Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (10): 4290-4301.doi: 10.11843/j.issn.0366-6964.2024.10.005
• Review • Previous Articles Next Articles
Tingting ZHOU1(), Li LI1, Yantao WU1, Wenying LU1, Baoquan FU1,2, Hong YIN1,2, Wanzhong JIA1,2,*(
), Hongbin YAN1,*(
)
Received:
2023-12-25
Online:
2024-10-23
Published:
2024-11-04
Contact:
Wanzhong JIA, Hongbin YAN
E-mail:1305403647@qq.com;jiawanzhong@caas.cn;yanhongbin@caas.cn
CLC Number:
Tingting ZHOU, Li LI, Yantao WU, Wenying LU, Baoquan FU, Hong YIN, Wanzhong JIA, Hongbin YAN. Progress on Single-cell Transcriptomics Technology and Its Applications in Research on Parasites[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4290-4301.
Table 1
Comparison of several scRNA-seq methods"
测序技术 | 单细胞分离技术 | 转录本覆盖范围 | 优势 | 扩增 | 唯一分子标识符 |
Sequencing technology | Single cell separation | Transcript coverage | Advantage | Amplification | UMI |
CEL-seq/CEL-seq2 | 手动稀释分离 | 3′端序列 | 线性扩增以高精度减少非特异性片段的积累 | IVT | 有 |
MARS-seq/MARS-seq2 | 荧光激活细胞分选 | 3′端序列 | 高通量,良好的稳定性 | IVT | 有 |
SMART-seq/SMART-seq2 | 手动稀释分离 | 全长 | cDNA文库的平均长度和产量升高,序列覆盖率较高 | PCR | 无 |
SMART-seq3 | 荧光激活细胞分选 | 全长 | 高灵敏度,能够较好地识别细胞类型、状态及亚型特异性 | PCR | 有 |
SMART-seq3xpress | 荧光激活细胞分选 | 全长 | 高通量,耗时短,低成本 | PCR | 有 |
SCRB-seq | 荧光激活细胞分选 | 3′端序列 | 高通量,低成本 | PCR | 有 |
Drop-seq | 微滴技术 | 3′端序列 | 高通量,低成本 | PCR | 有 |
inDrop | 微流体技术 | 3′端序列 | 高通量,低成本 | IVT | 有 |
10×Genomics | 微流体技术 | 3′端序列 | 高通量,低成本,高灵敏度 | PCR | 有 |
Microwell-seq | 琼脂糖微孔阵列 | 全长 | 高通量,低成本 | PCR | 无 |
Seq-well | 微孔阵列 | 3′端序列 | 高通量,交叉污染较小 | PCR | 有 |
Live-seq | 流体力显微镜技术 | 全长 | 保留细胞生物活性 | PCR | 无 |
1 |
CHAMBERS D C , CAREW A M , LUKOWSKI S W , et al. Transcriptomics and single-cell RNA-sequencing[J]. Respirology, 2019, 24 (1): 29- 36.
doi: 10.1111/resp.13412 |
2 |
MANZONI C , KIA D A , VANDROVCOVA J , et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences[J]. Brief Bioinform, 2018, 19 (2): 286- 302.
doi: 10.1093/bib/bbw114 |
3 |
EBERWINE J , YEH H , MIYASHIRO K , et al. Analysis of gene expression in single live neurons[J]. Proc Natl Acad Sci U S A, 1992, 89 (7): 3010- 3014.
doi: 10.1073/pnas.89.7.3010 |
4 |
TANG F C , BARBACIORU C , WANG Y Z , et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6 (5): 377- 382.
doi: 10.1038/nmeth.1315 |
5 |
JOVIC D , LIANG X , ZENG H , et al. Single-cell RNA sequencing technologies and applications: A brief overview[J]. Clin Transl Med, 2022, 12 (3): e694.
