畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (7): 2846-2858.doi: 10.11843/j.issn.0366-6964.2024.07.007
宋云方1,2(), 程浩1,2, 冯露雅1,2, 白平4, 邓远坤1,2, 夏耀耀3, 谭碧娥1,2, 王婧1,2,*(
)
收稿日期:
2023-09-28
出版日期:
2024-07-23
发布日期:
2024-07-24
通讯作者:
王婧
E-mail:18084080964@163.com;jingwang023@hunau.edu.cn
作者简介:
宋云方(2000-),女,四川南充人,硕士生,主要从事仔猪肠道发育与免疫研究,E-mail: 18084080964@163.com
基金资助:
Yunfang SONG1,2(), Hao CHENG1,2, Luya FENG1,2, Ping BAI4, Yuankun DENG1,2, Yaoyao XIA3, Bi'e TAN1,2, Jing WANG1,2,*(
)
Received:
2023-09-28
Online:
2024-07-23
Published:
2024-07-24
Contact:
Jing WANG
E-mail:18084080964@163.com;jingwang023@hunau.edu.cn
摘要:
肠道微环境是由肠道细胞、微生物及其代谢产物组成的微观内环境,对肠黏膜免疫系统的结构与功能的塑造至关重要。本文系统地综述了肠道微环境营养代谢影响肠黏膜免疫细胞命运的作用机制,以期更好地理解肠道微环境与肠道免疫,为肠道健康和相关疾病的治疗提供参考。
中图分类号:
宋云方, 程浩, 冯露雅, 白平, 邓远坤, 夏耀耀, 谭碧娥, 王婧. 营养调控肠道免疫细胞活化机制研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2846-2858.
Yunfang SONG, Hao CHENG, Luya FENG, Ping BAI, Yuankun DENG, Yaoyao XIA, Bi'e TAN, Jing WANG. Research Progress on the Mechanism of Nutrition Regulating Intestinal Immune Cell Activation[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2846-2858.
表 1
氨基酸调节免疫细胞命运"
氨基酸及其代谢产物 Amino acids and their metabolites | 免疫细胞 Immune cells | 机制 Mechanism | 亚型和功能 Subtypes and functions |
谷氨酰胺、亮氨酸、甲硫氨酸、精氨酸 Glutamine, leucine, methionine Acid, arginine | T细胞 T cells | 哺乳动物雷帕霉素靶蛋白 mTOR | 活化(+) Activation(+) |
犬尿氨酸 Kynurenine | T细胞 T cells | 芳香烃受体 AhR | 调节性T细胞(+)、辅助性T细胞17(-) Treg(+), Th17(-) |
吲哚乙酸 Indoleacetic acid | T细胞 T cells | 芳香烃受体 AhR | 调节性T细胞(+)、辅助性T细胞17(-) Treg(+),Th17(-) |
硫代半胱氨酸 Thiocysteine | B细胞 B cells | 丙酮酸激酶同工酶2 PKM2 | 活化(+) Activation(+) |
γ-氨基丁酸 GABA | B细胞 B cells | γ-氨基丁酸-γ-氨基丁酸受体-雷帕霉素靶蛋白复合物1 GABA-GABAR-mTORC1 | IgA+ B细胞(+) IgA+ B cells |
色氨酸 Tryptophan | B细胞 B cells | 芳香烃受体 AhR | 调节性B细胞(+)、白介素-10(+) Bregs(+), IL-10(+) |
吲哚乙酸 Indoleacetic acid | B细胞 B cells | Toll样受体4-核因子κB TLR4-NF-κB | 白介素-35(+) IL-35(+) |
丝氨酸 Serine | 巨噬细胞 Macrophage | p38依赖性Janus激酶-信号转导及转录激活蛋白 p38-JAK-STAT | M1巨噬细胞(+)、M2巨噬细胞(-) M1(+), M2(-) |
谷氨酰胺 Glutamine | 巨噬细胞 Macrophage | 核因子κB NF-κB | M1巨噬细胞(-) M1(-) |
表 2
脂肪酸和碳水化合物调节免疫细胞命运"
分类 Sort | 营养代谢 Nutrient metabolism | 免疫细胞 Immune cells | 机制 Mechanism | 亚型和功能 Subtypes and functions |
脂肪酸 Fatty acid | 脂肪酸 Fatty acid | T细胞 T cells | G蛋白偶联受体120-转化生长因子β激活激酶1- IκB激酶-核因子κB GPR120-TAK1-IKK-NF-κB | 活化(-) Activation(-) |
二十碳五烯酸、二十二碳六烯酸 EPA、DHA | 白细胞介素-6/糖蛋白130-信号转导子和转录激活子3 IL-6/gp130-STAT3 | 辅助性T细胞17(-) Th17(-) | ||
单糖 Monose | 果糖 Fructose | 巨噬细胞 Macrophage | Toll样受体4-丝裂原活化蛋白激酶/核因子κb/Janus激酶3-信号转导子和转录激活子4 TLR4- MAPK/NF-κB/JAK3-STAT4 | 白细胞介素-6、肿瘤坏死因子-α IL-6、TNF-α |
