畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (8): 3195-3205.doi: 10.11843/j.issn.0366-6964.2023.08.007
王姿月, 张子卉, 吴文学*, 彭辰*
收稿日期:
2023-01-16
出版日期:
2023-08-23
发布日期:
2023-08-22
通讯作者:
吴文学,主要从事畜禽传染病免疫调控机理、传染病诊断技术和疫苗研制研究,E-mail:wuwenxue@cau.edu.cn;彭辰,主要从事痘病毒的基础病毒学、分子生物学,以及病毒拮抗宿主天然免疫反应的分子机制研究,E-mail:pengchenea@cau.edu.cn
作者简介:
王姿月(2001-),女,河南洛阳人,本科生,主要从事预防兽医学研究,E-mail:wangziyue211@sina.com
基金资助:
WANG Ziyue, ZHANG Zihui, WU Wenxue*, PENG Chen*
Received:
2023-01-16
Online:
2023-08-23
Published:
2023-08-22
摘要: 猴痘病毒(monkeypox virus,MPXV)是痘病毒科(Poxviridae)正痘病毒属(Orthopoxvirus)成员之一,其基因组为双链DNA,对人与多种哺乳动物均具有致病性,是一种重要的人兽共患病病原。2022年5月,猴痘在非流行地区出现了大范围暴发,引起了广泛社会关注。本文综述了目前的猴痘诊断、预防与治疗方法,对猴痘疫苗及药物研发进展进行了汇总,以期为猴痘的诊断、治疗及疫病防控提供参考。
中图分类号:
王姿月, 张子卉, 吴文学, 彭辰. 猴痘的诊断、预防和治疗[J]. 畜牧兽医学报, 2023, 54(8): 3195-3205.
WANG Ziyue, ZHANG Zihui, WU Wenxue, PENG Chen. Monkeypox: Diagnosis, Prevention and Treatments[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3195-3205.
[1] | World Health Organization. Multi-country monkeypox outbreak in non-endemic countries[EB/OL]. (2022-05-21). https://www. who. int/emergencies/disease-outbreak-news/item/2022-DON385. |
[2] | SHCHELKUNOV S N, TOTMENIN A V, SAFRONOV P F, et al. Analysis of the monkeypox virus genome[J]. Virology, 2002, 297(2):172-194. |
[3] | LU T Y, WU Z Z, JIANG S B, et al. The current emergence of monkeypox:the recurrence of another smallpox?[J]. Biosaf Health, 2022, 4(6):369-375. |
[4] | SKLENOVSKÁ N, VAN RANST M. Emergence of monkeypox as the most important orthopoxvirus infection in humans[J]. Front Public Health, 2018, 6:241. |
[5] | OSORIO J E, IAMS K P, METEYER C U, et al. Comparison of monkeypox viruses pathogenesis in mice by in vivo imaging[J]. PLoS One, 2009, 4(8):e6592. |
[6] | LIKOS A M, SAMMONS S A, OLSON V A, et al. A tale of two clades:monkeypox viruses[J]. J Gen Virol, 2005, 86(10):2661-2672. |
[7] | NAKAZAWA Y, MAULDIN M, EMERSON G, et al. A phylogeographic investigation of African monkeypox[J]. Viruses, 2015, 7(4):2168-2184. |
[8] | JONES N. How the giraffe got its neck:‘unicorn’ fossil could shed light on puzzle[J]. Nature, 2022, 606(7913):239. |
[9] | GRANGE Z L, GOLDSTEIN T, JOHNSON C K, et al. Ranking the risk of animal-to-human spillover for newly discovered viruses[J]. Proc Natl Acad Sci U S A, 2021, 118(15):e2002324118. |
[10] | GUARNER J, DEL RIO C, MALANI P N. Monkeypox in 2022-what clinicians need to know[J]. JAMA, 2022, 328(2):139-140. |
[11] | ALAKUNLE E, MOENS U, NCHINDA G, et al. Monkeypox virus in Nigeria:infection biology, epidemiology, and evolution[J]. Viruses, 2020, 12(11):1257-1257. |
[12] | JEZEK Z, GRAB B, PALUKU K M, et al. Human monkeypox:disease pattern, incidence and attack rates in a rural area of northern Zaire[J]. Trop Geogr Med, 1988, 40(2):73-83. |
[13] | KABUGA A I, El ZOWALATY M E. A review of the monkeypox virus and a recent outbreak of skin rash disease in Nigeria[J]. J Med Virol, 2019, 91(4):533-540. |
