畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (8): 3217-3229.doi: 10.11843/j.issn.0366-6964.2023.08.009
张萍1, 庄林林2, 张笛1, 董永毅3, 盛中伟1, 王成明4, 徐步1, 窦新红1, 龚建森1*
收稿日期:
2022-11-21
出版日期:
2023-08-23
发布日期:
2023-08-22
通讯作者:
龚建森,主要从事禽病防治研究,E-mail:jjsensen@163.com
作者简介:
张萍(1990-),女,江苏扬州人,助理研究员,硕士,主要从事禽病防治研究,E-mail:pzhang1206@163.com;Tel:0514-85599010
基金资助:
ZHANG Ping1, ZHUANG Linlin2, ZHANG Di1, DONG Yongyi3, SHENG Zhongwei1, WANG Chengming4, XU Bu1, DOU Xinhong1, GONG Jiansen1*
Received:
2022-11-21
Online:
2023-08-23
Published:
2023-08-22
摘要: 沙门菌是肠杆菌科中最常见的人畜共患病原菌,由该菌引起的食物中毒是细菌性食物中毒比例最高、危害最广的一种,具有重要的公共卫生学意义。沙门菌分类较为复杂,按生物分类学可分为肠道沙门菌和邦戈尔沙门菌2个种,其中肠道沙门菌种又分为6个亚种,按表面抗原的差异可分为46个血清群和2 600多种血清型,部分血清型还可进一步分为不同生物型,上述分类或分型对于流行病学与病原学研究具有重要意义。传统检测分型方法存在费时耗力、灵敏度低等诸多缺陷,不能及时准确地控制病原的流行。随着沙门菌基因组数据的不断完善,越来越多的核酸检测靶点被发掘,以PCR为代表的分子检测方法不仅可开展沙门菌快速检测,还可以进行血清型鉴定,且特异性强、灵敏度高,简单迅速。检测靶点的特异性是决定结果准确的关键因素,自1992年首次报道以invA为靶点建立沙门菌PCR检测方法以来,关于沙门菌分子检测方法的研究报道日益增多,目前已逐步应用于沙门菌的快速检测与分型中。本文介绍了国内外沙门菌分子检测方法的研究进展,并从沙门菌属、种、血清群、血清型等不同层面进行梳理总结,以期为沙门菌分子检测方法的推广应用提供参考依据。
中图分类号:
张萍, 庄林林, 张笛, 董永毅, 盛中伟, 王成明, 徐步, 窦新红, 龚建森. 沙门菌分子检测方法的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3217-3229.
ZHANG Ping, ZHUANG Linlin, ZHANG Di, DONG Yongyi, SHENG Zhongwei, WANG Chengming, XU Bu, DOU Xinhong, GONG Jiansen. Research Progress on Molecular Detection Methods of Salmonella[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3217-3229.
[1] | YE Q H, SHANG Y T, CHEN M T, et al. Identification of novel sensitive and reliable serovar-specific targets for PCR detection of Salmonella serovars Hadar and Albany by Pan-Genome analysis[J]. Front Microbiol, 2021, 12:605984. |
[2] | YANG B W, QU D, ZHANG X L, et al. Prevalence and characterization of Salmonella serovars in retail meats of marketplace in Shaanxi, China[J]. Int J Food Microbiol, 2010, 141(1-2):63-72. |
[3] | MAJOWICZ S E, MUSTO J, SCALLAN E, et al. The global burden of nontyphoidal Salmonella gastroenteritis[J]. Clin Infect Dis, 2010, 50(6):882-889. |
[4] | XU J X, ZHANG P, ZHUANG L L, et al. Multiplex polymerase chain reaction to detect Salmonella serovars Indiana, Enteritidis, and Typhimurium in raw meat[J]. J Food Saf, 2019, 39(5):e12674. |
[5] | KIRK M D, PIRES S M, BLACK R E, et al. World health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010:a data synthesis[J]. PLoS Med, 2015, 12(12):e1001921. |
[6] | LAMAS A, MIRANDA J M, REGAL P, et al. A comprehensive review of non-enterica subspecies of Salmonella enterica[J]. Microbiol Res, 2018, 206:60-73. |
[7] | FITZGERALD C, COLLINS M, VAN DUYNE S, et al. Multiplex, bead-based suspension array for molecular determination of common Salmonella serogroups[J]. J Clin Microbiol, 2007, 45(10):3323-3334. |
[8] | 龚建森, 王 鑫, 韩先干, 等. 不同培养条件对禽源沙门菌菌毛基因表达的影响[J]. 畜牧兽医学报, 2014, 45(1):116-122.GONG J S, WANG X, HAN X G, et al. Effects of different bacterial culture condition on the expression of avian Salmonella fimbrial genes[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(1):116-122. (in Chinese) |
[9] | ZHUANG L L, GONG J S, JI Y X, et al. Lateral flow fluorescent immunoassay based on isothermal amplification for rapid quantitative detection of Salmonella spp.[J]. Analyst, 2020, 145(6):2367-2377. |