葡萄糖 Glucose | T细胞 T cells | 活性氧-转化生长因子-β-受体反应性 ROS-TGF-β-ROR | 辅助性T细胞17(+) Th17(+) | |
B细胞 B cells | 哺乳动物雷帕霉素靶蛋白 mTOR | 凋亡(+) Apoptosis(+) | ||
巨噬细胞 Macrophage | Toll样受体4-核因子κb/丝裂原活化蛋白激酶 TLR4-NF-κB/MAPK | 白细胞介素-6、白细胞介素-1β、肿瘤坏死因子-α(+) IL-6、IL-1β、TNF-α(+) | ||
多糖 Polysaccharide | 岩藻聚糖 Fucosan | 巨噬细胞 Macrophage | 诱导型一氧化氮合酶-环氧化酶2 iNOS-COX-2 | 白细胞介素-6、白细胞介素-1β、肿瘤坏死因子-α(-) IL-6、IL-1β、TNF-α(-) |
多糖 Polysaccharide | 茯苓多糖 Pachymaran | 巨噬细胞 Macrophage | Toll样受体4-髓样分化因子88/肿瘤坏死因子受体相关因子6 TLR4-MyD88/TRAF6 | 白细胞介素-2、白细胞介素-6、白细胞介素-17A、肿瘤坏死因子-α、干扰素-γ(+) IL-2、IL-6、IL-17A、TNF-α、IFN-γ(+) |
果胶 Pectin | 巨噬细胞 Macrophage | Toll样受体2 TLR2 | 肿瘤坏死因子-α、干扰素-γ、 白细胞介素-17(+) TNF-α、IFN-γ、IL-17(+) | |
白细胞介素-22-芳香烃受体-白细胞介素-3 IL-22-AhR-IL-3 | 白细胞介素-10、白细胞介素-1β、白细胞介素-6、白细胞介素-8、肿瘤坏死因子-α(-) IL-10、IL-1β、IL-6、IL-8、TNF-α(-) | |||
短链脂肪酸 SCFAs | 短链脂肪酸 SCFAs | T细胞 T cells | G蛋白偶联受体43 GPR43 | 辅助性T细胞1、白细胞介素-10(+) Th1;IL-10(+) |
乙酸盐 Acetate | 蛋白激酶S6K/核糖体S6蛋白-哺乳动物雷帕霉素靶蛋白-G蛋白偶联受体41/43 S6K/rS6-mTOR-GPR41/GPR43 | 辅助性T细胞1、辅助性T细胞17、白细胞介素-10(+) Th1、Th17;IL-10(+) | ||
丙酸盐 Propionate | G蛋白偶联受体6/组蛋白脱乙酰酶 G protein-coupled receptor 6/histone deacetylase | 辅助性T细胞17、调节性T细胞(+) Th17、Tregs(+) | ||
丁酸盐 Butyrate | B细胞 B cells | 芳香烃受体 AhR | 调节性B细胞(+) Breg(+) 白细胞介素-10(+),白细胞介素-17(-) IL-10(+),IL-17(-) | |
视黄酸受体 RAR | 白细胞介素-10(+),白细胞介素-17(-) IL-10(+),IL-17(-) | |||
巨噬细胞 Macrophage | 核苷酸结合寡聚蛋白3 NLRP3 | 活化(-); Activation(-) |
表 3
微量营养素调节免疫细胞命运"
营养素 Nutrient | 免疫细胞 Immune cell | 亚型和功能 Subtypes and functions |
锌 Zinc | T细胞 T cells | 辅助性T细胞1(+)、辅助性T细胞17(-)、调节性T细胞(-) Th1(+),Th17(-),Tregs(-) |
B细胞 B cells | 成熟(+)、凋亡(-) Maturation(+),apoptosis(-) | |
硒 Selenium | T细胞 T cells | 辅助性T细胞1、白细胞介素-12p40、干扰素-γ(+) Th 1,IL-12p40,IFN-γ(+) |
巨噬细胞 Macrophage | M1巨噬细胞、白细胞介素-10(-) M1,IL-10(-) | |
铁 Iron | 巨噬细胞 Macrophage | M1巨噬细胞 M1(-) |
T细胞 T cells | 调节性T细胞(-) Tregs(-) | |
B细胞 B cells | 增殖、浆细胞(+) Proliferating, plasma cells(+) | |
维生素E Vitamin E | T细胞 T cells | 白细胞介素-2/10、肿瘤坏死因子-α、干扰素-γ(+) IL-2,IL-10,TNF-α,IFN-γ(+) |
维生素C Vitamin C | T细胞 T cells | 增殖(+) Proliferating(+) |
维生素C Vitamin C | B细胞 B cells | 成熟(+) Maturation(+) |
维生素B Vitamin B | 树突细胞 Dendritic cell | 白细胞介素-6/12/1β、肿瘤坏死因子-α(+) IL-6,IL-12,IL-1β,TNF-α(+) |
T细胞 T cells | 白细胞介素-4/5/9/13/17/33(-) IL-4,IL-5,IL-9,IL-13,IL-17,IL-33(-) | |
巨噬细胞 Macrophage | M2巨噬细胞(+) M2(+) | |
维生素A Vitamin A | T细胞 T cells | 调节性T细胞、辅助性T细胞17、白细胞介素-6(+),辅助性T细胞2(-) Tregs,Th17,IL-6(+),Th2(-) |
巨噬细胞 Macrophage | M1巨噬细胞(+) M1(+) | |
维生素D Vitamin D | 巨噬细胞 Macrophage | M2巨噬细胞、白细胞介素-10(+),肿瘤坏死因子-α(-) M2,IL-10(+),TNF-α(-) |
1 |
SANIDAD K Z , ZENG M Y . Neonatal gut microbiome and immunity[J]. Curr Opin Microbiol, 2020, 56, 30- 37.