[14] | TITANJI B K, TEGOMOH B, NEMATOLLAHI S, et al. Monkeypox:a contemporary review for healthcare professionals[J]. Open Forum Infect Dis, 2022, 9(7):ofac310. |
[15] | BROWN K, LEGGAT P A. Human monkeypox:current state of knowledge and implications for the future[J]. Trop Med Infect Dis, 2016, 1(1):8. |
[16] | VAUGHAN A, AARONS E, ASTBURY J, et al. Human-to-human transmission of monkeypox virus, United Kingdom, October 2018[J]. Emerging Infect Dis, 2020, 26(4):782-785. |
[17] | VON MAGNUS P, ANDERSEN E K, PETERSEN K B, et al. A pox-like disease in cynomolgus monkeys[J]. Acta Pathol Microbiol Scand, 1959, 46(2):156-176. |
[18] | LADNYJ I D, ZIEGLER P, KIMA E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo[J]. Bull World Health Organ, 1972, 46(5):593-597. |
[19] | JEZEK Z, SZCZENIOWSKI M, PALUKU K M, et al. Human monkeypox:clinical features of 282 patients[J]. J Infect Dis, 1987, 156(2):293-298. |
[20] | SEANG S, BURREL S, TODESCO E, et al. Evidence of human-to-dog transmission of monkeypox virus[J]. Lancet, 2022, 400(10353):658-659. |
[21] | FAHRNI M L, PRIYANKA, CHOUDHARY O P. Possibility of vertical transmission of the human monkeypox virus[J]. Int J Surg (London, England), 2022, 105:106832. |
[22] | XIAO S L, SBRANA E, WATTS D M, et al. Experimental infection of prairie dogs with monkeypox virus[J]. Emerging Infect Dis, 2005, 11(4):539-545. |
[23] | FALENDYSZ E A, LOPERA J G, LORENZSONN F, et al. Further assessment of monkeypox virus infection in gambian pouched rats (Cricetomys gambianus) using in vivo bioluminescent imaging[J]. PLoS Negl Trop Dis, 2015, 9(10):e0004130. |
[24] | LAI C C, HSU C K, YEN M Y, et al. Monkeypox:an emerging global threat during the COVID-19 pandemic[J]. J Microbiol Immunol Infect, 2022, 55(5):787-794. |
[25] | BRYER J, FREEMAN E E, ROSENBACH M. Monkeypox emerges on a global scale:a historical review and dermatologic primer[J]. J Am Acad Dermatol, 2022, 87(5):1069-1074. |
[26] | L'VOV D K, ZVEREV V V, GINTSBURG A L, et al. Smallpox is a dormant volcano[J]. Vopr Virusol, 2008, 53(4):4-8. |
[27] | LUO Q, HAN J. Preparedness for a monkeypox outbreak[J]. Infect Med, 2022, 1(2):124-134. |
[28] | ENA J, WENZEL R P. Viruela del mono:un poxvirus emerge nuevamente[J]. Rev Clín Esp, 2022, 222(8):504-505. |
[29] | ALTINDIS M, PUCA E, SHAPO L. Diagnosis of monkeypox virus-an overview[J]. Travel Med Infect Dis, 2022, 50:102459. |
[30] | LI Y, OLSON V A, LAUE T, et al. Detection of monkeypox virus with real-time PCR assays[J]. J Clin Virol, 2006, 36(3):194-203. |
[31] | WHO. Laboratory testing for the monkeypox virus:interim guidance[EB/OL]. (2022-05-23). https://www.who.int/publications/i/item/WHO-MPX-laboratory-2022.1. |
[32] | ADLER H, GOULD S, HINE P, et al. Clinical features and management of human monkeypox:a retrospective observational study in the UK[J]. Lancet Infect Dis, 2022, 22(8):1153-1162. |
