Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (10): 4095-4104.doi: 10.11843/j.issn.0366-6964.2023.10.009
• REVIEW • Previous Articles Next Articles
DAI Lingli1,3, LIU Zaixia1, GUO Lili2, YANG Yanda1, CHANG Chencheng1, WANG Yu4, SHI Caixia1, WANG Yuzhen2, ZHANG Wenguang1,2*
Received:
2022-12-19
Online:
2023-10-23
Published:
2023-10-26
CLC Number:
DAI Lingli, LIU Zaixia, GUO Lili, YANG Yanda, CHANG Chencheng, WANG Yu, SHI Caixia, WANG Yuzhen, ZHANG Wenguang. β-Hydroxybutyrate Mediated Epigenetic Modification and Its Molecular Mechanism of Regulating Inflammation[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4095-4104.
[1] | DUFFIELD T. Subclinical ketosis in lactating dairy cattle[J]. Vet Clin North Am Food Anim Pract, 2000, 16(2):231-253. |
[2] | GORDON J L, LEBLANC S J, DUFFIELD T F. Ketosis treatment in lactating dairy cattle[J]. Vet Clin North Am Food Anim Pract, 2013, 29(2):433-445. |
[3] | 靳军阳, 闫 磊, 薛永康, 等. 围产期奶牛的能量负平衡及能量代谢障碍病防治[J]. 湖北畜牧兽医, 2018, 39(12):22-27.JIN J Y, YAN L, XUE Y K, et al. Negative energy balance and prevention of energy metabolism disorders in periparturient dairy cows[J]. Hubei Journal of Animal and Veterinary Sciences, 2018, 39(12):22-27. (in Chinese) |
[4] | 吴 怡, 敖日格乐, 王纯洁, 等. 反刍动物围产期能量负平衡的调控研究进展[J]. 饲料研究, 2022, 45(2):136-140.WU Y, AO R G, WANG C J, et al. Research progress on regulation of negative energy balance in ruminants during perinatal period[J]. Feed Research, 2022, 45(2):136-140. (in Chinese) |
[5] | CAHILL G F. Fuel metabolism in starvation[J]. Annu Rev Nutr, 2006, 26:1-22. |
[6] | PUCHALSKA P, CRAWFORD P A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics[J]. Cell Metab, 2017, 25(2):262-284. |
[7] | OVERTON T R, MCART J A A, NYDAM D V. A 100-year review:metabolic health indicators and management of dairy cattle[J]. J Dairy Sci, 2017, 100(12):10398-10417. |
[8] | NEWMAN J C, VERDIN E. Ketone bodies as signaling metabolites[J]. Trends Endocrinol Metab, 2014, 25(1):42-52. |
[9] | RAHMAN M, MUHAMMAD S, KHAN M A, et al. The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages[J]. Nat Commun, 2014, 5:3944. |
[10] | YOUM Y H, NGUYEN K Y, GRANT R W, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease[J]. Nat Med, 2015, 21(3):263-269. |
[11] | XIE Z Y, ZHANG D, CHUNG D, et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation[J]. Mol Cell, 2016, 62(2):194-206. |
[12] | RUI L Y. Energy metabolism in the liver[J]. Compr Physiol, 2014, 4(1):177-197. |
[13] | ZHAO S, ZHANG X R, LI H T. Beyond histone acetylation-writing and erasing histone acylations[J]. Curr Opin Struct Biol, 2018, 53:169-177. |
[14] | MURPHY P, LIKHODII S, NYLEN K, et al. The antidepressant properties of the ketogenic diet[J]. Biol Psychiatry, 2004, 56(12):981-983. |
[15] | CHEN L, MIAO Z G, XU X S. β-Hydroxybutyrate alleviates depressive behaviors in mice possibly by increasing the histone3-lysine9-β-hydroxybutyrylation[J]. Biochem Biophys Res Commun, 2017, 490(2):117-122. |
[16] | LUO W G, YU Y J, WANG H, et al. Up-regulation of MMP-2 by histone H3K9 β-hydroxybutyrylation to antagonize glomerulosclerosis in diabetic rat[J]. Acta Diabetol, 2020, 57(12):1501-1529. |
[17] | ZHANG H F, TANG K, MA J W, et al. Ketogenesis-generated β-hydroxybutyrate is an epigenetic regulator of CD8+ T-cell memory development[J]. Nat Cell Biol, 2020, 22(1):18-25. |
[18] | SANGALLI J R, NOCITI R P, DEL COLLADO M, et al. Characterization of histone lysine β-hydroxybutyrylation in bovine tissues, cells, and cumulus-oocyte complexes[J]. Mol Reprod Dev, 2022, 89(9):375-398. |
[19] | KELLY R D W, CHANDRU A, WATSON P J, et al. Histone deacetylase (HDAC) 1 and 2 complexes regulate both histone acetylation and crotonylation in vivo[J]. Sci Rep, 2018, 8(1):14690. |