doi: 10.1002/ctm2.694 |
6 | 杨富升, 古小彬. 近十年PCR技术在寄生虫病诊断中的应用[J]. 畜牧兽医学报, 2023, 54 (8): 3183- 3194. |
YANG F S , GU X B . A review on applications of PCR technology in the diagnosis of parasitic diseases in the past 10 years[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3183- 3194. | |
7 |
LI P Y , SARFATI D N , XUE Y , et al. Single-cell analysis of Schistosoma mansoni identifies a conserved genetic program controlling germline stem cell fate[J]. Nat Commun, 2021, 12 (1): 485.
doi: 10.1038/s41467-020-20794-w |
8 | FENG M , ZHANG Y H , ZHOU H , et al. Single-cell RNA sequencing reveals that the switching of the transcriptional profiles of cysteine-related genes alters the virulence of Entamoeba histolytica[J]. mSystems, 2020, 5 (6): e01095- 20. |
9 |
RUBERTO A A , BOURKE C , MERIENNE N , et al. Single-cell RNA sequencing reveals developmental heterogeneity among Plasmodium berghei sporozoites[J]. Sci Rep, 2021, 11 (1): 4127.
doi: 10.1038/s41598-021-82914-w |
10 |
OLSEN T K , BARYAWNO N . Introduction to Single-cell RNA sequencing[J]. Curr Protoc Mol Biol, 2018, 122 (1): e57.
doi: 10.1002/cpmb.57 |
11 |
PAIK D T , CHO S , TIAN L , et al. Single-cell RNA sequencing in cardiovascular development, disease and medicine[J]. Nat Rev Cardiol, 2020, 17 (8): 457- 473.
doi: 10.1038/s41569-020-0359-y |
12 |
ZIEGENHAIN C , VIETH B , PAREKH S , et al. Comparative analysis of Single-cell RNA sequencing methods[J]. Mol Cell, 2017, 65 (4): 631- 643.4.
doi: 10.1016/j.molcel.2017.01.023 |
13 |
HASHIMSHONY T , WAGNER F , SHER N , et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2 (3): 666- 673.
doi: 10.1016/j.celrep.2012.08.003 |
14 |
HASHIMSHONY T , SENDEROVICH N , AVITAL G , et al. CEL-Seq2:sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17, 77.
doi: 10.1186/s13059-016-0938-8 |
15 |
JAITIN D A , KENIGSBERG E , KEREN-SHAUL H , et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014, 343 (6172): 776- 779.
doi: 10.1126/science.1247651 |
16 |
KEREN-SHAUL H , KENIGSBERG E , JAITIN D A , et al. MARS-seq2. 0:an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing[J]. Nat Protoc, 2019, 14 (6): 1841- 1862.
doi: 10.1038/s41596-019-0164-4 |
17 |
RAMSKÖLD D , LUO S J , WANG Y C , et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol, 2012, 30 (8): 777- 782.
doi: 10.1038/nbt.2282 |
18 |
PICELLI S , BJÖRKLUND Å K , FARIDANI O R , et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10 (11): 1096- 1098.
doi: 10.1038/nmeth.2639 |
19 |
HAGEMANN-JENSEN M , ZIEGENHAIN C , CHEN P , et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3[J]. Nat Biotechnol, 2020, 38 (6): 708- 714.
doi: 10.1038/s41587-020-0497-0 |
20 |
HAGEMANN-JENSEN M , ZIEGENHAIN C , SANDBERG R . Scalable single-cell RNA sequencing from full transcripts with Smart-seq3xpress[J]. Nat Biotechnol, 2022, 40 (10): 1452- 1457.
doi: 10.1038/s41587-022-01311-4 |
21 | SOUMILLON M , CACCHIARELLI D , SEMRAU S , et al. Characterization of directed differentiation by high-throughput single-cell RNA-Seq[J]. bioRxiv, 2014, 003236. |
22 |
MACOSKO E Z , BASU A , SATIJA R , et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161 (5): 1202- 1214.
doi: 10.1016/j.cell.2015.05.002 |
23 |
KLEIN A M , MAZUTIS L , AKARTUNA I , et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161 (5): 1187- 1201.