[10] | RAHN K, DE GRANDIS S A, CLARKE R C, et al. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella[J]. Mol Cell Probes, 1992, 6(4):271-279. |
[11] | RICKE S C, KIM S A, SHI Z, et al. Molecular-based identification and detection of Salmonella in food production systems:current perspectives[J]. J Appl Microbiol, 2018, 125(2):313-327. |
[12] | PILLA S D, RICKEB S C. Strategies to accelerate the applicability of gene amplification protocols for pathogen detection in meat and meat products[J]. Crit Rev Microbiol, 1995, 21(4):239-261. |
[13] | BARROW P A. ELISAs and the serological analysis of Salmonella infections in poultry:a review[J]. Epidemiol Infect, 1992, 109(3):361-369. |
[14] | WATTIAU P, VAN HESSCHE M, SCHLICKER C, et al. Comparison of classical serotyping and PremiTest assay for routine identification of common Salmonella enterica serovars[J]. J Clin Microbiol, 2008, 46(12):4037-4040. |
[15] | SCHRADER K N, FERNANDEZ-CASTRO A, CHEUNG W K W, et al. Evaluation of commercial antisera for Salmonella serotyping[J]. J Clin Microbiol, 2008, 46(2):685-688. |
[16] | TANKOUO-SANDJONG B, SESSITSCH A, STRALIS-PAVESE N, et al. Development of an oligonucleotide microarray method for Salmonella serotyping[J]. Microb Biotechnol, 2008, 1(6):513-522. |
[17] | MASHOUF R Y, ALIKHANI M Y, AZADI S. Detection of Salmonella species isolated from clinical specimens by serotyping and polymerase chain reaction[J]. Saudi Med J, 2007, 28(11):1751-1753. |
[18] | PARK S H, AYDIN M, KHATIWARA A, et al. Current and emerging technologies for rapid detection and characterization of Salmonella in poultry and poultry products[J]. Food Microbiol, 2014, 38:250-262. |
[19] | 杨 柳, 胡文忠, 姜爱丽, 等. 分子生物学方法检测沙门氏菌的研究进展[J]. 食品工业科技, 2016, 37(9):372-375, 379.YANG L, HU W Z, JIANG A L, et al. Research progress in molecular biology methods for detection of Salmonella[J]. Sci Technol Food Ind, 2016, 37(9):372-375, 379. (in Chinese) |
[20] | GHORASHI M S, PANT S D, GHORASHI S A. Comparison of colourimetric loop-mediated isothermal amplification (LAMP), PCR and high-resolution melt curve analysis and culture-based diagnostic assays in the detection of three Salmonella serotypes in poultry[J]. Avian Pathol, 2022, 51(5):476-487. |
[21] | CHIU T H, CHEN T R, HWANG W Z, et al. Sequencing of an internal transcribed spacer region of 16S-23S rRNA gene and designing of PCR primers for the detection of Salmonella spp. in food[J]. Int J Food Microbiol, 2005, 97(3):259-265. |
[22] | LIN C K, TSEN H Y. Use of two 16S DNA targeted oligonucleotides as PCR primers for the specific detection of Salmonella in foods[J]. J Appl Bacteriol, 1996, 80(6):659-666. |
[23] | OLSEN E V, GIBBINS C S, GRAYSON J K. Real-time FRET PCR assay for Salmonella enterica serotype detection in food[J]. Mil Med, 2009, 174(9):983-990. |
[24] | ZHUANG L, GONG J, LI Q, et al. Detection of Salmonella spp. by a loop-mediated isothermal amplification (LAMP) method targeting bcfD gene[J]. Lett Appl Microbiol, 2014, 59(6):658-664. |
[25] | UDDIN S M, IBRAHIM F, SAYAD A A, et al. A portable automatic endpoint detection system for amplicons of loop mediated isothermal amplification on microfluidic compact disk platform[J]. Sensors (Basel), 2015, 15(3):5376-5389. |