doi: 10.1016/j.mib.2020.05.011 |
2 |
CHASE C C L . Enteric immunity: happy gut, healthy animal[J]. Vet Clin North Am Food Anim Pract, 2018, 34 (1): 1- 18.
doi: 10.1016/j.cvfa.2017.10.006 |
3 |
ADILIAGHDAM F , AMATULLAH H , DIGUMARTHI S , et al. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation[J]. Sci Immunol, 2022, 7 (70): eabn6660.
doi: 10.1126/sciimmunol.abn6660 |
4 |
LIAO Y , ZHAO J J , BULEK K , et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis[J]. Nat Commun, 2020, 11 (1): 900.
doi: 10.1038/s41467-020-14698-y |
5 |
SHEN Q C , HUANG Z Z , YAO J C , et al. Extracellular vesicles-mediated interaction within intestinal microenvironment in inflammatory bowel disease[J]. J Adv Res, 2022, 37, 221- 233.
doi: 10.1016/j.jare.2021.07.002 |
6 |
STOCKINGER B , SHAH K , WINCENT E . AHR in the intestinal microenvironment: safeguarding barrier function[J]. Nat Rev Gastroenterol Hepatol, 2021, 18 (8): 559- 570.
doi: 10.1038/s41575-021-00430-8 |
7 |
MUCIDA D , ESTERHAZY D . SnapShot: gut immune niches[J]. Cell, 2018, 174 (6): 1600- 1600.e1.
doi: 10.1016/j.cell.2018.08.043 |
8 |
PEREZ-LOPEZ A , BEHNSEN J , NUCCIO S P , et al. Mucosal immunity to pathogenic intestinal bacteria[J]. Nat Rev Immunol, 2016, 16 (3): 135- 148.
doi: 10.1038/nri.2015.17 |
9 |
CANESSO M C C , MOREIRA T G , FARIA A M C . Compartmentalization of gut immune responses: mucosal niches and lymph node peculiarities[J]. Immunol Lett, 2022, 251-252, 86- 90.
doi: 10.1016/j.imlet.2022.10.005 |
10 |
JAMES K R , GOMES T , ELMENTAITE R , et al. Distinct microbial and immune niches of the human colon[J]. Nat Immunol, 2020, 21 (3): 343- 353.
doi: 10.1038/s41590-020-0602-z |
11 |
COSTA G T , VASCONCELOS Q D J S , ARAGÃO G F . Fructooligosaccharides on inflammation, immunomodulation, oxidative stress, and gut immune response: a systematic review[J]. Nutr Rev, 2022, 80 (4): 709- 722.
doi: 10.1093/nutrit/nuab115 |
12 |
MACPHERSON A J , HARRIS N L . Interactions between commensal intestinal bacteria and the immune system[J]. Nat Rev Immunol, 2004, 4 (6): 478- 485.
doi: 10.1038/nri1373 |
13 |
KAYAMA H , OKUMURA R , TAKEDA K . Interaction between the microbiota, epithelia, and immune cells in the intestine[J]. Annu Rev Immunol, 2020, 38, 23- 48.
doi: 10.1146/annurev-immunol-070119-115104 |
14 |
FANG P , LI X Y , DAI J , et al. Immune cell subset differentiation and tissue inflammation[J]. J Hematol Oncol, 2018, 11 (1): 97.
doi: 10.1186/s13045-018-0637-x |
15 |
WILLIAMS J A , ZHANG J J , JEON H , et al. Thymic medullary epithelium and thymocyte self-tolerance require cooperation between CD28-CD80/86 and CD40-CD40L costimulatory pathways[J]. J Immunol, 2014, 192 (2): 630- 640.
doi: 10.4049/jimmunol.1302550 |
16 |
TANG T T , CHENG X , TRUONG B , et al. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint[J]. Pharmacol Ther, 2021, 219, 107709.