doi: 10.1016/j.cell.2015.04.044 |
24 |
ZHENG G X Y , TERRY J M , BELGRADER P , et al. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017, 8, 14049.
doi: 10.1038/ncomms14049 |
25 |
CHEN W Z , GUILLAUME-GENTIL O , RAINER P Y , et al. Live-seq enables temporal transcriptomic recording of single cells[J]. Nature, 2022, 608 (7924): 733- 740.
doi: 10.1038/s41586-022-05046-9 |
26 |
HAN X P , WANG R Y , ZHOU Y C , et al. Mapping the mouse cell atlas by microwell-seq[J]. Cell, 2018, 172 (5): 1091- 1107.17.
doi: 10.1016/j.cell.2018.02.001 |
27 |
GIERAHN T M , WADSWORTH Ⅱ M H , HUGHES T K , et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput[J]. Nat Methods, 2017, 14 (4): 395- 398.
doi: 10.1038/nmeth.4179 |
28 | 熊和丽, 沙茜, 刘韶娜, 等. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38 (3): 226- 233. |
XIONG H L , SHA Q , LIU S N , et al. Application of single-cell transcriptome sequencing in animals[J]. Biotechnology Bulletin, 2022, 38 (3): 226- 233. | |
29 |
ZHANG X N , LI T Q , LIU F , et al. Comparative analysis of droplet-based ultra-high-throughput single-cell rna-seq systems[J]. Mol Cell, 2019, 73 (1): 130- 142.5.
doi: 10.1016/j.molcel.2018.10.020 |
30 |
MEISTER A , GABI M , BEHR P , et al. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond[J]. Nano Lett, 2009, 9 (6): 2501- 2507.
doi: 10.1021/nl901384x |
31 |
PICELLI S , FARIDANI O R , BJÖRKLUND Å K , et al. Full-length RNA-seq from single cells using Smart-seq2[J]. Nat Protoc, 2014, 9 (1): 171- 181.
doi: 10.1038/nprot.2014.006 |
32 |
HORVATH R . Single-cell temporal transcriptomics from tiny cytoplasmic biopsies[J]. Cell Rep Methods, 2022, 2 (10): 100319.
doi: 10.1016/j.crmeth.2022.100319 |
33 |
TANG Q K , LI W J , HUANG J , et al. Single-cell sequencing analysis of peripheral blood in patients with moyamoya disease[J]. Orphanet J Rare Dis, 2023, 18 (1): 174.
doi: 10.1186/s13023-023-02781-8 |
34 |
DOBIN A , DAVIS C A , SCHLESINGER F , et al. STAR: ultrafast universal RNA-seq aligner[J]. Bioinformatics, 2013, 29 (1): 15- 21.
doi: 10.1093/bioinformatics/bts635 |
35 |
YOU Y , TIAN L Y , SU S A , et al. Benchmarking UMI-based single-cell RNA-seq preprocessing workflows[J]. Genome Biol, 2021, 22 (1): 339.
doi: 10.1186/s13059-021-02552-3 |
36 |
ENGSTRÖM P G , STEIJGER T , SIPOS B , et al. Systematic evaluation of spliced alignment programs for RNA-seq data[J]. Nat Methods, 2013, 10 (12): 1185- 1191.
doi: 10.1038/nmeth.2722 |
37 |
CHEN G , NING B T , SHI T L . Single-cell RNA-seq technologies and related computational data analysis[J]. Front Genet, 2019, 10, 317.
doi: 10.3389/fgene.2019.00317 |
38 | SLOVIN S , CARISSIMO A , PANARIELLO F , et al. Single-cell RNA sequencing analysis: a step-by-step overview[J]. Methods Mol Biol, 2021, 2284, 343- 365. |
39 |
BUTLER A , HOFFMAN P , SMIBERT P , et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species[J]. Nat Biotechnol, 2018, 36 (5): 411- 420.