[26] | COHEN H J, MECHANDA S M, LIN W. PCR amplification of the fimA gene sequence of Salmonella typhimurium, a specific method for detection of Salmonella spp[J]. Appl Environ Microbiol, 1996, 62(12):4303-4308. |
[27] | ZHANG J Y, DONG L W, REN Q, et al. Simple and rapid detection of Salmonella by direct PCR amplification of gene fimW[J]. Curr Microbiol, 2014, 69(4):429-435. |
[28] | YEH K S, CHEN T H, LIAO C W, et al. PCR amplification of the Salmonella typhimurium fimY gene sequence to detect the Salmonella species[J]. Int J Food Microbiol, 2002, 78(3):227-234. |
[29] | YANG Q R, DOMESLE K J, GE B L. Loop-mediated isothermal amplification for Salmonella detection in food and feed:current applications and future directions[J]. Foodborne Pathog Dis, 2018, 15(6):309-331. |
[30] | YE X H, WANG Y M, LIN X G. A gyrB-targeted PCR for rapid identification of Salmonella[J]. Curr Microbiol, 2011, 63(5):477-483. |
[31] | OH S J, PARK B H, JUNG J H, et al. Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection[J]. Biosens Bioelectron, 2016, 75:293-300. |
[32] | GUO X, CHEN J R, BEUCHAT L R, et al. PCR detection of Salmonella enterica serotype Montevideo in and on raw tomatoes using primers derived from hilA[J]. Appl Environ Microbiol, 2000, 66(12):5248-5252. |
[33] | CHU J, SHIN J, KANG S, et al. Rapid and sensitive detection of Salmonella species targeting the hilA gene using a loop-mediated isothermal amplification assay[J]. Genomics Inform, 2021, 19(3):e30. |
[34] | BEJ A K, MAHBUBANI M H, BOYCE M J, et al. Detection of Salmonella spp. in oysters by PCR[J]. Appl Environ Microbiol, 1994, 60(1):368-373. |
[35] | CHEN W, MARTINEZ G, MULCHANDANI A. Molecular Beacons:a real-time polymerase chain reaction assay for detecting Salmonella[J]. Anal Biochem, 2000, 280(1):166-172. |
[36] | 贾艳艳, 何 雷, 郁 川, 等. LAMP技术快速检测食源性沙门菌hisJ基因方法的建立[J]. 畜牧与兽医, 2015, 47(10):75-78.JIA Y Y, HE L, YU C, et al. Establishment of LAMP technique for rapid detection of hisJ gene in food borne Salmonella[J]. Animal Husbandry & Veterinary Medicine, 2015, 47(10):75-78. (in Chinese) |
[37] | MACIOROWSKI K G, PILLAI S D, JONES F T, et al. Polymerase chain reaction detection of foodborne Salmonella spp. in animal feeds[J]. Crit Rev Microbiol, 2008, 31(1):45-53. |
[38] | WANG C, XU Z H, HOU X J, et al. Rapid, sensitive, specific, and visual detection of Salmonella in retail meat with loop-mediated isothermal amplification, targeting the invA gene[J]. J Food Prot, 2022, 85(1):6-12. |
[39] | HERNÁNDEZ HERNÁNDEZ O, GUTIÉRREZ-ESCOLANO A L, CANCIO-LONCHES C, et al. Multiplex PCR method for the detection of human norovirus, Salmonella spp., Shigella spp., and shiga toxin producing Escherichia coli in blackberry, coriander, lettuce and strawberry[J]. Food Microbiol, 2022, 102:103926. |
[40] | STONE G G, OBERST R D, HAYS M P, et al. Detection of Salmonella serovars from clinical samples by enrichment broth cultivation-PCR procedure[J]. J Clin Microbiol, 1994, 32(7):1742-1749. |
[41] | BONYADIAN M, MOSHTAGHI H, NADI H. PCR detection of Vibrio cholerae, Escherichia coli, and Salmonella sp. from bottled drinking water in Iran[J]. J Infect Dev Ctries, 2018, 12(9):700-705. |