[20] | SHIMAZU T, HIRSCHEY M D, NEWMAN J, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor[J]. Science, 2013, 339(6116):211-214. |
[21] | SABARI B R, ZHANG D, ALLIS C D, et al. Metabolic regulation of gene expression through histone acylations[J]. Nat Rev Mol Cell Biol, 2017, 18(2):90-101. |
[22] | SANGALLI J R, SAMPAIO R V, DEL COLLADO M, et al. Metabolic gene expression and epigenetic effects of the ketone body β-hydroxybutyrate on H3K9ac in bovine cells, oocytes and embryos[J]. Sci Rep, 2018, 8(1):13766. |
[23] | HU E L, DU H, SHANG S, et al. Beta-hydroxybutyrate enhances BDNF expression by increasing H3K4me3 and decreasing H2AK119ub in hippocampal neurons[J]. Front Neurosci, 2020, 14:591177. |
[24] | HU E L, DU H, ZHU X L, et al. Beta-hydroxybutyrate promotes the expression of BDNF in hippocampal neurons under adequate glucose supply[J]. Neuroscience, 2018, 386:315-325. |
[25] | XU H W, WU M Y, MA X M, et al. Function and mechanism of novel histone posttranslational modifications in health and disease[J]. Biomed Res Int, 2021, 2021:6635225. |
[26] | NASSER S, VIALICHKA V, BIESIEKIERSKA M, et al. Effects of ketogenic diet and ketone bodies on the cardiovascular system:concentration matters[J]. World J Diabetes, 2020, 11(12):584-595. |
[27] | MCGETTRICK A F, O'NEILL L A J. How metabolism generates signals during innate immunity and inflammation[J]. J Biol Chem, 2013, 288(32):22893-22898. |
[28] | 陈华青, 刘明耀. G蛋白偶联受体及其信号转导在免疫与炎症中的作用[J]. 现代免疫学, 2009, 29(6):441-446.CHEN H Q, LIU M Y. The role of G protein-coupled receptors and their signal transduction in immunity and inflammation[J]. Current Immunology, 2009, 29(6):441-446. (in Chinese) |
[29] | NEWMAN J C, VERDIN E. β-Hydroxybutyrate:a signaling metabolite[J]. Annu Rev Nutr, 2017, 37:51-76. |
[30] | GRAFF E C, FANG H, WANDERS D, et al. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2[J]. Metabolism, 2016, 65(2):102-113. |
[31] | FU S P, LI S N, WANG J F, et al. BHBA suppresses LPS-induced inflammation in BV-2 cells by inhibiting NF-κB activation[J]. Mediators Inflamm, 2014, 2014:983401. |
[32] | GAMBHIR D, ANANTH S, VEERANAN-KARMEGAM R, et al. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2012, 53(4):2208-2217. |
[33] | VANHOLDER T, PAPEN J, BEMERS R, et al. Risk factors for subclinical and clinical ketosis and association with production parameters in dairy cows in the Netherlands[J]. J Dairy Sci, 2015, 98(2):880-888. |
[34] | SHEN T Y, LI X W, LOOR J J, et al. Hepatic nuclear factor kappa B signaling pathway and NLR family pyrin domain containing 3 inflammasome is over-activated in ketotic dairy cows[J]. J Dairy Sci, 2019, 102(11):10554-10563. |
[35] | CARRETTA M D, BARRÍA Y, BORQUEZ K, et al. β-Hydroxybutyrate and hydroxycarboxylic acid receptor 2 agonists activate the AKT, ERK and AMPK pathways, which are involved in bovine neutrophil chemotaxis[J]. Sci Rep, 2020, 10(1):12491. |
[36] | MIELENZ M. Invited review:nutrient-sensing receptors for free fatty acids and hydroxycarboxylic acids in farm animals[J]. Animal, 2017, 11(6):1008-1016. |
[37] | WEN H T, MIAO E A, TING J P Y. Mechanisms of NOD-like receptor-associated inflammasome activation[J]. Immunity, 2013, 39(3):432-441. |
[38] | GOLDBERG E L, ASHER J L, MOLONY R D, et al. β-hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares[J]. Cell Rep, 2017, 18(9):2077-2087. |
[39] | KONG G G, LIU J H, LI R, et al. Ketone metabolite β-hydroxybutyrate ameliorates inflammation after spinal cord injury by inhibiting the NLRP3 inflammasome[J]. Neurochem Res, 2021, 46(2):213-229. |
[40] | YAMANASHI T, IWATA M, KAMIYA N, et al. Beta-hydroxybutyrate, an endogenic NLRP3 inflammasome inhibitor, attenuates stress-induced behavioral and inflammatory responses[J]. Sci Rep, 2017, 7(1):7677. |
[41] | LUGRIN J, ROSENBLATT-VELIN N, PARAPANOV R, et al. The role of oxidative stress during inflammatory processes[J]. Biol Chem, 2014, 395(2):203-230. |