doi: 10.1038/nbt.4096 |
40 |
CAO J Y , SPIELMANN M , QIU X J , et al. The single-cell transcriptional landscape of mammalian organogenesis[J]. Nature, 2019, 566 (7745): 496- 502.
doi: 10.1038/s41586-019-0969-x |
41 |
CHEN Q X , YIN Q J , SONG J X , et al. Identification of monocyte-associated genes as predictive biomarkers of heart failure after acute myocardial infarction[J]. BMC Med Genomics, 2021, 14 (1): 44.
doi: 10.1186/s12920-021-00890-6 |
42 | 赵琴平, 董惠芬, 蒋明森. 关于寄生虫病防治研究的几点思考[J]. 中国血吸虫病防治杂志, 2013, 25 (6): 564-569, 589. |
ZHAO Q P , DONG H F , JIANG M S . Views for research development of control of parasitic diseases[J]. Chinese Journal of Schistosomiasis Control, 2013, 25 (6): 564-569, 589. | |
43 |
TINTORI S C , NISHIMURA E O , GOLDEN P , et al. A transcriptional lineage of the early C. elegans embryo[J]. Dev Cell, 2016, 38 (4): 430- 444.
doi: 10.1016/j.devcel.2016.07.025 |
44 | LORENZO R , ONIZUKA M , DEFRANCE M , et al. Combining single-cell RNA-sequencing with a molecular atlas unveils new markers for Caenorhabditis elegans neuron classes[J]. Nucleic Acids Res, 2020, 48 (13): 7119- 7134. |
45 |
TAYLOR S R , SANTPERE G , WEINREB A , et al. Molecular topography of an entire nervous system[J]. Cell, 2021, 184 (16): 4329- 4347.23.
doi: 10.1016/j.cell.2021.06.023 |
46 |
FINCHER C T , WURTZEL O , DE HOOG T , et al. Cell type transcriptome atlas for the planarian Schmidtea mediterranea[J]. Science, 2018, 360 (6391): eaaq1736.
doi: 10.1126/science.aaq1736 |
47 |
ZENG A , LI H , GUO L H , et al. Prospectively isolated tetraspanin+ neoblasts are adult pluripotent stem cells underlying planaria regeneration[J]. Cell, 2018, 173 (7): 1593- 1608.20.
doi: 10.1016/j.cell.2018.05.006 |
48 |
WURTZEL O , COTE L E , POIRIER A , et al. A generic and cell-type-specific wound response precedes regeneration in planarians[J]. Dev Cell, 2015, 35 (5): 632- 645.
doi: 10.1016/j.devcel.2015.11.004 |
49 |
SONG L G , ZENG X D , LI Y X , et al. Imported parasitic diseases in mainland China: current status and perspectives for better control and prevention[J]. Infect Dis Poverty, 2018, 7 (1): 78.
doi: 10.1186/s40249-018-0454-z |
50 |
BAHK Y Y , SHIN E H , CHO S H , et al. Prevention and control strategies for parasitic infections in the Korea centers for disease control and prevention[J]. Korean J Parasitol, 2018, 56 (5): 401- 408.
doi: 10.3347/kjp.2018.56.5.401 |
51 | 叶美琼. 寄生虫病的危害及防治对策[J]. 今日畜牧兽医, 2021, 37 (5): 88- 89. |
YE M Q . The harm and prevention strategies of parasitic diseases[J]. Today Animal Husbandry and Veterinary Medicine, 2021, 37 (5): 88- 89. | |
52 |
LVSCHER A , DE KONING H P , MÄSER P . Chemotherapeutic strategies against Trypanosoma brucei: drug targets vs. drug targeting[J]. Curr Pharm Des, 2007, 13 (6): 555- 567.
doi: 10.2174/138161207780162809 |
53 |
MATETOVICI I , CALJON G , VAN DEN ABBEELE J . Tsetse fly tolerance to T. brucei infection: transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland[J]. BMC Genomics, 2016, 17 (1): 971.