[42] | CANO R J, RASMUSSEN S R, SÁNCHEZ FRAGA G, et al. Fluorescent detection-polymerase chain reaction (FD-PCR) assay on microwell plates as a screening test for salmonellas in foods[J]. J Appl Bacteriol, 1993, 75(3):247-253. |
[43] | KWANG J, LITTLEDIKE E T, KEEN J E. Use of the polymerase chain reaction for Salmonella detection[J]. Lett Appl Microbiol, 1996, 22(1):46-51. |
[44] | TATAVARTHY A, CANNONS A. Real-time PCR detection of Salmonella species using a novel target:the outer membrane porin F gene (ompF)[J]. Lett Appl Microbiol, 2010, 50(6):645-652. |
[45] | DING T, SUO Y J, ZHANG Z H, et al. A multiplex RT-PCR assay for S. aureus, L. monocytogenes, and Salmonella spp. detection in raw milk with pre-enrichment[J]. Front Microbiol, 2017, 8:989. |
[46] | FLUIT A C, WIDJOJOATMODJO M N, BOX A T, et al. Rapid detection of Salmonellae in poultry with the magnetic immuno-polymerase chain reaction assay[J]. Appl Environ Microbiol, 1993, 59(5):1342-1346. |
[47] | MAHON J, MURPHY C K, JONES P W, et al. Comparison of multiplex PCR and standard bacteriological methods of detecting Salmonella on chicken skin[J]. Lett Appl Microbiol, 1994, 19(3):169-172. |
[48] | AHMAD F, SEYRIG G, TOURLOUSSE D M, et al. A CCD-based fluorescence imaging system for real-time loop-mediated isothermal amplification-based rapid and sensitive detection of waterborne pathogens on microchips[J]. Biomed Microdevices, 2011, 13(5):929-937. |
[49] | WAY J S, JOSEPHSON K L, PILLAI S D, et al. Specific detection of Salmonella spp. by multiplex polymerase chain reaction[J]. Appl Environ Microbiol, 1993, 59(5):1473-1479. |
[50] | LI X F, ZHANG S, ZHANG H W, et al. A loop-mediated isothermal amplification method targets the phoP gene for the detection of Salmonella in food samples[J]. Int J Food Microbiol, 2009, 133(3):252-258. |
[51] | PATTERSON A S, HEITHOFF D M, FERGUSON B S, et al. Microfluidic chip-based detection and intraspecies strain discrimination of Salmonella serovars derived from whole blood of septic mice[J]. Appl Environ Microbiol, 2013, 79(7):2302-2311. |
[52] | ZHAO Y M, JIANG X, QU Y Y, et al. Salmonella detection in powdered dairy products using a novel molecular tool[J]. J Dairy Sci, 2017, 100(5):3480-3496. |
[53] | SHARMA V K, CARLSON S A. Simultaneous detection of Salmonella strains and Escherichia coli O157:H7 with fluorogenic PCR and single-enrichment-broth culture[J]. Appl Environ Microbiol, 2000, 66(12):5472-5476. |
[54] | MAHON J, LAX A J. A quantitative polymerase chain reaction method for the detection in avian faeces of salmonellas carrying the spvR gene[J]. Epidemiol Infect, 1993, 111(3):455-464. |
[55] | XIONG D, YUAN L, SONG L, et al. A new multiplex PCR for the accurate identification and differentiation of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum[J]. Front Microbiol, 2022, 13:983942. |
[56] | MALORNY B, PACCASSONI E, FACH P, et al. Diagnostic real-time PCR for detection of Salmonella in Food[J]. Appl Environ Microbiol, 2004, 70(12):7046-7052. |
[57] | KREITLOW A, BECKER A, SCHOTTE U, et al. Evaluation of different target genes for the detection of Salmonella sp. by loop-mediated isothermal amplification[J]. Lett Appl Microbiol, 2021, 72(4):420-426. |
