1 |
LIAO J , SONG S M , GUSSCOTT S , et al. Establishment of paternal methylation imprint at the H19/Igf2 imprinting control region[J]. Sci Adv, 2023, 9 (36): eadi2050.
doi: 10.1126/sciadv.adi2050
|
2 |
PLASSCHAERT R N , BARTOLOMEI M S . Genomic imprinting in development, growth, behavior and stem cells[J]. Development, 2014, 141 (9): 1805- 1813.
doi: 10.1242/dev.101428
|
3 |
CARRION S A , MICHAL J J , JIANG Z H . Imprinted genes: genomic conservation, transcriptomic dynamics and phenomic significance in health and diseases[J]. Int J Biol Sci, 2023, 19 (10): 3128- 3142.
doi: 10.7150/ijbs.83712
|
4 |
MONK D , MACKAY D J G , EGGERMANN T , et al. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact[J]. Nat Rev Genet, 2019, 20 (4): 235- 248.
doi: 10.1038/s41576-018-0092-0
|
5 |
PENG X Q , LUO H Z , KONG X Y , et al. Metrics for evaluating differentially methylated region sets predicted from BS-seq data[J]. Brief Bioinform, 2022, 23 (1): bbab475.
doi: 10.1093/bib/bbab475
|
6 |
MCEWEN K R , FERGUSON-SMITH A C . Distinguishing epigenetic marks of developmental and imprinting regulation[J]. Epigenetics Chromatin, 2010, 3 (1): 2.
doi: 10.1186/1756-8935-3-2
|
7 |
ARNAUD P . Genomic imprinting in germ cells: imprints are under control[J]. Reproduction, 2010, 140 (3): 411- 423.
doi: 10.1530/REP-10-0173
|
8 |
ZALETAEV D V , NEMTSOVA M V , STRELNIKOV V V . Epigenetic regulation disturbances on gene expression in imprinting diseases[J]. Mol Biol (Mosk), 2022, 56 (1): 1- 28.
doi: 10.1134/S0026893321050149
|
9 |
LUO X M , ZHANG T J , ZHAI Y X , et al. Effects of DNA methylation on TFs in human embryonic stem cells[J]. Front Genet, 2021, 12, 639461.
doi: 10.3389/fgene.2021.639461
|
10 |
STEINHOFF C , PAULSEN M , KIELBASA S , et al. Expression profile and transcription factor binding site exploration of imprinted genes in human and mouse[J]. BMC Genomics, 2009, 10, 144.
doi: 10.1186/1471-2164-10-144
|
11 |
ECKHARDT F , LEWIN J , CORTESE R , et al. DNA methylation profiling of human chromosomes 6, 20 and 22[J]. Nat Genet, 2006, 38 (12): 1378- 1385.
doi: 10.1038/ng1909
|
12 |
SINGH A , RAPPOLEE D A , RUDEN D M . Epigenetic reprogramming in Mice and Humans: from fertilization to primordial germ cell development[J]. Cells, 2023, 12 (14): 1874.
doi: 10.3390/cells12141874
|
13 |
FANIS P , MORROU M , TOMAZOU M , et al. Methylation status of hypothalamic Mkrn3 promoter across puberty[J]. Front Endocrinol (Lausanne), 2023, 13, 1075341.
doi: 10.3389/fendo.2022.1075341
|
14 |
LI J L , CHEN W N , LI D J , et al. Conservation of imprinting and methylation of MKRN3, MAGEL2 and NDN genes in cattle[J]. Animals (Basel), 2021, 11 (7): 1985.
|
15 |
张永杰. 多浪羊MKRN3、NDN、MAGEL2基因的印记和甲基化状态分析[D]. 阿拉尔市: 塔里木大学, 2023.
|
|
ZHANG Y J. Analysis of imprinting and methylation status of MKRN3, NDN and MAGEL2 genes in Dolomite sheep[D]. Alaer: Tarim University, 2023. (in Chinese)
|
16 |
LI C Y , LU W L , YANG L G , et al. MKRN3 regulates the epigenetic switch of mammalian puberty via ubiquitination of MBD3[J]. Natl Sci Rev, 2020, 7 (3): 671- 685.
doi: 10.1093/nsr/nwaa023
|
17 |
LI C Y , HAN T T , LI Q R , et al. MKRN3-mediated ubiquitination of Poly(A)-binding proteins modulates the stability and translation of GNRH1 mRNA in mammalian puberty[J]. Nucleic Acids Res, 2021, 49 (7): 3796- 3813.
doi: 10.1093/nar/gkab155
|
18 |
KARAMI K , ZEREHDARAN S , JAVADMANESH A . Differential expression of RNAseq imprinted genes from bovine females before and after puberty[J]. Biochem Genet, 2023, 61 (6): 2633- 2649.
doi: 10.1007/s10528-023-10395-9
|
19 |
NIEMANN H , TIAN X C , KING W A , et al. Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning[J]. Reproduction, 2008, 135 (2): 151- 163.