doi: 10.1186/s12864-016-3283-0 |
54 |
HUTCHINSON S , FOULON S , CROUZOLS A , et al. The establishment of variant surface glycoprotein monoallelic expression revealed by single-cell RNA-seq of Trypanosoma brucei in the tsetse fly salivary glands[J]. PLoS Pathog, 2021, 17 (9): e1009904.
doi: 10.1371/journal.ppat.1009904 |
55 |
VIGNERON A , O'NEILL M B , WEISS B L , et al. Single-cell RNA sequencing of Trypanosoma brucei from tsetse salivary glands unveils metacyclogenesis and identifies potential transmission blocking antigens[J]. Proc Natl Acad Sci U S A, 2020, 117 (5): 2613- 2621.
doi: 10.1073/pnas.1914423117 |
56 |
SORIA C L D , LEE J , CHONG T , et al. Single-cell atlas of the first intra-mammalian developmental stage of the human parasite Schistosoma mansoni[J]. Nat Commun, 2020, 11 (1): 6411.
doi: 10.1038/s41467-020-20092-5 |
57 |
WANG B , LEE J , LI P Y , et al. Stem cell heterogeneity drives the parasitic life cycle of Schistosoma mansoni[J]. eLife, 2018, 7, e35449.
doi: 10.7554/eLife.35449 |
58 | 汪茂林, 杨洪军. 单细胞转录组测序技术在药物研究中的应用[J]. 药学学报, 2023, 58 (9): 2551- 2559. |
WANG M L , YANG H J . Single cell RNA sequencing technology applicated for drug discovery[J]. Acta Pharmaceutica Sinica, 2023, 58 (9): 2551- 2559. | |
59 |
WHITE N J . Erratum to: Malaria parasite clearance[J]. Malar J, 2017, 16 (1): 194.
doi: 10.1186/s12936-017-1785-0 |
60 |
RAWAT M , SRIVASTAVA A , JOHRI S , et al. Single-cell RNA sequencing reveals cellular heterogeneity and stage transition under temperature stress in synchronized Plasmodium falciparum cells[J]. Microbiol Spectr, 2021, 9 (1): e0000821.
doi: 10.1128/Spectrum.00008-21 |
61 |
ROCAMORA F , ZHU L , LIONG K Y , et al. Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites[J]. PLoS Pathog, 2018, 14 (3): e1006930.
doi: 10.1371/journal.ppat.1006930 |
62 |
HE X L , CHEN J Y , FENG Y L , et al. Single-cell RNA sequencing deciphers the mechanism of sepsis-induced liver injury and the therapeutic effects of artesunate[J]. Acta Pharmacol Sin, 2023, 44 (9): 1801- 1814.
doi: 10.1038/s41401-023-01065-y |
63 | ZHENG D D , ZHOU J , QIAN L , et al. Biomimetic nanoparticles drive the mechanism understanding of shear-wave elasticity stiffness in triple negative breast cancers to predict clinical treatment[J]. Bioact Mater, 2023, 22, 567- 587. |
64 |
YE C Y , HO D J , NERI M , et al. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery[J]. Nat Commun, 2018, 9 (1): 4307.
doi: 10.1038/s41467-018-06500-x |
65 |
XIE R , LIU Y , WANG S Y , et al. Combinatorial perturbation sequencing on single cells using microwell-based droplet random pairing[J]. Biosens Bioelectron, 2023, 220, 114913.
doi: 10.1016/j.bios.2022.114913 |
66 | AUTIER B , MANUEL C , LUNDSTROEM-STADELMANN B , et al. Endogenous IL-33 accelerates metacestode growth during late-stage alveolar echinococcosis[J]. Microbiol Spectr, 2023, 11 (2): e04239- 22. |
67 | YARAHMADOV T , WANG J H , SANCHEZ-TALTAVULL D , et al. Primary infection by E. multilocularis induces distinct patterns of cross talk between hepatic natural killer T Cells and regulatory T cells in mice[J]. Infect Immun, 2022, 90 (8): e00174- 22. |
68 | WEN H , VUITTON L , TUXUN T , et al. Echinococcosis: advances in the 21st century[J]. Clin Microbiol Rev, 2019, 32 (2): e00075- 18. |
69 |
JUNGHANSS T , DA SILVA A M , HORTON J , et al. Clinical management of cystic echinococcosis: state of the art, problems, and perspectives[J]. Am J Trop Med Hyg, 2008, 79 (3): 301- 311.