doi: 10.1016/j.pharmthera.2020.107709 |
17 |
MØLLER S H , HSUEH P C , YU Y R , et al. Metabolic programs tailor T cell immunity in viral infection, cancer, and aging[J]. Cell Metab, 2022, 34 (3): 378- 395.
doi: 10.1016/j.cmet.2022.02.003 |
18 |
HAN C F , GE M M , HO P C , et al. Fueling T-cell antitumor immunity: amino acid metabolism revisited[J]. Cancer Immunol Res, 2021, 9 (12): 1373- 1382.
doi: 10.1158/2326-6066.CIR-21-0459 |
19 |
XIA Y Y , CHEN S Y , ZHAO Y Y , et al. GABA attenuates ETEC-induced intestinal epithelial cell apoptosis involving GABAAR signaling and the AMPK-autophagy pathway[J]. Food Funct, 2019, 10 (11): 7509- 7522.
doi: 10.1039/C9FO01863H |
20 |
LI M X , LI M Y , LEI J X , et al. Huangqin decoction ameliorates DSS-induced ulcerative colitis: role of gut microbiota and amino acid metabolism, mTOR pathway and intestinal epithelial barrier[J]. Phytomedicine, 2022, 100, 154052.
doi: 10.1016/j.phymed.2022.154052 |
21 |
CHENG H , LIU J , ZHANG D D , et al. Ginsenoside Rg1 alleviates acute ulcerative colitis by modulating gut microbiota and microbial tryptophan metabolism[J]. Front Immunol, 2022, 13, 817600.
doi: 10.3389/fimmu.2022.817600 |
22 |
OPITZ C A , LITZENBURGER U M , SAHM F , et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor[J]. Nature, 2011, 478 (7368): 197- 203.
doi: 10.1038/nature10491 |
23 |
WANG J J , ZHU N N , SU X M , et al. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis[J]. Cells, 2023, 12 (5): 793.
doi: 10.3390/cells12050793 |
24 |
WANG X Y , SUN G Q , FENG T , et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression[J]. Cell Res, 2019, 29 (10): 787- 803.
doi: 10.1038/s41422-019-0216-x |
25 |
KELLY B , PEARCE E L . Amino assets: how amino acids support immunity[J]. Cell Metab, 2020, 32 (2): 154- 175.
doi: 10.1016/j.cmet.2020.06.010 |
26 | WU B , LI L , RUAN T , et al. Effect of methionine deficiency on duodenal and jejunal IgA+ B cell count and immunoglobulin level of broilers[J]. Iran J Vet Res, 2018, 19 (3): 165- 171. |
27 |
DENG J , LÜ S , LIU H Y , et al. Homocysteine activates B cells via regulating PKM2-dependent metabolic reprogramming[J]. J Immunol, 2017, 198 (1): 170- 183.
doi: 10.4049/jimmunol.1600613 |
28 |
LIAO Y X , FAN L J , BIN P , et al. GABA signaling enforces intestinal germinal center B cell differentiation[J]. Proc Natl Acad Sci U S A, 2022, 119 (44): e2215921119.
doi: 10.1073/pnas.2215921119 |
29 |
SU X M , GAO Y H , YANG R C . Gut microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis[J]. Cells, 2022, 11 (15): 2296.
doi: 10.3390/cells11152296 |
30 |
ZHUANG H R , YANG Z H , CHEN T H , et al. Boosting HSA vaccination with jujube powder modulating gut microbiota favorable for arginine metabolism[J]. Nutrients, 2023, 15 (8): 1955.
doi: 10.3390/nu15081955 |
31 |
SHAN X , HU P H , NI L N , et al. Serine metabolism orchestrates macrophage polarization by regulating the IGF1-p38 axis[J]. Cell Mol Immunol, 2022, 19 (11): 1263- 1278.
doi: 10.1038/s41423-022-00925-7 |
32 |
XIA Y Y , HE F , WU X Y , et al. GABA transporter sustains IL-1β production in macrophages[J]. Sci Adv, 2021, 7, eabe9274.
doi: 10.1126/sciadv.abe9274 |
33 |
HU X B , MA Z F , XU B B , et al. Glutamine metabolic microenvironment drives M2 macrophage polarization to mediate trastuzumab resistance in HER2-positive gastric cancer[J]. Cancer Commun (Lond), 2023, 43 (8): 909- 937.
doi: 10.1002/cac2.12459 |
34 |
MATOS A , CARVALHO M , BICHO M , et al. Arginine and arginases modulate metabolism, tumor microenvironment and prostate cancer progression[J]. Nutrients, 2021, 13 (12): 4503.
doi: 10.3390/nu13124503 |
35 |
ZHAO Y M , SUN J X , LI Y , et al. Tryptophan 2, 3-dioxygenase 2 controls M2 macrophages polarization to promote esophageal squamous cell carcinoma progression via AKT/GSK3β/IL-8 signaling pathway[J]. Acta Pharm Sin B, 2021, 11 (9): 2835- 2849.