doi: 10.1530/REP-07-0397
|
20 |
RUAN D G , PENG J Y , WANG X S , et al. XIST derepression in active X chromosome hinders pig somatic cell nuclear transfer[J]. Stem Cell Rep, 2018, 10 (2): 494- 508.
doi: 10.1016/j.stemcr.2017.12.015
|
21 |
OKAE H , MATOBA S , NAGASHIMA T , et al. RNA sequencing-based identification of aberrant imprinting in cloned mice[J]. Hum Mol Genet, 2014, 23 (4): 992- 1001.
doi: 10.1093/hmg/ddt495
|
22 |
LIAO Z D , ZHANG J X , SUN S Y , et al. Reprogramming mechanism dissection and trophoblast replacement application in monkey somatic cell nuclear transfer[J]. Nat Commun, 2024, 15 (1): 5.
doi: 10.1038/s41467-023-43985-7
|
23 |
LI J L , YU D W , WANG J , et al. Identification of the porcine IG-DMR and abnormal imprinting of DLK1-DIO3 in cloned pigs[J]. Front Cell Dev Biol, 2022, 10, 964045.
doi: 10.3389/fcell.2022.964045
|
24 |
ZAITOUN I , KHATIB H . Assessment of genomic imprinting of SLC38A4, NNAT, NAP1L5, and H19 in cattle[J]. BMC Genet, 2006, 7, 49.
|
25 |
KADIFE E , HARPER A , DE ALWIS N , et al. SLC38A4 amino acid transporter expression is significantly lower in early preterm intrauterine growth restriction complicated placentas[J]. Int J Mol Sci, 2022, 24 (1): 403.
doi: 10.3390/ijms24010403
|
26 |
XIE Z , ZHANG W , ZHANG Y . Loss of Slc38a4 imprinting is a major cause of mouse placenta hyperplasia in somatic cell nuclear transferred embryos at late gestation[J]. Cell Rep, 2022, 38 (8): 110407.
doi: 10.1016/j.celrep.2022.110407
|
27 |
HALUŠKOVÁ J , HOLEČKOVÁ B , STANIČOVÁ J . DNA methylation studies in cattle[J]. J Appl Genet, 2021, 62 (1): 121- 136.
doi: 10.1007/s13353-020-00604-1
|
28 |
IWASAKI Y , AKSU C , REYES M , et al. The long-range interaction between two GNAS imprinting control regions delineates pseudohypoparathyroidism type 1B pathogenesis[J]. J Clin Invest, 2023, 133 (8): e167953.
doi: 10.1172/JCI167953
|
29 |
LAU J C , HANEL M L , WEVRICK R . Tissue-specific and imprinted epigenetic modifications of the human NDN gene[J]. Nucleic Acids Res, 2004, 32 (11): 3376- 3382.
doi: 10.1093/nar/gkh671
|
30 |
BARLOW D P , BARTOLOMEI M S . Genomic imprinting in mammals[J]. Cold Spring Harb Perspect Biol, 2014, 6 (2): a018382.
doi: 10.1101/cshperspect.a018382
|
31 |
LIANG D , AYGVN N , MATOBA N , et al. Inference of putative cell-type-specific imprinted regulatory elements and genes during human neuronal differentiation[J]. Hum Mol Genet, 2023, 32 (3): 402- 416.
doi: 10.1093/hmg/ddac207
|
32 |
JOZI M , JAFARPOUR F , MORADI R , et al. Induced DNA hypomethylation by folic acid deprivation in bovine fibroblast donor cells improves reprogramming of somatic cell nuclear transfer embryos[J]. Sci Rep, 2020, 10 (1): 5076.
doi: 10.1038/s41598-020-61797-3
|
33 |
GOLDKAMP A K , LI Y H , RIVERA R M , et al. Differentially expressed tRNA-derived fragments in bovine fetuses with assisted reproduction induced congenital overgrowth syndrome[J]. Front Genet, 2022, 13, 1055343.
doi: 10.3389/fgene.2022.1055343
|
34 |
VARGAS L N , CAIXETA F M C , DODE M A N , et al. DNA methylation profile of single in vitro matured bovine oocytes[J]. Mol Reprod Dev, 2023, 90 (4): 227- 235.
doi: 10.1002/mrd.23679
|
35 |
INOUE K , OGONUKI N , KAMIMURA S , et al. Loss of H3K27me3 imprinting in the Sfmbt2 miRNA cluster causes enlargement of cloned mouse placentas[J]. Nat Commun, 2020, 11 (1): 2150.
doi: 10.1038/s41467-020-16044-8
|
36 |
CHU C , ZHANG W H , KANG Y , et al. Analysis of developmental imprinting dynamics in primates using SNP-free methods to identify imprinting defects in cloned placenta[J]. Dev Cell, 2021, 56 (20): 2826- 2840.e7.
doi: 10.1016/j.devcel.2021.09.012
|