doi: 10.4269/ajtmh.2008.79.301 |
70 |
YASEN A , SUN W , AINI A , et al. Single-cell RNA sequencing reveals the heterogeneity of infiltrating immune cell profiles in the hepatic cystic echinococcosis microenvironment[J]. Infect Immun, 2021, 89 (12): e0029721.
doi: 10.1128/IAI.00297-21 |
71 | JIANG X F , ZHANG X F , JIANG N , et al. The single-cell landscape of cystic echinococcosis in different stages provided insights into endothelial and immune cell heterogeneity[J]. Front Immunol, 2022, 13, 1067338. |
72 | AMBROSIO R E , DE WAAL D T . Diagnosis of parasitic disease[J]. Rev Sci Tech, 1990, 9 (3): 759- 778. |
73 | REID A J , TALMAN A M , BENNETT H M , et al. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites[J]. eLife, 2018, 7, e33105. |
74 | LOURADOUR I , FERREIRA T R , DUGE E , et al. Stress conditions promote Leishmania hybridization in vitro marked by expression of the ancestral gamete fusogen HAP2 as revealed by single-cell RNA-seq[J]. eLife, 2022, 11, e73488. |
75 | XUE Y , THEISEN T C , RASTOGI S , et al. A single-parasite transcriptional atlas of Toxoplasma Gondii reveals novel control of antigen expression[J]. eLife, 2020, 9, e54129. |
76 | ROZANSKI A , MOON H , BRANDL H , et al. PlanMine 3. 0-improvements to a mineable resource of flatworm biology and biodiversity[J]. Nucleic Acids Res, 2019, 47 (D1): D812- D820. |
77 | VOTYPKA J, MODRY D, OBORNÍK M, et al. Apicomplexa[M]//ARCHIBALD J M, SIMPSON A G B, SLAMOVITS C H. Handbook of the Protists. 2nd ed. New York: Springer, 2017: 567-624. |
78 | JANOUŠKOVEC J , PASKEROVA G G , MIROLIUBOVA T S , et al. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles[J]. eLife, 2019, 8, e49662. |
79 | MATHUR V , KOLÍSKO M , HEHENBERGER E , et al. Multiple independent origins of Apicomplexan-like parasites[J]. Curr Biol, 2019, 29 (17): 2936- 2941.5. |
80 | MATHUR V , SALOMAKI E D , WAKEMAN K C , et al. Reconstruction of plastid proteomes of apicomplexans and close relatives reveals the major evolutionary outcomes of cryptic plastids[J]. Mol Biol Evol, 2023, 40 (1): msad002. |
81 | LAHR D J G , KOSAKYAN A , LARA E , et al. Phylogenomics and morphological reconstruction of arcellinida testate amoebae highlight diversity of microbial eukaryotes in the neoproterozoic[J]. Curr Biol, 2019, 29 (6): 991- 1001.3. |
82 | KANG S , TICE A K , SPIEGEL F W , et al. Between a pod and a hard test: the deep evolution of amoebae[J]. Mol Biol Evol, 2017, 34 (9): 2258- 2270. |
[1] | Xiaoxu ZHANG, Hao LI, Pingjie FENG, Hao YANG, Xinyue LI, Ran LÜ, Zhangyuan PAN, Mingxing CHU. Application of Single-Cell Transcriptome Sequencing Technology in Domesticated Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3276-3287. |
[2] | Jing CHEN, Xuebei WU, Dongzhi MIAO, Chi ZHANG, Zhenyu GUO, Ying WANG. Comparative Analysis of Transcriptome of Pigeon Follicles at Early Stage of Laying Interval Reveals Genes Related to Follicular Development [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3503-3515. |
[3] | Wanqing LI, Yaqi ZENG, Xinkui YAO, Jianwen WANG, Xinxin YUAN, Chen MENG, Yuanfang SUN, Xuan PENG, Jun MENG. Comparative Analysis of Blood Transcriptome in Yili Horses Bred for Meat Performance [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2951-2962. |