[58] | ARUNRUT N, KIATPATHOMCHAI W, ANANCHAIPATTANA C. Multiplex PCR assay and lyophilization for detection of Salmonella spp., Staphylococcus aureus and Bacillus cereus in pork products[J]. Food Sci Biotechnol, 2018, 27(3):867-875. |
[59] | TSEN H Y, SHIH C M, TENG P H, et al. Detection of Salmonella in chicken meat by insulated isothermal PCR[J]. J Food Prot, 2013, 76(8):1322-1329. |
[60] | YUE M, RANKIN S C, BLANCHET R T, et al. Diversification of the Salmonella fimbriae:a model of macro-and microevolution[J]. PLoS One, 2012, 7(6):e38596. |
[61] | GONG J S, ZHANG J Q, XU M, et al. Prevalence and fimbrial genotype distribution of poultry Salmonella isolates in China (2006 to 2012)[J]. Appl Environ Microbiol, 2014, 80(2):687-693. |
[62] | ZEINER S A, DWYER B E, CLEGG S, et al. FimA, FimF, and FimH are necessary for assembly of type 1 fimbriae on Salmonella enterica serovar typhimurium[J]. Infect Immun, 2012, 80(9):3289-3296. |
[63] | FUKUSHIMA M, KAKINUMA K, KAWAGUCHI R. Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence[J]. J Clin Microbiol, 2002, 40(8):2779-2785. |
[64] | SHABARINATH S, SANATH KUMAR H, KHUSHIRAMANI R, et al. Detection and characterization of Salmonella associated with tropical seafood[J]. Int J Food Microbiol, 2007, 114(2):227-233. |
[65] | LI X J, YANG F, GAO W L, et al. Application of pyrosequencing for Salmonella enterica rapid identification[J]. J Microbiol Methods, 2012, 89(1):49-52. |
[66] | TAKEUCHI A, SODE K. A Salmonella detection system using an engineered DNA binding protein that specifically captured a DNA sequence[J]. Anal Chem, 2000, 72(13):2809-2813. |
[67] | FOX G E, WISOTZKEY J D, JURTSHUK P JR. How close is close:16S rRNA sequence identity may not be sufficient to guarantee species identity[J]. Int J Syst Bacteriol, 1992, 42(1):166-170. |
[68] | LIN C K, TSEN H Y. Development and evaluation of two novel oligonucleotide probes based on 16S rRNA sequence for the identification of Salmonella in foods[J]. J Appl Bacteriol, 1995, 78(5):507-520. |
[69] | BAUMLER A J, HEFFRON F, REISSBRODT R. Rapid detection of Salmonella enterica with primers specific for iroB[J]. J Clin Microbiol, 1997, 35(5):1224-1230. |
[70] | LUK J M, KONGMUANG U, REEVES P R, et al. Selective amplification of abequose and paratose synthase genes (rfb) by polymerase chain reaction for identification of Salmonella major serogroups (A, B, C2, and D)[J]. J Clin Microbiol, 1993, 31(8):2118-2123. |
[71] | CUNNEEN M M, REEVES P R. Membrane topology of the Salmonella enterica serovar Typhimurium group B O-antigen translocase wzx[J]. FEMS Microbiol Lett, 2008, 287(1):76-84. |
[72] | HONG Y Q, CUNNEEN M M, REEVES P R. The wzx translocases for Salmonella enterica O-antigen processing have unexpected serotype specificity[J]. Mol Microbiol, 2012, 84(4):620-630. |
[73] | HERRERA-LEÓN S, RAMIRO R, ARROYO M, et al. Blind comparison of traditional serotyping with three multiplex PCRs for the identification of Salmonella serotypes[J]. Res Microbiol, 2007, 158(2):122-127. |
[74] | OKAMURA M, OHBA Y, KIKUCHI S, et al. Loop-mediated isothermal amplification for the rapid, sensitive, and specific detection of the O9 group of Salmonella in chickens[J]. Vet Microbiol, 2008, 132(1-2):197-204. |
