

畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3947-3956.doi: 10.11843/j.issn.0366-6964.2024.09.019
古丽米热·阿布都热依木1,2,3(
), 张欣如1,2,3, 吴阳升1,2,3, 陈莹1,2,3, 汪立芹1,2,3, 徐新明1,2,3, 黄俊成1,2,3,*(
), 林嘉鹏1,2,3,*(
)
收稿日期:2024-02-27
出版日期:2024-09-23
发布日期:2024-09-27
通讯作者:
黄俊成,林嘉鹏
E-mail:gulimire127@163.com;h_jc@sina.com;linjiapeng5188@163.com
作者简介:古丽米热·阿布都热依木(1985-), 女,新疆乌鲁木齐人,硕士,主要从事动物遗传育种与繁殖研究,E-mail:gulimire127@163.com
基金资助:
古丽米热·阿布都热依木1,2,3(
), Xinru ZHANG1,2,3, Yangsheng WU1,2,3, Ying CHEN1,2,3, Liqin WANG1,2,3, Xinming XU1,2,3, Juncheng HUANG1,2,3,*(
), Jiapeng LIN1,2,3,*(
)
Received:2024-02-27
Online:2024-09-23
Published:2024-09-27
Contact:
Juncheng HUANG, Jiapeng LIN
E-mail:gulimire127@163.com;h_jc@sina.com;linjiapeng5188@163.com
摘要:
旨在探讨FKBP5在绵羊卵巢颗粒细胞(GCs)中的潜在功能。本研究从乌鲁木齐市华凌屠宰场的20个2岁左右处于性成熟阶段的阿勒泰羊卵巢中分离GCs。将试验分为4组:GC(空白对照)、GC+NC(转染siRNA-NC)、GC+ siFKBP5(转染siRNA-FKBP5)、GC+ siFKBP5+LH(促黄体生成素处理转染siRNA-FKBP5)。利用细胞免疫荧光检测FKBP5蛋白在GCs中的定位。通过EdU、Tunel和Western blot检测其对细胞增殖、凋亡的影响;通过Western blot检测其对AKT和ERK信号通路的影响;通过ELISA检测其对E2、P4水平的影响。结果表明,FKBP5表达于GCs细胞质中。FKBP5表达量随着LH浓度不断升高;5 IU·mL-1 LH作用4 h,FKBP5表达较高(P < 0.001)。干扰FKBP5后显著抑制了细胞增殖,并显著降低PCNA蛋白表达量(P < 0.001);显著促进了细胞凋亡,增加了BAX的表达并减少了Bcl-2的表达(P < 0.001);显著抑制了GCs中AKT和ERK信号通路的激活以及E2和P4的分泌(P < 0.001)。LH处理部分改善了干扰FKBP5对GCs的影响(P < 0.05)。本研究结果表明,FKBP5影响绵羊GCs的增殖、凋亡、AKT和ERK信号通路以及E2和P4的分泌,其功能受LH的影响。这些结果为进一步研究FKBP5在绵羊卵泡发育中的作用提供了理论依据。
中图分类号:
古丽米热·阿布都热依木, 张欣如, 吴阳升, 陈莹, 汪立芹, 徐新明, 黄俊成, 林嘉鹏. FKBP5基因对绵羊卵泡颗粒细胞功能的影响[J]. 畜牧兽医学报, 2024, 55(9): 3947-3956.
古丽米热·阿布都热依木, Xinru ZHANG, Yangsheng WU, Ying CHEN, Liqin WANG, Xinming XU, Juncheng HUANG, Jiapeng LIN. Effects of FKBP5 on Function of Sheep Follicular Granulosa Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3947-3956.