[33] | SHCHELKUNOV S N, SHCHERBAKOV D N, MAKSYUTOV R A, et al. Species-specific identification of variola, monkeypox, cowpox, and vaccinia viruses by multiplex real-time PCR assay[J]. J Virol Methods, 2011, 175(2):163-169. |
[34] | PEIRÓ-MESTRES A, FUERTES I, CAMPRUBÍ-FERRER D, et al. Frequent detection of monkeypox virus DNA in saliva, semen, and other clinical samples from 12 patients, Barcelona, Spain, May to June 2022[J]. Euro Surveill, 2022, 27(28):2200503. |
[35] | CDC. Test procedure:Monkeypox virus generic real-time PCR test[EB/OL]. (2023-02-19)https://www.cdc.gov/poxvirus/monkeypox/pdf/PCR-Diagnostic-Protocol-508.pdf. |
[36] | WHO. Monkeypox[EB/OL]. (2022-05-19).https://www.who.int/news-room/fact-sheets/detail/monkeypox. |
[37] | HAMMARLUND E, LEWIS M W, CARTER S V, et al. Multiple diagnostic techniques identify previously vaccinated individuals with protective immunity against monkeypox[J]. Nat Med, 2005, 11(9):1005-1011. |
[38] | DAVI S D, KISSENKÖTTER J, FAYE M, et al. Recombinase polymerase amplification assay for rapid detection of monkeypox virus[J]. Diagn Microbiol Infect Dis, 2019, 95(1):41-45. |
[39] | SUI Y T, XU Q, LIU M S, et al. CRISPR-Cas12a-based detection of monkeypox virus[J]. J Infect, 2022, 85(6):702-769. |
[40] | CRUMP R, KOROM M, BULLER R M, et al. Buccal viral DNA as a trigger for brincidofovir therapy in the mousepox model of smallpox[J]. Antiviral Res, 2017, 139:112-116. |
[41] | VANDENBOGAERT M, KWASIBORSKI A, GONOFIO E, et al. Nanopore sequencing of a monkeypox virus strain isolated from a pustular lesion in the Central African Republic[J]. Sci Rep, 2022, 12(1):10768. |
[42] | WOLF K, HETHER T, GILCHUK P, et al. Identifying and tracking low-frequency virus-specific TCR clonotypes using High-Throughput sequencing[J]. Cell Rep, 2018, 25(9):2369-2378. e4. |
[43] | KAREM K L, REYNOLDS M, BRADEN Z, et al. Characterization of acute-phase humoral immunity to monkeypox:use of immunoglobulin M enzyme-linked immunosorbent assay for detection of monkeypox infection during the 2003 North American outbreak[J]. Clin Diagn Lab Immunol, 2005, 12(7):867-872. |
[44] | BERHANU A, PRIGGE J T, SILVERA P M, et al. Treatment with the smallpox antiviral tecovirimat (ST-246) alone or in combination with ACAM2000 vaccination is effective as a postsymptomatic therapy for monkeypox virus infection[J]. Antimicrob Agents Chemother, 2015, 59(7):4296-4300. |
[45] | SADEGHI P, SOHRABI H, HEJAZI M, et al. Lateral flow assays (LFA) as an alternative medical diagnosis method for detection of virus species:the intertwine of nanotechnology with sensing strategies[J]. TrAC Trends Anal Chem, 2021, 145:116460. |
[46] | TOWNSEND M B, MACNEIL A, REYNOLDS M G, et al. Evaluation of the Tetracore Orthopox BioThreat® antigen detection assay using laboratory grown orthopoxviruses and rash illness clinical specimens[J]. J Virol Methods, 2013, 187(1):37-42. |