[4] | Mingliang HE, Xiaoyang LÜ, Yongqing JIANG, Zhenghai SONG, Yeqing WANG, Huiguo YANG, Shanhe WANG, Wei SUN. Function Analysis of SOX18 in Hu Sheep Hair Follicle Dermal Papilla Cells Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2409-2420. |
[5] | CHEN Zhe, QU Xiaolu, GUO Binbin, SUN Xuefeng, YAN Leyan. Study on Candidate Genes for Green Light Affecting Early Development of Goose Embryo Heart Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1978-1988. |
[6] | XU Junjie, ZHANG Lutong, WANG Jinjie, CHEN Xiaochen, HE Weixian, CAI Chuanjiang, CHU Guiyan, YANG Gongshe. Exploring the Effect of Epimedium on Estrus of Gilts Based on Multiomics and Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1615-1628. |
[7] | WANG Xin, NIE Tong, LI Aqun, MA Jun. Hesperidin Alleviates High-fat-diet Induced Hepatic Oxidative Stress in Mice via Oxidative Phosphorylation Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1302-1313. |
[8] | GAO Yawei, PENG Di, SUN Zhaoyang, YAN Ziyue, CUI Kai, MA Zefang. Mining the Molecular Mechanism of Exogenous Melatonin Affecting the Development of Mink Ovary Based on Transcriptome Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 607-618. |
[9] | ZHANG Yinliang, ZHANG Ran, WANG Wenjun, WANG Dehe, LI Lanhui, ZHOU Rongyan. Mining of Key Candidate Genes Involved in Bone Metabolism Differences at Pre- and Post-laying Stage Based on Transcriptome Data in Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4455-4465. |
[10] | LIU Yili, TANG Jiao, MIN Qi, YANG Lu, WANG Zening, HU Lian, ZHAO Di, JIANG Mingfeng. Mining Key Candidate Genes of Development and Metabolism in Yak Abomasum Based on Transcriptome Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 153-168. |
[11] | YANG Fusheng, GU Xiaobin. A Review on Applications of PCR Technology in the Diagnosis of Parasitic Diseases in the Past 10 Years [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3183-3194. |
[12] | HU Ting, ZHANG Yonghong, HOU Xiaolin, YAO Hua, CUI Defeng, PAN Zaozao, ZHANG Lingyu, ZHANG Jiaxi, WU Qiong. The Effects of Bisphenol A on Inflammation and Amino Acid Metabolism Pathways in Porcine Testis Sertoli Cells Based on Transcriptome Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2858-2871. |
[13] | LIU Hang, WANG Huanhuan, GE Ying, ZHANG Lei, ZHANG Weiwu, WEI Yinghui, LI Qinghai, FAN Jinghui, ZHANG Xuedong. Screening of Candidate Genes of Skin Color of Black-Bone Chicken Based on Transcriptome and Proteome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2320-2329. |
[14] | BAI Lu, WANG Mengjie, MA Xiaochun, HE Zhengxiao, KONG Fuli, LIU Dawei, YING Fan, ZHU Dan, ZHAO Guiping, WEN Jie, LIU Ranran. Study of the Alteration of Wooden Breast Histological and Molecular Regulatory Pathways in Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1915-1926. |
[15] | WANG Meihui, ZHONG Zhenyu, BAI Jiade, SHAN Yunfang, CHENG Zhibin, ZHANG Qingxun, MENG Yuping, DONG Yulan, GUO Qingyun. Transcriptomic Analysis of Key Genes and Pathways in Deer Gut Infected by Clostridium perfringens Type C [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2147-2157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||