图 3
LH对绵羊卵巢GCs中FKBP5表达调控 A. 不同LH浓度处理4 h后GCs中FKBP5的mRNA水平;B. 不同LH浓度处理4 h后GCs中FKBP5的蛋白表达;C. LH(5 IU·mL-1)处理后不同时间GCs中FKBP5的mRNA水平;D. LH(5 IU·mL-1)处理后不同时间GCs中FKBP5的蛋白表达;E. 干扰FKBP5并添加LH对FKBP5的mRNA水平的影响;F. 干扰FKBP5并添加LH对FKBP5的蛋白表达影响。与GC+si-NC比较*P < 0.05,**P < 0.01,***P < 0.001;与GC+si-FKBP5比较#P < 0.05,##P < 0.01,###P < 0.001,下同"
| 1 |
KOSSOWSKA-TOMASZCZUK K , DE GEYTER C , DE GEYTER M , et al. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles[J]. Stem cells, 2009, 27 (1): 210- 219.
doi: 10.1634/stemcells.2008-0233 |
| 2 |
ZHANG C H , LIU X Y , WANG J . Essential role of granulosa cell glucose and lipid metabolism on oocytes and the potential metabolic imbalance in polycystic ovary syndrome[J]. Int J Mol Sci, 2023, 24 (22): 16247.
doi: 10.3390/ijms242216247 |
| 3 |
HÄHLE A , MERZ S , MEYNERS C , et al. The many faces of FKBP51[J]. Biomolecules, 2019, 9 (1): 35.
doi: 10.3390/biom9010035 |
| 4 |
ZIMMER C , JIMENO B , MARTIN L B . HPA flexibility and FKBP5:promising physiological targets for conservation[J]. Philos Trans R Soc Lond B Biol Sci, 2024, 379 (1898): 20220512.
doi: 10.1098/rstb.2022.0512 |
| 5 | MARRONE L, D'AGOSTINO M, CESARO E, et al. Alternative splicing of FKBP5 gene exerts control over T lymphocyte expansion[J/OL]. J Cell Biochem, 2023. https://doi.org/10.1002/jcb.30364. |
| 6 | BINDER E B . The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders[J]. Psychoneuroendocrinology, 2009, 34 (S1): S186- S195. |
| 7 |
SABBAGH J J , CORDOVA R A , ZHENG D L , et al. Targeting the FKBP51/GR/Hsp90 complex to identify functionally relevant treatments for depression and PTSD[J]. ACS Chem Biol, 2018, 13 (8): 2288- 2299.
doi: 10.1021/acschembio.8b00454 |
| 8 |
WANG L S , WOJCIESZAK J , KUMAR R , et al. FKBP51-Hsp90 interaction-deficient mice exhibit altered endocrine stress response and sex differences under high-fat diet[J]. Mol Neurobiol, 2024, 61 (3): 1479- 1494.
doi: 10.1007/s12035-023-03627-x |
| 9 |
LI L , LOU Z , WANG L . The role of FKBP5 in cancer aetiology and chemoresistance[J]. Br J Cancer, 2011, 104 (1): 19- 23.
doi: 10.1038/sj.bjc.6606014 |
| 10 |
PÉREZ-PÉREZ B , CRISTÓBAL-NARVÁEZ P , SHEINBAUM T , et al. Interaction between FKBP5 variability and recent life events in the anxiety spectrum: Evidence for the differential susceptibility model[J]. PLoS One, 2018, 13 (2): e0193044.
doi: 10.1371/journal.pone.0193044 |
| 11 |
YIN H L , GALFALVY H , PANTAZATOS S P , et al. Glucocorticoid receptor-related genes: genotype and brain gene expression relationships to suicide and major depressive disorder.depress anxiety[J]. Depress Anxiety, 2016, 33 (6): 531- 540.
doi: 10.1002/da.22499 |
| 12 |
CRIADO-MARRERO M , SMITH T M , GOULD L A , et al. FKBP5 and early life stress affect the hippocampus by an age-dependent mechanism[J]. Brain Behav Immun Health, 2020, 9, 100143.