[47] | KIDOKORO M, TASHIRO M, SHIDA H. Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8[J]. Proc Natl Acad Sci U S A, 2005, 102(11):4152-4157. |
[48] | WHO. Vaccines and immunization for monkeypox:interim guidance, 24 August 2022[EB/OL]. (2022-08-24). https://apps. who. int/iris/handle/10665/361894. |
[49] | CDC. Centers for Disease Control and Prevention[EB/OL]. (2023-01-06). https://www.cdc.gov/poxvirus/mpox/index.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fpoxvirus%2Fmpox%2Fresponse%2F2022%2Fcdc-response.html. |
[50] | NALCA A, ZUMBRUN E E. ACAM2000TM:the new smallpox vaccine for United States Strategic National Stockpile[J]. Drug Des Devel Ther, 2010, 4:71-79. |
[51] | PETERSEN B W, HARMS T J, REYNOLDS M G, et al. Use of vaccinia virus smallpox vaccine in laboratory and health care personnel at risk for occupational exposure to orthopoxviruses-recommendations of the Advisory Committee on Immunization Practices (ACIP), 2015[J]. MMWR Morb Mortal Wkly Rep, 2016, 65(10):257-262. |
[52] | PETERSEN B W, KABAMBA J, MCCOLLUM A M, et al. Vaccinating against monkeypox in the Democratic Republic of the Congo[J]. Antiviral Res, 2019, 162:171-177. |
[53] | HUNG Y P, LEE C C, LEE J C, et al. A brief on new waves of monkeypox and vaccines and antiviral drugs for monkeypox[J]. J Microbiol Immunol Infect, 2022, 55(5):795-802. |
[54] | VOLZ A, SUTTER G. Modified vaccinia virus ankara:history, value in basic research, and current perspectives for vaccine development[J]. Adv Virus Res, 2017, 97:187-243. |
[55] | OVERTON E T, STAPLETON J, FRANK I, et al. Safety and immunogenicity of modified vaccinia ankara-bavarian nordic smallpox vaccine in vaccinia-naive and experienced human immunodeficiency virus-infected individuals:an open-label, controlled clinical phase II trial[J]. Open Forum Infect Dis, 2015, 2(2):ofv040. |
[56] | RIZK J G, LIPPI G, HENRY B M, et al. Prevention and treatment of monkeypox[J]. Drugs, 2022, 82(9):957-963. |
[57] | SAITO T, FUJII T, KANATANI Y, et al. Clinical and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8[J]. JAMA, 2009, 301(10):1025-1033. |
[58] | YOKOTE H, SHINMURA Y, KANEHARA T, et al. Safety of attenuated smallpox vaccine LC16m8 in immunodeficient mice[J]. Clin Vaccine Immunol, 2014, 21(9):1261-1266. |
[59] | ETO A, SAITO T, YOKOTE H, et al. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8[J]. Vaccine, 2015, 33(45):6106-6111. |
[60] | ROGERS J V, PARKINSON C V, CHOI Y W, et al. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation[J]. Nanoscale Res Lett, 2008, 3(4):129. |
[61] | HOGAN M J, PARDI N. mRNA vaccines in the COVID-19 pandemic and beyond[J]. Annu Rev Med, 2022, 73:17-39. |
[62] | RUBIN E J, LONGO D L. Covid-19 mRNA vaccines-six of one, half a dozen of the other[J]. N Engl J Med, 2022, 386(2):183-185. |