[75] | PAIÃO F G, ARISITIDES L G A, MURATE L S, et al. Detection of Salmonella spp, Salmonella Enteritidis and Typhimurium in naturally infected broiler chickens by a multiplex PCR-based assay[J]. Braz J Microbiol, 2013, 44(1):37-41. |
[76] | XIONG D, SONG L, TAO J, et al. An efficient multiplex PCR-based assay as a novel tool for accurate inter-serovar discrimination of Salmonella Enteritidis, S. pullorum/gallinarum and S. dublin[J]. Front Microbiol, 2017, 8:420. |
[77] | MALORNY B, BUNGE C, HELMUTH R. A real-time PCR for the detection of Salmonella Enteritidis in poultry meat and consumption eggs[J]. J Microbiol Methods, 2007, 70(2):245-251. |
[78] | YANG J L, MA G P, YANG R, et al. Simple and rapid detection of Salmonella serovar Enteritidis under field conditions by loop-mediated isothermal amplification[J]. J Appl Microbiol, 2010, 109(5):1715-1723. |
[79] | WOODWARD M J, KIRWAN S E S. Detection of Salmonella enteritidis in eggs by the polymerase chain reaction[J]. Vet Rec, 1996, 138(17):411-413. |
[80] | PARK S H, RICKE S C. Development of multiplex PCR assay for simultaneous detection of Salmonella genus, Salmonella subspecies I, Salm. Enteritidis, Salm. Heidelberg and Salm. Typhimurium[J]. J Appl Microbiol, 2015, 118(1):152-160. |
[81] | RANJBAR R, MORTAZAVI S M, MEHRABI TAVANA A, et al. Simultaneous molecular detection of Salmonella enterica serovars typhi, enteritidis, infantis, and typhimurium[J]. Iran J Public Health, 2017, 46(1):103-111. |
[82] | HEYMANS R, VILA A, VAN HEERWAARDEN C A M, et al. Rapid detection and differentiation of Salmonella species, Salmonella Typhimurium and Salmonella Enteritidis by multiplex quantitative PCR[J]. PLoS One, 2018, 13(10):e0206316. |
[83] | DE FREITAS C G, SANTANA Â P, DA SILVA P H C, et al. PCR multiplex for detection of Salmonella Enteritidis, Typhi and Typhimurium and occurrence in poultry meat[J]. Int J Food Microbiol, 2010, 139(1-2):15-22. |
[84] | LIN J S, TSEN H Y. Development and use of polymerase chain reaction for the specific detection of Salmonella Typhimurium in stool and food samples[J]. J Food Prot, 1999, 62(10):1103-1110. |
[85] | MCCARTHY N, REEN F J, BUCKLEY J F, et al. Sensitive and rapid molecular detection assays for Salmonella enterica serovars Typhimurium and Heidelberg[J]. J Food Prot, 2009, 72(11):2350-2357. |
[86] | SHANG Y T, YE Q H, WU Q P, et al. Novel multiplex PCR assays for rapid identification of Salmonella serogroups B, C1, C2, D, E, S. enteritidis, and S. typhimurium[J]. Anal Methods, 2022, 14(14):1445-1453. |
[87] | KIM H J, PARK S H, LEE T H, et al. Identification of Salmonella enterica serovar Typhimurium using specific PCR primers obtained by comparative genomics in Salmonella serovars[J]. J Food Prot, 2006, 69(7):1653-1661. |
[88] | SONG J H, CHO H, PARK M Y, et al. Detection of Salmonella typhi in the blood of patients with typhoid fever by polymerase chain reaction[J]. J Clin Microbiol, 1993, 31(6):1439-1443. |
[89] | ABDULLAH J, SAFFIE N, SJASRI F A R, et al. Rapid detection of Salmonella Typhi by loop-mediated isothermal amplification (LAMP) method[J]. Braz J Microbiol, 2014, 45(4):1385-1391. |
[90] | MARTINEZ-BALLESTEROS I, PAGLIETTI B, REMENTERIA A, et al. Intra-and inter-laboratory evaluation of an improved multiplex-PCR method for detection and typing of Salmonella[J]. J Infect Dev Ctries, 2012, 6(5):443-451. |