doi: 10.1016/j.bbih.2020.100143 |
| 13 |
ZHANG Y , YUE W H , LI J . The association of FKBP5 gene polymorphism with genetic susceptibility to depression and response to antidepressant treatment-a systematic review[J]. BMC Psychiatry, 2024, 24 (1): 274.
doi: 10.1186/s12888-024-05717-z |
| 14 |
LOU Q Y , LI Z , TENG Y , et al. Associations of FKBP4 and FKBP5 gene polymorphisms with disease susceptibility, glucocorticoid efficacy, anxiety, depression, and health-related quality of life in systemic lupus erythematosus patients[J]. Clin Rheumatol, 2021, 40 (1): 167- 179.
doi: 10.1007/s10067-020-05195-0 |
| 15 |
MA X Y , WANG Z , ZHANG C M , et al. Association of SNPs in the FK-506 binding protein (FKBP5) gene among Han Chinese women with polycystic ovary syndrome[J]. BMC Med Genomics, 2022, 15 (1): 149.
doi: 10.1186/s12920-022-01301-0 |
| 16 |
CHEN F , CHEN Z R , CHEN M J , et al. Reduced stress-associated FKBP5 DNA methylation together with gut microbiota dysbiosis is linked with the progression of obese PCOS patients[J]. NPJ Biofilms Microbiomes, 2021, 7 (1): 60.
doi: 10.1038/s41522-021-00231-6 |
| 17 |
TARRYN W , AMBERLY O , STEPHANIE D , et al. A pilot investigation of genetic and epigenetic variation of FKBP5 and response to exercise intervention in African women with obesity[J]. Sci Rep, 2022, 12 (1): 11771.
doi: 10.1038/s41598-022-15678-6 |
| 18 |
HÄUSL A S , BALSEVICH G , GASSEN N C , et al. Focus on FKBP51:A molecular link between stress and metabolic disorders[J]. Mol Metab, 2019, 29, 170- 181.
doi: 10.1016/j.molmet.2019.09.003 |
| 19 |
AGAM G , ATAWNA B , DAMRI O , et al. The role of FKBPs in complex disorders: neuropsychiatric diseases, cancer, and type 2 diabetes mellitus[J]. Cells, 2024, 13 (10): 801.
doi: 10.3390/cells13100801 |
| 20 |
HU Z G , GE L Y , ZHANG H L , et al. Expression of FKBP prolyl isomerase 5 gene in tissues of muscovy duck at different growth stages and its association with muscovy duck weight[J]. Anim Biosci, 2022, 35 (1): 1- 12.
doi: 10.5713/ab.20.0649 |
| 21 |
SUN Y F , LI C J , SUN Y L , et al. Expression of neurotrophin 4 and its receptor tyrosine kinase B in reproductive tissues during the follicular and luteal phases in cows[J]. Asian-Australas J AnimSci, 2011, 24 (3): 336- 343.
doi: 10.5713/ajas.2011.10251 |
| 22 |
DOS SANTOS E C , BOYER A , ST-JEAN G , et al. Is the hippo pathway effector yes-associated protein a potential key player of dairy cattle cystic ovarian disease pathogenesis?[J]. Animals, 2023, 13 (18): 2851.
doi: 10.3390/ani13182851 |
| 23 |
ZHU L , JING J , QIN S Q , et al. miR-99a-5p inhibits target gene FZD5 expression and steroid hormone secretion from goat ovarian granulosa cells[J]. J Integr Agric, 2022, 21 (4): 1137- 1145.
doi: 10.1016/S2095-3119(21)63766-8 |
| 24 |
CHEN S , GUO X F , HE X Y , et al. Insight into pituitary lncRNA and mRNA at two estrous stages in small tail Han sheep with different FecB genotypes[J]. Front Endocrinol (Lausanne), 2022, 12, 789564.
doi: 10.3389/fendo.2021.789564 |
| 25 |
WANG C X , ZHAO Y H , YUAN Z Y , et al. Genome-wide identification of mRNAs, lncRNAs, and proteins, and their relationship with sheep fecundity[J]. Front Genet, 2022, 12, 750947.