[63] | SANGBOONRUANG S, SEMAKUL N, OBEID M A, et al. Potentiality of melittin-loaded niosomal vesicles against vancomycin-intermediate Staphylococcus aureus and Staphylococcal skin infection[J]. Int J Nanomedicine, 2021, 16:7639-7661. |
[64] | OBEID M A, AMAWI H, ALSHEHRI A, et al. Monkeypox:emerging virus of concern; Antivirals and vaccines therapeutic options[J]. Microb Pathog, 2022, 173:105799. |
[65] | MCCOLLUM A M, DAMON I K. Human monkeypox[J]. Clin Infect Dis, 2014, 58(2):260-267. |
[66] | OKYAY R A, BAYRAK E, KAYA E, et al. Another epidemic in the shadow of Covid 19 pandemic:a review of monkeypox[J]. Eurasian J Med Oncol, 2022, 6(2):95-99. |
[67] | RUSSO A T, GROSENBACH D W, CHINSANGARAM J, et al. An overview of tecovirimat for smallpox treatment and expanded anti-orthopoxvirus applications[J]. Expert Rev Anti Infect Ther, 2021, 19(3):331-344. |
[68] | GROSENBACH D W, HONEYCHURCH K, ROSE E A, et al. Oral tecovirimat for the treatment of smallpox[J]. N Engl J Med, 2018, 379(1):44-53. |
[69] | QUENELLE D C, BULLER R M L, PARKER S, et al. Efficacy of delayed treatment with ST-246 given orally against systemic orthopoxvirus infections in mice[J]. Antimicrob Agents Chemother, 2007, 51(2):689-695. |
[70] | PAYNE L G. Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia[J]. J Gen Virol, 1980, 50(1):89-100. |
[71] | SMITH G L, VANDERPLASSCHEN A, LAW M. The formation and function of extracellular enveloped vaccinia virus[J]. J Gen Virol, 2002, 83(12):2915-2931. |
[72] | BERHANU A, KING D S, MOSIER S, et al. Impact of ST-246® on ACAM2000TM smallpox vaccine reactogenicity, immunogenicity, and protective efficacy in immunodeficient mice[J]. Vaccine, 2010, 29(2):289-303. |
[73] | LANTTO J, HAAHR HANSEN M, RASMUSSEN S K, et al. Capturing the natural diversity of the human antibody response against vaccinia virus[J]. J Virol, 2011, 85(4):1820-1833. |
[74] | RUSSO A T, BERHANU A, BIGGER C B, et al. Co-administration of tecovirimat and ACAM2000TM in non-human primates:Effect of tecovirimat treatment on ACAM2000 immunogenicity and efficacy versus lethal monkeypox virus challenge[J]. Vaccine, 2020, 38(3):644-654. |
[75] | LEDERMAN E R, DAVIDSON W, GROFF H L, et al. Progressive vaccinia:case description and laboratory-guided therapy with vaccinia immune globulin, ST-246, and CMX001[J]. J Infect Dis, 2012, 206(9):1372-1385. |
[76] | LANIER R, TROST L, TIPPIN T, et al. Development of CMX001 for the treatment of poxvirus infections[J]. Viruses, 2010, 2(12):2740-2762. |
[77] | DURAFFOUR S, LORENZO M M, ZÖLLER G, et al. ST-246 is a key antiviral to inhibit the viral F13L phospholipase, one of the essential proteins for orthopoxvirus wrapping[J]. J Antimicrob Chemother, 2015, 70(5):1367-1380. |
[78] | FERRARA F, LA PORTA R, SANTILLI P, et al. Are multiple sclerosis therapies safe in severe acute respiratory syndrome coronavirus 2 times?[J]. Indian J Pharmacol, 2020, 52(5):441-442. |
