
93 |
YANAGIDA A , SPINDLOW D , NICHOLS J , et al. Naive stem cell blastocyst model captures human embryo lineage segregation[J]. Cell Stem Cell, 2021, 28 (6): 1016- 1022.4.
doi: 10.1016/j.stem.2021.04.031 |
94 |
FAN Y , MIN Z Y , ALSOLAMI S , et al. Generation of human blastocyst-like structures from pluripotent stem cells[J]. Cell Discov, 2021, 7 (1): 81.
doi: 10.1038/s41421-021-00316-8 |
95 |
MAZID M A , WARD C , LUO Z W , et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage[J]. Nature, 2022, 605 (7909): 315- 324.
doi: 10.1038/s41586-022-04625-0 |
96 |
MOMOSE Y , MATSUNAGA T , MURAI K , et al. Differentiation of monkey embryonic stem cells into hepatocytes and mRNA expression of cytochrome p450 enzymes responsible for drug metabolism: comparison of embryoid body formation conditions and matrices[J]. Biol Pharm Bull, 2009, 32 (4): 619- 626.
doi: 10.1248/bpb.32.619 |
97 | TSUKADA H , TAKADA T , SHIOMI H , et al. Acidic fibroblast growth factor promotes hepatic differentiation of monkey embryonic stem cells[J]. In Vitro Cell Dev Biol Anim, 2006, 42 (3/4): 83- 88. |
98 |
KUAI X L , SHAO N , LU H , et al. Differentiation of nonhuman primate embryonic stem cells into hepatocyte-like cells[J]. J Dig Dis, 2014, 15 (1): 27- 34.
doi: 10.1111/1751-2980.12103 |
99 |
MA X C , DUAN Y Y , JUNG C J , et al. The differentiation of hepatocyte-like cells from monkey embryonic stem cells[J]. Cloning Stem Cells, 2008, 10 (4): 485- 493.
doi: 10.1089/clo.2007.0012 |
100 |
MARUYAMA J , MATSUNAGA T , YAMAORI S , et al. Differentiation of monkey embryonic stem cells to hepatocytes by feeder-free dispersion culture and expression analyses of cytochrome p450 enzymes responsible for drug metabolism[J]. Biol Pharm Bull, 2013, 36 (2): 292- 298.
doi: 10.1248/bpb.b12-00866 |
101 |
ZHU F F , ZHANG P B , ZHANG D H , et al. Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells[J]. Diabetologia, 2011, 54 (9): 2325- 2336.
doi: 10.1007/s00125-011-2246-x |
102 |
BAIK J , ORTIZ-CORDERO C , MAGLI A , et al. Establishment of skeletal myogenic progenitors from non-human primate induced pluripotent stem cells[J]. Cells, 2023, 12 (8): 1147.
doi: 10.3390/cells12081147 |
103 |
LI J , ZHU Q Y , CAO J , et al. Cynomolgus monkey embryo model captures gastrulation and early pregnancy[J]. Cell Stem Cell, 2023, 30 (4): 362- 377.7.
doi: 10.1016/j.stem.2023.03.009 |
104 |
SMITH D , TRENNERY P , FARNINGHAM D , et al. The selection of marmoset monkeys (Callithrix jacchus) in pharmaceutical toxicology[J]. Lab Anim, 2001, 35 (2): 117- 130.
doi: 10.1258/0023677011911444 |
105 | MANSFIELD K . Marmoset models commonly used in biomedical research[J]. Comp Med, 2003, 53 (4): 383- 392. |
106 |
YANG X C , CHEN D C , SUN Q S , et al. A live-cell image-based machine learning strategy for reducing variability in PSC differentiation systems[J]. Cell Discov, 2023, 9 (1): 53.
doi: 10.1038/s41421-023-00543-1 |
[1] | 梁小娟, 李雨爽, 李莹莹, 王守伟. 北京黑猪脂肪前体细胞的分离培养及成脂诱导分化研究[J]. 畜牧兽医学报, 2024, 55(7): 2877-2889. |
[2] | 刘晏辰, 周世莹, 张洋, 高扬, 关伟军. 荷斯坦牛肺干细胞分离培养与生物学特性研究[J]. 畜牧兽医学报, 2024, 55(2): 540-551. |
[3] | 罗睿杰, 曹素英. 大家畜多能干细胞的研究进展与应用前景[J]. 畜牧兽医学报, 2023, 54(10): 4003-4015. |
[4] | 牛锐利, 宋哈楠, 吴月, 王育南, 高也凡, 关伟军, 宗宪春. 西门塔尔牛表皮干细胞的分离培养与生物学特性研究[J]. 畜牧兽医学报, 2023, 54(1): 168-177. |
[5] | 陈雪梅, 易川平, 罗辉, 张鹏, 王明秀, 蔡欣, 钟金城. 牦牛与犏牛睾丸支持细胞分离培养及生物学特性比较分析[J]. 畜牧兽医学报, 2021, 52(6): 1603-1615. |
[6] | 戴巍, 宋瑞龙, 张远浩, 邹辉, 顾建红, 袁燕, 卞建春, 刘学忠. 鸡骨骼肌卫星细胞的分离培养与鉴定[J]. 畜牧兽医学报, 2021, 52(3): 676-682. |
[7] | 张仙玉, 赵鑫, 李国玲, 邢萍萍, 李紫聪, 杨化强, 吴珍芳, 陈斌. 小鼠精原干细胞体外培养体系建立及功能鉴定[J]. 畜牧兽医学报, 2021, 52(2): 408-419. |
[8] | 谢光杰, 王永, 许晴, 朱江江, 林亚秋. 简州大耳羊肌内脂肪细胞成脂分化差异表达基因的筛选与鉴定[J]. 畜牧兽医学报, 2020, 51(7): 1525-1536. |
[9] | 张伟, 张少鹏, 李恩宏, 曹安, 刘志宇, 韩建永, 曹素英. 过表达Gata6诱导分离猪胚外内胚层干细胞样细胞[J]. 畜牧兽医学报, 2017, 48(12): 2314-2322. |
[10] | 李鹏飞, 孟金柱, 郝庆玲, 毕锡麟, 王锴, 朱芷葳, 吕丽华. 胰岛素和FSH对体外培养猪卵泡颗粒细胞雌激素的影响[J]. 畜牧兽医学报, 2017, 48(11): 2084-2090. |
[11] | 曹忻,邹云龙,蔡勇,周平,李明,石国庆,康相涛. 绵羊卵母细胞体外成熟过程中VEGF对DNMT3a表达的影响[J]. 畜牧兽医学报, 2016, 47(3): 484-492. |
[12] | 陈庭锋,王霄燕,李东,施青青,张蕾,邱峰龙,刘志永,庄勋,卞桂华,宋成义,李碧春. 猪精原干细胞体外分离培养及诱导分化的研究[J]. 畜牧兽医学报, 2014, 45(7): 1104-1112. |
[13] | 夏婷,师科荣,林雪彦,侯秋玲,王中华. 肽结合与游离氨基酸比例对离体乳腺组织酪蛋白合成的影响[J]. 畜牧兽医学报, 2014, 45(3): 402-409. |
[14] | 李鹏飞,岳文斌,庞钰莹,于雪静,黄洋,任有蛇,吕丽华. FSH和胰岛素对绵羊卵巢卵泡颗粒细胞体外培养的影响[J]. 畜牧兽医学报, 2013, 44(9): 1386-1391. |
[15] | 马瑞丽,张彦明,崔红杰,郭抗抗. 新生仔猪口腔黏膜上皮细胞的体外培养方法[J]. 畜牧兽医学报, 2013, 44(9): 1445-1453. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||