doi: 10.3389/fgene.2021.750947 |
| 26 |
SILVA B D M , CASTRO E A , SOUZA C J H , et al. A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep[J]. Anim Genet, 2011, 42 (1): 89- 92.
doi: 10.1111/j.1365-2052.2010.02078.x |
| 27 |
JEON H , CHOI Y , BRÄNNSTRÖM M , et al. Cortisol/glucocorticoid receptor: a critical mediator of the ovulatory process and luteinization in human periovulatory follicles[J]. Hum Reprod, 2023, 38 (4): 671- 685.
doi: 10.1093/humrep/dead017 |
| 28 |
HORI H , YOSHIDA F , ISHIDA I , et al. Blood mRNA expression levels of glucocorticoid receptors and FKBP5 are associated with depressive disorder and altered HPA axis[J]. J Affect Disord, 2024, 349, 244- 253.
doi: 10.1016/j.jad.2024.01.080 |
| 29 |
RIZAVI H S , KHAN O S , ZHANG H , et al. Methylation and expression of glucocorticoid receptor exon-1 variants and FKBP5 in teenage suicide-completers[J]. Transl Psychiatry, 2023, 13 (1): 53.
doi: 10.1038/s41398-023-02345-1 |
| 30 | GUPTA C , CHAPEKAR T , CHHABRA Y , et al. Differential response to sustained stimulation by hCG & LH on goat ovarian granulosa cells[J]. Indian J Med Res, 2012, 135 (3): 331- 340. |
| 31 |
RICHARDS J S , PANGAS S A . The ovary: basic biology and clinical implications[J]. J Clin Invest, 2010, 120 (4): 963- 972.
doi: 10.1172/JCI41350 |
| 32 |
MA X F , LIU A J , TIAN S J . A meta-analysis of mRNA expression profiling studies in sheep with different FecB genotypes[J]. Anim Genet, 2023, 54 (3): 225- 238.
doi: 10.1111/age.13304 |
| 33 |
CAMERON M R , FOSTER J S , BUKOVSKY A , et al. Activation of mitogen-activated protein kinases by gonadotropins and cyclic adenosine 5′-monophosphates in porcine granulosa cells[J]. Biol Reprod, 1996, 55 (1): 111- 119.
doi: 10.1095/biolreprod55.1.111 |
| 34 |
CARVALHO C R O , CARVALHEIRA J B C , LIMA M H M , et al. Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways[J]. Endocrinology, 2003, 144 (2): 638- 647.
doi: 10.1210/en.2002-220706 |
| 35 |
PAN B , ZHAN X S , LI J L . MicroRNA-574 impacts granulosa cell estradiol production via targeting TIMP3 and ERK1/2 signaling pathway[J]. Front Endocrinol (Lausanne), 2022, 13, 852127.
doi: 10.3389/fendo.2022.852127 |
| 36 |
BADDELA V S , MICHAELIS M , TAO X L , et al. ERK1/2-SOX9/FOXL2 axis regulates ovarian steroidogenesis and favors the follicular-luteal transition[J]. Life Sci Alliance, 2023, 6 (10): e202302100.
doi: 10.26508/lsa.202302100 |
| 37 |
SALEHI R , WYSE B A , ASARE-WEREHENE M , et al. Androgen-induced exosomal miR-379-5p release determines granulosa cell fate: cellular mechanism involved in polycystic ovaries[J]. J Ovarian Res, 2023, 16 (1): 74.
doi: 10.1186/s13048-023-01141-1 |
| 38 | ZHENG X , CHEN L , CHEN T , et al. The mechanisms of BDNF promoting the proliferation of porcine follicular granulosa cells: role of miR-127 and involvement of the MAPK-ERK1/2 pathway[J]. Animals (Basel), 2023, 13 (6): 1115. |
| 39 |
RUGG M S , WILLIS A C , MUKHOPADHYAY D , et al. Characterization of complexes formed between TSG-6 and inter-α-inhibitor that act as intermediates in the covalent transfer of heavy chains onto hyaluronan[J]. J Biol Chem, 2005, 280 (27): 25674- 25686.