[79] | WHO.Monkeypox.WHO fact sheet N 16;2011[EB/OL].http://www.whoint/mediacentre/factsheets/fs161/en/. |
[80] | PARKER S, D'ANGELO J, BULLER R M, et al. A human recombinant analogue to plasma-derived vaccinia immunoglobulin prophylactically and therapeutically protects against lethal orthopoxvirus challenge[J]. Antiviral Res, 2021, 195:105179. |
[81] | KUMAR A, NATH K, PAREKH Y, et al. Antimicrobial silver nanoparticle-photodeposited fabrics for SARS-CoV-2 destruction[J]. Colloid Interface Sci Commun, 2021, 45:100542. |
[82] | LANGHAMMER S, KOBAN R, YUE C, et al. Inhibition of poxvirus spreading by the anti-tumor drug Gefitinib (Iressa?)[J]. Antiviral Res, 2011, 89(1):64-70. |
[83] | SOOKAROMDEE P, WIWANITKIT V. Mouth sores and monkeypox:a consideration[J]. J Stomatol Oral Maxillofac Surg, 2022, 123(6):593-594. |
[84] | BREMAN J G, KALISA-RUTI, STENIOWSKI M V, et al. Human monkeypox, 1970-79[J]. Bull World Health Organ, 1980, 58(2):165-182. |
[85] | PARKER S, NUARA A, BULLER R M L, et al. Human monkeypox:an emerging zoonotic disease[J]. Future Microbiol, 2007, 2(1):17-34. |
[86] | YANG Z L. Monkeypox:a potential global threat?[J]. J Med Virol, 2022, 94(9):4034-4036. |
[1] | 宋晓晴, 邓瑞德, 李欣, 李姣, 李润成, 杜丽飞, 董伟, 葛猛. PCV4 Cap抗体ELISA检测方法的建立及血清流行病学调查[J]. 畜牧兽医学报, 2024, 55(5): 2072-2079. |
[2] | 马茹梦, 赵玉梁, 马明爽, 国桂海, 刘芯孜, 李佳璇, 崔文, 姜艳平, 单智夫, 周晗, 王丽, 乔薪瑗, 唐丽杰, 王晓娜, 李一经. 不同猪源受体菌表达猪流行性腹泻病毒保护性抗原S1诱导免疫应答的比较研究[J]. 畜牧兽医学报, 2024, 55(5): 2090-2099. |
[3] | 吕亚迪, 杨洁, 谢文婷, 徐婷, 陈瑞爱. 共表达膜结合型与可溶性H9N2亚型禽流感病毒HA蛋白的重组基因Ⅶ型新城疫病毒的构建及免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2123-2134. |
[4] | 高洁, 李晓成, 穆杨, 张慧, 魏荣, 李劼. 荚膜B型多杀性巴氏杆菌外膜囊泡生物学特性分析与免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2168-2175. |
[5] | 郭雪莲, 李永琴, 李瑞乾, 李昊, 靳双媛, 王雪妍, 杜家伟, 许立华. 牛呼吸道合胞体病毒G和F蛋白的生物学功能[J]. 畜牧兽医学报, 2024, 55(4): 1478-1487. |
[6] | 李春晓, 安尉, 高博泉, 王振龙, 韩冰, 陶慧, 王金全, 王秀敏. 猫犬主要过敏原蛋白的最新研究进展[J]. 畜牧兽医学报, 2024, 55(2): 471-480. |
[7] | 李思远, 付新成, 袁雪松, 毛立, 蔡旭航, 孙心如, 黄金, 谢玲玲, 王府, 周华, 张琪, 李基棕, 李彬. 河北省廊坊市牛主要病毒性腹泻病原感染状况检测及牛冠状病毒演化分析[J]. 畜牧兽医学报, 2024, 55(2): 649-659. |
[8] | 陈鑫, 秦彤. mRNA疫苗及其在动物传染病中的研究展望[J]. 畜牧兽医学报, 2023, 54(7): 2732-2742. |
[9] | 陈芳芳, 栗中华, 朱志伟, 李锦春, 刘翠艳. 恒定链的多功能研究新进展[J]. 畜牧兽医学报, 2023, 54(5): 1824-1833. |
[10] | 常益铭, 汤承, 岳华. 牦牛源牛呼吸道合胞体病毒的分子流行病学调查[J]. 畜牧兽医学报, 2023, 54(5): 2030-2041. |
[11] | 伭婷, 杨凯一, 蔡金双, 耿琰, 李玉峰. 副猪格拉瑟菌6个候选抗原对小鼠的免疫特性分析[J]. 畜牧兽医学报, 2023, 54(5): 2073-2082. |
[12] | 李易聪, 蒲飞洋, 冯茜莉, 汪梦竹, 赵泽阳, 张德荣, 马忠仁, 周建华. 牛病毒性腹泻病毒蛋白的免疫学特性以及相关疫苗研究进展[J]. 畜牧兽医学报, 2023, 54(4): 1381-1391. |
[13] | 李硕, 张韵, 白满元, 赵瑞翀, 宋河涛, 穆素雨, 滕志东, 董虎, 马娥宁, 孙世琪, 郭慧琛, 尹双辉. 生物矿化的口蹄疫病毒样颗粒疫苗的免疫原性评价[J]. 畜牧兽医学报, 2023, 54(4): 1598-1607. |
[14] | 李让, 翁翔, 李泉晓, 吴道澄, 曹辉, 张爱莲. 栽培一枝蒿粗多糖混合口蹄疫疫苗乳化方法及稳定性分析[J]. 畜牧兽医学报, 2023, 54(4): 1608-1615. |
[15] | 阿比克哈莫, 汤承, 杨晨, 杨发龙. 嵴病毒的研究进展[J]. 畜牧兽医学报, 2023, 54(3): 900-913. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||