doi: 10.1016/j.apsb.2021.03.009 |
36 |
FRANCESCHI T S , SOARES M S P , PEDRA N S , et al. Characterization of macrophage phenotype, redox, and purinergic response upon chronic treatment with methionine and methionine sulfoxide in mice[J]. Amino Acids, 2020, 52 (4): 629- 638.
doi: 10.1007/s00726-020-02841-4 |
37 | KIM Y J , LEE J Y , LEE J J , et al. Arginine-mediated gut microbiome remodeling promotes host pulmonary immune defense against nontuberculous mycobacterial infection[J]. Gut Microbes, 2022, 14 (1): 2073132. |
38 |
DRAPER E , DECOURCEY J , HIGGINS S C , et al. Conjugated linoleic acid suppresses dendritic cell activation and subsequent Th17 responses[J]. J Nutr Biochem, 2014, 25 (7): 741- 749.
doi: 10.1016/j.jnutbio.2014.03.004 |
39 |
CALDER P C . Immunomodulation by omega-3 fatty acids[J]. Prostaglandins Leukot Essent Fatty Acids, 2007, 77 (5-6): 327- 335.
doi: 10.1016/j.plefa.2007.10.015 |
40 |
CARLSSON J A , WOLD A E , SANDBERG A S , et al. The polyunsaturated fatty acids arachidonic acid and docosahexaenoic acid induce mouse dendritic cells maturation but reduce T-cell responses in vitro[J]. PLoS One, 2015, 10 (11): e0143741.
doi: 10.1371/journal.pone.0143741 |
41 |
HOU T Y , MCMURRAY D N , CHAPKIN R S . Omega-3 fatty acids, lipid rafts, and T cell signaling[J]. Eur J Pharmacol, 2016, 785, 2- 9.
doi: 10.1016/j.ejphar.2015.03.091 |
42 |
OUYANG L , DAN Y , HUA W B , et al. Therapeutic effect of omega-3 fatty acids on T cell-mediated autoimmune diseases[J]. Microbiol Immunol, 2020, 64 (8): 563- 569.
doi: 10.1111/1348-0421.12800 |
43 |
LAUSON C B N , TIBERTI S , CORSETTO P A , et al. Linoleic acid potentiates CD8+ Tcell metabolic fitness and antitumor immunity[J]. Cell Metab, 2023, 35 (4): 633- 650.e9.
doi: 10.1016/j.cmet.2023.02.013 |
44 | LIERMANN W , VIERGUTZ T , UKEN K L , et al. Influences of maternal conjugated linoleic acid and essential fatty acid supply during late pregnancy and early lactation on T and B cell subsets in mesenteric lymph nodes and the small intestine of neonatal calves[J]. Front Vet Sci, 2020, 16 (7): 604452. |
45 | HUBLER M J , KENNEDY A J . Role of lipids in the metabolism and activation of immune cells[J]. J Nutr Biochem, 2015, 34, 1- 7. |
46 |
YANG S S , WANG C J , HUANG X , et al. Linoleic acid stimulation results in TGF-β1 production and inhibition of PEDV infection in vitro[J]. Virology, 2023, 581, 89- 91.
doi: 10.1016/j.virol.2023.03.004 |
47 |
ROCKETT B D , SALAMEH M , CARRAWAY K , et al. n-3 PUFA improves fatty acid composition, prevents palmitate-induced apoptosis, and differentially modifies B cell cytokine secretion in vitro and ex vivo[J]. J Lipid Res, 2010, 51 (6): 1284- 1297.
doi: 10.1194/jlr.M000851 |
48 |
DRAPER E , REYNOLDS C M , CANAVAN M , et al. Omega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ[J]. J Nutr Biochem, 2011, 22 (8): 784- 790.
doi: 10.1016/j.jnutbio.2010.06.009 |
49 |
KONG W M , YEN J H , GANEA D . Docosahexaenoic acid prevents dendritic cell maturation, inhibits antigen-specific Th1/Th17 differentiation and suppresses experimental autoimmune encephalomyelitis[J]. Brain, Behav, Immun, 2011, 25 (5): 872- 882.
doi: 10.1016/j.bbi.2010.09.012 |
50 |
LOSCHER C E , DRAPER E , LEAVY O , et al. Conjugated linoleic acid suppresses NF-κB activation and IL-12 production in dendritic cells through ERK-mediated IL-10 induction[J]. J Immunol, 2005, 175 (8): 4990- 4998.
doi: 10.4049/jimmunol.175.8.4990 |
51 |
CHENG H , ZHOU J Y , SUN Y T , et al. High fructose diet: a risk factor for immune system dysregulation[J]. Hum Immunol, 2022, 83 (6): 538- 546.