doi: 10.1074/jbc.M501332200 |
| 40 |
BAO B , GARVERICK H A . Expression of steroidogenic enzyme and gonadotropin receptor genes in bovine follicles during ovarian follicular waves: a review[J]. J Anim Sci, 1998, 76 (7): 1903- 1921.
doi: 10.2527/1998.7671903x |
| [1] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2825-2835. |
| [2] | 宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
| [3] | 吕世琪, 周荣艳, 田树军, 陈晓勇. 线粒体tRNA-Lys(T7719G)基因变异影响绵羊颗粒细胞凋亡生理机制研究[J]. 畜牧兽医学报, 2024, 55(5): 2011-2021. |
| [4] | 董书餐, 毛帅翔, 伍翠莹, 李耀坤, 孙宝丽, 郭勇庆, 邓铭, 刘德武, 柳广斌. 雄激素受体抑制剂恩杂鲁胺对山羊卵泡颗粒细胞增殖凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2022-2031. |
| [5] | 片慧芳, 杜旭彬, 李妍, 张雨辰, 何惠, 虞德兵. 甜菜碱对产蛋后期蛋鸡生产性能、蛋品质和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(3): 1085-1094. |
| [6] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
| [7] | 时胜洁, 王立光, 高磊, 蔡传江, 何伟先, 褚瑰燕. miR-24-3p对猪颗粒细胞雌二醇合成的作用[J]. 畜牧兽医学报, 2024, 55(1): 169-178. |
| [8] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
| [9] | 贺名扬, 马钰静, 王泳, 杨若晨, 刘月琴, 张英杰, 段春辉. 褪黑激素对绵羊卵巢颗粒细胞增殖、凋亡、类固醇激素分泌的影响[J]. 畜牧兽医学报, 2023, 54(8): 3313-3324. |
| [10] | 李悦欣, 刘爱菊, 马晓菲, 郑忠, 胡伯欣, 智云霞, 田树军. TGFβR1介导TGF-β/Smad信号通路对绵羊颗粒细胞功能的影响[J]. 畜牧兽医学报, 2023, 54(8): 3335-3347. |
| [11] | 刘杰, 许香萍, 邓铭, 邹娴, 江声伟, 刘德武, 柳广斌, 孙宝丽, 郭勇庆, 李耀坤. miR-144-5p靶向WNT5a对山羊卵巢颗粒细胞增殖、凋亡的影响[J]. 畜牧兽医学报, 2023, 54(6): 2421-2435. |
| [12] | 胡亚美, 宋湘容, 黄亮, 张璐通, 高磊, 庞卫军, 杨公社, 褚瑰燕. FGF21增强线粒体功能抑制猪卵巢颗粒细胞凋亡[J]. 畜牧兽医学报, 2023, 54(3): 1034-1045. |
| [13] | 孟朝轶, 王运路, 徐业芬, 牛家强, 索朗斯珠, 郭敏, 席广银. 牦牛lncRNAENSBGRT00000000387.1慢病毒载体构建及其对卵泡GCs凋亡的影响[J]. 畜牧兽医学报, 2023, 54(3): 1058-1070. |
| [14] | 宋鹏琰, 王思伟, 岳巧娴, 张寅梁, 陈晓勇, 周荣艳. 绵羊miR-200b启动子鉴定及其对卵泡颗粒细胞线粒体功能的影响[J]. 畜牧兽医学报, 2023, 54(12): 5066-5076. |
| [15] | 魏甲园, 邾倩, 杨亚星, 申明. 氯化钴通过诱发DNA氧化损伤抑制猪卵泡颗粒细胞增殖的研究[J]. 畜牧兽医学报, 2022, 53(9): 2982-2992. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||