[91] | FAN F X, DU P C, KAN B, et al. The development and evaluation of a loop-mediated isothermal amplification method for the rapid detection of Salmonella enterica serovar Typhi[J]. PLoS One, 2015, 10(4):e0124507. |
[92] | MORIN M J, GONG Z L, LI X F. Reverse transcription-multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Vibrio cholerae O1, and Salmonella Typhi[J]. Clin Chem, 2004, 50(11):2037-2044. |
[93] | ZHOU Y Y, KANG X L, MENG C, et al. Multiple PCR assay based on the cigR gene for detection of Salmonella spp. and Salmonella Pullorum/Gallinarum identification[J]. Poult Sci, 2020, 99(11):5991-5998. |
[94] | XIONG D, SONG L, GENG S Z, et al. One-step PCR detection of Salmonella Pullorum/Gallinarum using a novel target:the flagellar biosynthesis gene flhB[J]. Front Microbiol, 2016, 7:1863. |
[95] | 龚建森, 徐敬潇, 付立霞, 等. 印第安纳沙门菌环介导等温扩增检测方法的建立[J]. 畜牧兽医学报, 2021, 52(2):560-564.GONG J S, XU J X, FU L X, et al. Establishment of a loop-mediated isothermal amplification method for rapid detection of Salmonella Indiana[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2):560-564. (in Chinese) |
[96] | ZHANG P, ZHUANG L L, ZHANG D, et al. Serovar-specific polymerase chain reaction for detection of Salmonella enterica serovar Indiana[J]. Foodborne Pathog Dis, 2018, 15(12):776-781. |
[97] | WANG Y X, ZHANG A Y, YANG Y Q, et al. Sensitive and rapid detection of Salmonella enterica serovar Indiana by cross-priming amplification[J]. J Microbiol Methods, 2018, 153:24-30. |
[98] | ZHOU L Q, JONES C, GIBANI M M, et al. Development and evaluation of a blood culture PCR assay for rapid detection of Salmonella Paratyphi A in clinical samples[J]. PLoS One, 2016, 11(3):e0150576. |
[99] | ZHAI L G, YU Q, BIE X M, et al. Development of a PCR test system for specific detection of Salmonella Paratyphi B in foods[J]. FEMS Microbiol Lett, 2014, 355(1):83-89. |
[100] | CHIU T H, PANG J C, HWANG W Z, et al. Development of PCR primers for the detection of Salmonella enterica serovar Choleraesuis based on the fliC gene[J]. J Food Prot, 2005, 68(8):1575-1580. |
[101] | CLAVIJO R I, LOUI C, ANDERSEN G L, et al. Identification of genes associated with survival of Salmonella enterica serovar Enteritidis in chicken egg albumen[J]. Appl Environ Microbiol, 2006, 72(2):1055-1064. |
[102] | GONG J S, ZHUANG L L, ZHU C H, et al. Loop-mediated isothermal amplification of the sefA gene for rapid detection of Salmonella Enteritidis and Salmonella Gallinarum in chickens[J]. Foodborne Pathog Dis, 2016, 13(4):177-181. |
[103] | PARK S H, KIM H J, CHO W H, et al. Identification of Salmonella enterica subspecies I, Salmonella enterica serovars Typhimurium, Enteritidis and Typhi using multiplex PCR[J]. FEMS Microbiol Lett, 2009, 301(1):137-146. |
[104] | 龚建森, 徐敬潇, 张 笛, 等. 鸡白痢、鸡伤寒沙门菌分子分型方法的验证[J]. 中国动物传染病学报, 2022, 30(1):166-172.GONG J S, XU J X, ZHANG D, et al. Verification of molecular typing methods for Salmonella Pullorum and Salmonella Gallinarum[J]. Chinese Journal of Animal Infectious Diseases, 2022, 30(1):166-172. (in Chinese) |