doi: 10.1016/j.humimm.2022.03.007 |
52 | MA X , NAN F , LIANG H T , et al. Excessive intake of sugar: an accomplice of inflammation[J]. Front Immunol, 2022, 13 (13): 988481. |
53 |
XIA Y Y , ZHANG Q Z , YE Y Y , et al. Melatonergic signalling instructs transcriptional inhibition of IFNGR2 to lessen interleukin-1β-dependent inflammation[J]. Clin Translational Med, 2022, 12 (2): e716.
doi: 10.1002/ctm2.716 |
54 |
JAYAWARDENA T U , SANJEEWA K K A , NAGAHAWATTA D P , et al. Anti-inflammatory effects of sulfated polysaccharide from Sargassum swartzii in macrophages via blocking TLR/NF-Κb Signal Transduction[J]. Mar Drugs, 2020, 18 (12): 601.
doi: 10.3390/md18120601 |
55 |
陆江, 朱道仙, 卢劲晔, 等. 高聚合度菊粉通过调节肠-脂肪组织轴改善高脂饮食诱导的犬肥胖[J]. 畜牧兽医学报, 2023, 54 (9): 3941- 3950.
doi: 10.11843/j.issn.0366-6964.2023.09.032 |
LU J , ZHU D X , LU J Y , et al. Inulin with high degree of polymerization improves high-fat diet induced obesity in dogs by regulating the gut-adipose tissue axis[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (9): 3941- 3950.
doi: 10.11843/j.issn.0366-6964.2023.09.032 |
|
56 |
JAYACHANDRAN M , CHEN J L , CHUNG S S M , et al. A critical review on the impacts of β-glucans on gut microbiota and human health[J]. J Nutr Biochem, 2018, 61, 101- 110.
doi: 10.1016/j.jnutbio.2018.06.010 |
57 |
TIAN H , LIU Z J , PU Y W , et al. Immunomodulatory effects exerted by Poria Cocos polysaccharides via TLR4/TRAF6/NF-κB signaling in vitro and in vivo[J]. Biomed Pharmacother, 2019, 112, 108709.
doi: 10.1016/j.biopha.2019.108709 |
58 |
DANG G Q , WEN X B , ZHONG R Q , et al. Pectin modulates intestinal immunity in a pig model via regulating the gut microbiota-derived tryptophan metabolite-AhR-IL22 pathway[J]. J Anim Sci Biotechnol, 2023, 14 (1): 38.
doi: 10.1186/s40104-023-00838-z |
59 |
BLANCO-PÉREZ F , STEIGERWALD H , SCHÜLKE S , et al. The dietary fiber pectin: health benefits and potential for the treatment of allergies by modulation of gut microbiota[J]. Curr Allergy Asthma Rep, 2021, 21 (10): 43.
doi: 10.1007/s11882-021-01020-z |
60 |
TIAN S S , PAUDEL D , HAO F H , et al. Refined fiber inulin promotes inflammation-associated colon tumorigenesis by modulating microbial succinate production[J]. Cancer Rep (Hoboken), 2023, 6 (11): e1863.
doi: 10.1002/cnr2.1863 |
61 | OSTADMOHAMMADI S , NOJOUMI S A , FATEH A , et al. Interaction between Clostridium species and microbiota to progress immune regulation[J]. Acta Microbiol Immunol Hung, 2022, 7, 01678. |
62 |
DU H X , YUE S Y , NIU D , et al. Gut microflora modulates Th17/Treg cell differentiation in experimental autoimmune prostatitis via the short-chain fatty acid propionate[J]. Front Immunol, 2022, 13, 915218.
doi: 10.3389/fimmu.2022.915218 |
63 |
PARK J , KIM M , KANG S G , et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway[J]. Mucosal Immunol, 2015, 8 (1): 80- 93.
doi: 10.1038/mi.2014.44 |
64 |
HE F , QIU Y Y , WU X Y , et al. Slc6a13 deficiency attenuates Pasteurella multocida infection-induced inflammation via glycine-inflammasome signaling[J]. J Innate Immun, 2023, 15 (1): 107- 121.
doi: 10.1159/000525089 |
65 |
KIM M , QIE Y , PARK J , et al. Gut microbial metabolites fuel host antibody responses[J]. Cell Host Microbe, 2016, 20 (2): 202- 214.
doi: 10.1016/j.chom.2016.07.001 |
66 |
ROSSER E C , PIPER C J M , MATEI D E , et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells[J]. Cell Metab, 2020, 31 (4): 837- 851.e10.
doi: 10.1016/j.cmet.2020.03.003 |
67 |
KIM D S , WOO J S , MIN H K , et al. Short-chain fatty acid butyrate induces IL-10-producing B cells by regulating circadian-clock-related genes to ameliorate Sjögren's syndrome[J]. J Autoimmun, 2021, 119, 102611.
doi: 10.1016/j.jaut.2021.102611 |
68 |
ELMADFA I , MEYER A L . The role of the status of selected micronutrients in shaping the immune function[J]. Endocr Metab Immune Disord Drug Targets, 2019, 19 (8): 1100- 1115.
doi: 10.2174/1871530319666190529101816 |
69 |
FAN L J , XIA Y Y , WANG Y X , et al. Gut microbiota bridges dietary nutrients and host immunity[J]. Sci China Life Sci, 2023, 66 (11): 2466- 2514.
doi: 10.1007/s11427-023-2346-1 |
70 |
XIA Y Y , CHEN S Y , ZENG S J , et al. Melatonin in macrophage biology: current understanding and future perspectives[J]. J Pineal Res, 2019, 66 (2): e12547.
doi: 10.1111/jpi.12547 |
71 |
GARCÍA-MONTERO C , FRAILE-MARTÍNEZ O , GÓMEZ-LAHOZ A M , et al. Nutritional components in western diet versus mediterranean diet at the gut microbiota-immune system interplay.implications for health and disease[J]. Nutrients, 2021, 13 (2): 699.
doi: 10.3390/nu13020699 |
72 |
PARADA VENEGAS D , DE LA FUENTE M K , LANDSKRON G , et al. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10, 277.
doi: 10.3389/fimmu.2019.00277 |
73 |
KHAN S , WALIULLAH S , GODFREY V , et al. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice[J]. Sci Transl Med, 2020, 12 (567): eaay6218.
doi: 10.1126/scitranslmed.aay6218 |
74 |
HOCHREIN S M , WU H , ECKSTEIN M , et al. The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming[J]. Cell Metab, 2022, 34 (4): 516- 532.e11.
doi: 10.1016/j.cmet.2022.02.015 |
75 |
田威龙, 司景磊, 刘笑笑, 等. 高脂高糖饮食对小型猪肠道微生物的影响[J]. 畜牧兽医学报, 2022, 53 (4): 1143- 1153.
doi: 10.11843/j.issn.0366-6964.2022.04.014 |
TIAN W L , SI J L , LIU X X , et al. Effects of high-fat and high-sugar diet on intestinal microbiota in mini-pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (4): 1143- 1153.
doi: 10.11843/j.issn.0366-6964.2022.04.014 |
|
76 |
KAWANO Y , EDWARDS M , HUANG Y M , et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome[J]. Cell, 2022, 185 (19): 3501- 3519.e20.
doi: 10.1016/j.cell.2022.08.005 |
77 |
BARREA L , MUSCOGIURI G , FRIAS-TORAL E , et al. Nutrition and immune system: from the Mediterranean diet to dietary supplementary through the microbiota[J]. Crit Rev Food Sci Nutr, 2021, 61 (18): 3066- 3090.
doi: 10.1080/10408398.2020.1792826 |
78 |
HASKEY N , ESTAKI M , YE J Y , et al. A Mediterranean Diet Pattern improves intestinal inflammation concomitant with reshaping of the bacteriome in ulcerative colitis: a randomized controlled trial[J]. J Crohns Colitis, 2023, 17 (10): 1569- 1578.
doi: 10.1093/ecco-jcc/jjad073 |
79 |
MERRA G , NOCE A , MARRONE G , et al. Influence of mediterranean diet on human gut microbiota[J]. Nutrients, 2020, 13 (1): 7.
doi: 10.3390/nu13010007 |
80 | MAKKI K , DEEHAN E C , WALTER J , et al. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host Microbe, 2018, 23 (6): 705- 715. |
81 | ZHAO L P , ZHANG F , DING X Y , et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359 (6380): 1151- 1156. |
82 | MATSUMOTO K , SAWANO H , OTSUBO M , et al. Comparison of the Effects of 3 Forms of Soluble Dietary Fiber on the Production of IgA in BALB/cAJcl and BALB/cAJcl-nu/nu Mice[J]. J Nutr, 2023, 153 (5): 1618- 1626. |
83 | XIA Y Y , DING X Z , WANG S Y , et al. Circadian orchestration of host and gut microbiota in infection[J]. Biol Rev, 2023, 98 (1): 115- 131. |