[105] | KILGER G, GRIMONT P A. Differentiation of Salmonella phase 1 flagellar antigen types by restriction of the amplified fliC gene[J]. J Clin Microbiol, 1993, 31(5):1108-1110. |
[106] | MALORNY B, HOORFAR J, BUNGE C, et al. Multicenter validation of the analytical accuracy of Salmonella PCR:towards an international standard[J]. Appl Environ Microbiol, 2003, 69(1):290-296. |
[107] | SMITH K P, GEORGE J, CADLE K M, et al. Elucidation of antimicrobial susceptibility profiles and genotyping of Salmonella enterica isolates from clinical cases of Salmonellosis in New Mexico in 2008[J]. World J Microbiol Biotechnol, 2010, 26(6):1025-1031. |
[108] | ENDLEY S, PEÑA J, RICKE S C, et al. The applicability of hns and fimA primers for detecting Salmonella in bioaerosols associated with animal and municipal wastes[J]. World J Microbiol Biotechnol, 2001, 17:363-369. |
[109] | KHALTABADI R F, SHAHROKHI N, EBRAHIMI-RAD M, et al. Salmonella Typhimurium in Iran:contribution of molecular and IS200 PCR methods in variants detection[J]. PLoS One, 2019, 14(3):e0213726. |
[110] | BARBAU-PIEDNOIR E, BERTRAND S, MAHILLON J, et al. SYBR® Green qPCR Salmonella detection system allowing discrimination at the genus, species and subspecies levels[J]. Appl Microbiol Biotechnol, 2013, 97(22):9811-9824. |
[111] | LOMAN N J, PALLEN M J. Twenty years of bacterial genome sequencing[J]. Nat Rev Microbiol, 2015, 13(12):787-794. |
[112] | LIU B, ZHANG L D, ZHU X N, et al. PCR identification of Salmonella serogroups based on specific targets obtained by comparative genomics[J]. Int J Food Microbiol, 2011, 144(3):511-518. |
[1] | 郑琳, 魏炳栋, 滑峰, 陈龙, 丁媛. 裂解性噬菌体对肉仔鸡感染肠炎沙门菌的治疗效果[J]. 畜牧兽医学报, 2024, 55(3): 1314-1327. |
[2] | 王栋, 柳可欣, 何炎峻, 邓守翔, 刘云, 马卫明. 饲粮中添加腐殖酸钠对鼠伤寒沙门菌感染肉鸡肝组织炎症和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(2): 629-639. |
[3] | 李兆龙, 孔祥瑞, 林锋强, 王秀萍, 赵冉, 彭小莉, 陈常颂. 冠突散囊菌Ec-12上清抑制小鼠的伤寒沙门菌机制的初步分析[J]. 畜牧兽医学报, 2024, 55(2): 739-750. |
[4] | 杨恒, 李占鸿, 宋子昂, 高林, 李卓然, 廖德芳, 肖雷, 李华春. 帕利亚姆病毒实时荧光定量RT-PCR检测方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(1): 395-400. |
[5] | 张倩文, 刘玉梅, 石丽辉, 梁文军, 李梦云, 王玉琴, 张自强. 生产母兔沙门菌感染的病理学变化及其药物敏感性分析[J]. 畜牧兽医学报, 2023, 54(8): 3510-3518. |
[6] | 陈松彪, 尚珂, 杜付熙, 余祖华, 李静, 贾艳艳, 廖成水, 张春杰, 丁轲, 程相朝. 沙门菌VI型分泌系统组装、结构特征和分泌调控网络的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2252-2263. |
[7] | 孙瑜凡, 于盼元, 陈虹宇, 谭怡青, 陈夏冰, 张腾飞, 高婷, 周锐, 黎璐. 二甲酸钾预防沙门菌感染小鼠的效果评价及对肠道菌群的影响[J]. 畜牧兽医学报, 2023, 54(5): 2101-2113. |
[8] | 秦蕾, 吴慧敏, 徐琦琦, 陈万昭, 王东, 李宏博, 夏盼盼, 刘泽鹏, 夏利宁. 外源MDR鼠伤寒沙门菌对健康小鼠肠道菌群的影响[J]. 畜牧兽医学报, 2023, 54(5): 2158-2169. |
[9] | 田艳红, 于江旭, 焦宇洲, 高东阳, 蔡旭旺. 沙门菌脂多糖的结构修饰及其效应的研究进展[J]. 畜牧兽医学报, 2023, 54(4): 1392-1402. |
[10] | 李德豪, 李宜穗, 马静云, 孙媛, 张祥斌. 一株沙门菌温和噬菌体PEA2-3生物学特性及基因组分析[J]. 畜牧兽医学报, 2023, 54(4): 1632-1640. |
[11] | 姚敏, 石博妹, 黄廷华. 沙门菌SptP调控巨噬细胞MAPK-CDK6-RB通路的初步分析[J]. 畜牧兽医学报, 2023, 54(3): 1187-1198. |
[12] | 蒋增海, 滕霖, 贺安文, 刘言言, 乐敏, 何启盖. 猪产业链中鼠伤寒沙门菌及沙门菌血清型4,[5],12:i:-基因组学分析[J]. 畜牧兽医学报, 2023, 54(3): 1199-1209. |
[13] | 李莉莉, 陈凯风, 陈兵, 周洲平, 王南威, 瞿孝云, 徐成刚, 廖明, 张建民. STM1827在鼠伤寒沙门菌生物被膜形成及环境应激中的调控作用[J]. 畜牧兽医学报, 2023, 54(12): 5207-5217. |
[14] | 韩生义, 李玲霞, 李淑萍, 胡国元, 李生庆. 沙门菌噬菌体SP3的生物学特性及基因组分析[J]. 畜牧兽医学报, 2023, 54(12): 5228-5239. |
[15] | 杨梦林, 郑世奇, 彭凯, 王玮, 黄燕华, 彭杰. 鸽源鼠伤寒沙门菌的分离鉴定及致病性分析[J]. 畜牧兽医学报, 2023, 54(11): 4880-4888. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||