84 | MICHAUDEL C , SOKOL H . The gut microbiota at the service of immunometabolism[J]. Cell Metab, 2020, 32 (4): 514- 523. |
85 | ESLAMI M , YOUSEFI B , KOKHAEI P , et al. Importance of probiotics in the prevention and treatment of colorectal cancer[J]. J Cell Physiol, 2019, 234 (10): 17127- 17143. |
86 | PLAZA-DIAZ J , RUIZ-OJEDA F J , GIL-CAMPOS M , et al. Mechanisms of action of probiotics[J]. Adv Nutr, 2019, 10, S49- S66. |
87 | BATTISTINI C , B R , HERKENHOFF M E , et al. Vitamin D modulates intestinal microbiota in inflammatory bowel diseases[J]. Int J Mol Sciences, 2020, 22 (1): 362. |
88 | FIERS W D , LEONARDI I , ILIEV I D . From birth and throughout life: fungal microbiota in nutrition and metabolic health[J]. Annu Rev Nutr, 2020, 40, 323- 343. |
89 | MALIK A , SHARMA D , MALIREDDI R K S , et al. SYK-CARD9 signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer[J]. Immunity, 2018, 49 (3): 515- 530.e5. |
90 | ZHU Y N , SHI T , LU X , et al. Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22[J]. EMBO J, 2021, 40 (11): e105320. |
91 | BÄR E , WHITNEY P G , MOOR K , et al. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells[J]. Immunity, 2014, 40 (1): 117- 127. |
92 | NAGATA N , TAKEUCHI T , MASUOKA H , et al. Human gut microbiota and its metabolites impact immune responses in COVID-19 and its complications[J]. Gastroenterology, 2023, 164 (2): 272- 288. |
[1] | 陈倩玲, 沙玉柱, 刘秀, 邵鹏阳, 王翻兄, 陈小伟, 杨文鑫, 谢转回, 高敏, 黄薇. 肠道微生物与线粒体互作调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2293-2303. |
[2] | 冯铭, 伊旭东, 庞卫军. 肠道微生物通过骨骼肌纤维类型、肌内脂肪含量和骨骼肌代谢调控猪肉质研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2304-2312. |
[3] | 郑先瑞, 卓明雪, 纪金丽, 蒋维虎, 邓在双, 张吉成, 田雅莉, 丁月云, 张晓东, 殷宗俊. 皖南黑猪不同生长阶段血清免疫指标及肠道菌群的特征分析[J]. 畜牧兽医学报, 2023, 54(9): 3770-3783. |
[4] | 禹世雄, 魏凌云, 徐甜甜, 焦金真, 蒋林树, 贺志雄. 幼龄反刍动物肠道微生物定植规律及其营养调控研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2701-2707. |
[5] | 纪鹏, 张斌, 张春勇, 邢笑锟, 杨佳, 刘韶娜, 方碟, 潘洪彬, 赵彦光, 安清聪. 日粮添加乳铁蛋白对断奶仔猪肠道微生物多样性的影响[J]. 畜牧兽医学报, 2023, 54(7): 2942-2955. |
[6] | 杜海东, 娜仁花. 反刍动物胃肠道上皮屏障功能及与微生物互作研究[J]. 畜牧兽医学报, 2023, 54(5): 1804-1814. |
[7] | 陆梦琪, 杨文杰, 李萍, 余鹏, 董翎, 牛晓玉, 杨克礼, 邹维华, 宋卉. 基于16S rRNA测序分析PRRSV感染仔猪肺和肠道中微生物菌群的变化[J]. 畜牧兽医学报, 2023, 54(4): 1664-1678. |
[8] | 袁岩聪, 何航, 刘安芳, 万堃, 章杰. 不同体重四川白鹅消化生理、免疫和肠道微生物的比较分析[J]. 畜牧兽医学报, 2023, 54(3): 1124-1134. |
[9] | 刘攀, 李瑞琦, 谭占坤, 王逸飞, 陈晓晨, 何伟先, 杜忍让, 马健, 褚瑰燕, 蔡传江. 高纤维日粮对生长育肥猪生长性能、肉品质及肠道微生物的影响[J]. 畜牧兽医学报, 2023, 54(10): 4247-4259. |
[10] | 袁铜, 黄靓, 杨琳, 王文策, 朱勇文. 肠道菌群及其代谢产物调节动物线粒体功能的研究进展[J]. 畜牧兽医学报, 2023, 54(1): 48-57. |
[11] | 郭新羽, 沙玉柱, 蒲小宁, 吕卫兵, 刘秀, 胡江, 罗玉柱, 王继卿, 李少斌, 赵志东. 环境温度对动物肠道微生物菌群影响的研究进展[J]. 畜牧兽医学报, 2022, 53(9): 2858-2866. |
[12] | 张倩, 崔燕, 余四九, 何俊峰, 潘阳阳, 王萌. 免疫细胞在牦牛附睾和输精管的分布规律[J]. 畜牧兽医学报, 2022, 53(6): 1925-1933. |
[13] | 张德明, 黄嘉訸, 李劲树, 郑红梅, 王少英, 杨公社, 史新娥. 猪肠道微生物及其代谢产物与肠道屏障研究进展[J]. 畜牧兽医学报, 2022, 53(5): 1334-1344. |
[14] | 田威龙, 司景磊, 刘笑笑, 綦文晶, 陈奎蓉, 程锋, 李月月, 吕冬玲, 梁靓, 高九昱, 奉玲丽, 莫家远, 兰干球, 梁晶. 高脂高糖饮食对小型猪肠道微生物的影响[J]. 畜牧兽医学报, 2022, 53(4): 1143-1153. |
[15] | 付域泽, 焦帅, 张乃锋. 产丁酸菌的产酸机制及其在调控肠道健康中的作用研究进展[J]. 畜牧兽医学报, 2022, 53(12): 4148-4158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||