[42] | HACES M L, HERNÁNDEZ-FONSECA K, MEDINA-CAMPOS O N, et al. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions[J]. Exp Neurol, 2008, 211(1):85-96. |
[43] | DONG Z H, SUN X D, TANG Y, et al. β-hydroxybutyrate impairs monocyte function via the ROS-NLR family pyrin domain-containing three inflammasome (NLRP3) pathway in ketotic cows[J]. Front Vet Sci, 2022, 9:925900. |
[44] | GAO X X, ZHANG X, JIANG L Q, et al. Forsythin inhibits β-hydroxybutyrate-induced oxidative stress in bovine macrophages by regulating p38/ERK, PI3K/Akt, and Nrf2/HO-1 signaling pathways[J]. Res Vet Sci, 2023, 154:59-65. |
[45] | SHI X X, LI X W, LI D D, et al. β-Hydroxybutyrate activates the NF-κB signaling pathway to promote the expression of pro-inflammatory factors in calf hepatocytes[J]. Cell Physiol Biochem, 2014, 33(4):920-932. |
[46] | LONGO R, PERI C, CRICRÌ D, et al. Ketogenic diet:a new light shining on old but gold biochemistry[J]. Nutrients, 2019, 11(10):2497. |
[47] | 庄一民, 刁其玉, 张乃锋. 幼龄反刍动物瘤胃上皮细胞β-羟基丁酸代谢与调控机制[J]. 畜牧兽医学报, 2020, 51(4):660-669.ZHUANG Y M, DIAO Q Y, ZHANG N F. Metabolism and regulation mechanism of beta-hydroxybutyric acid in ruminal epithelium cells of young ruminants[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(4):660-669. (in Chinese) |
[48] | NORWITZ N G, JARAMILLO J G, CLARKE K, et al. Ketotherapeutics for neurodegenerative diseases[J]. Int Rev Neurobiol, 2020, 155:141-168. |
[49] | FU S P, WANG J F, XUE W J, et al. Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson's disease models are mediated by GPR109A-dependent mechanisms[J]. J Neuroinflammation, 2015, 12:9. |
[50] | SHIPPY D C, WILHELM C, VIHARKUMAR P A, et al. β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer's disease pathology[J]. J Neuroinflammation, 2020, 17(1):280. |
[51] | FRISE C J, MACKILLOP L, JOASH K, et al. Starvation ketoacidosis in pregnancy[J]. Eur J Obstet Gynecol Reprod Biol, 2013, 167(1):1-7. |
[52] | WANKHADE P R, MANIMARAN A, KUMARESAN A, et al. Metabolic and immunological changes in transition dairy cows:a review[J]. Vet World, 2017, 10(11):1367-1377. |
[53] | STEENEVELD W, AMUTA P, VAN SOEST F J S, et al. Estimating the combined costs of clinical and subclinical ketosis in dairy cows[J]. PLoS One, 2020, 15(4):e0230448. |
[54] | ALBAAJ A, JATTIOT M, MANCIAUX L, et al. Hyperketolactia occurrence before or after artificial insemination is associated with a decreased pregnancy per artificial insemination in dairy cows[J]. J Dairy Sci, 2019, 102(9):8527-8536. |
[55] | ALERI J W, HINE B C, PYMAN M F, et al.Periparturient immunosuppression and strategies to improve dairy cow health during the periparturient period[J]. Res Vet Sci, 2016, 108:8-17. |
[56] | 赵婉莉, 曹棋棋, 杨 悦, 等. 胃肠道菌群与黏膜免疫在围产期奶牛健康中的作用[J]. 畜牧兽医学报, 2023, 54(7):2751-2760.ZHAO W L, CAO Q Q, YANG Y, et al. The interaction between gastrointestinal microbiota and mucosal immunity in health of perinatal dairy cows[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7):2751-2760. (in Chinese) |
[1] | LI Feifei, ZHANG Chenmiao, TONG Jinjin, JIANG Linshu. Research Progress on the Mechanism of Mitochondrial Autophagy Regulating the Activity of NLRP3 Inflammatory Corpuscles to Improve Animal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1446-1455. |
[2] | LU Jinye, GAO Yabing, HAN Xinru, LIU Yuzhen, ZHAO Jiayu. The Effect of Streptococcus uberis Infection on Amino Acid Metabolism in Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1766-1776. |
[3] | SHEN Wenjuan, YANG Zhuo, ZHANG Xinrui, FU Yu, TAO Jinzhong. Research Progress of Microorganisms and Reproductive and Related Diseases in Dairy Cows Reproductive Tract [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 924-932. |
[4] | CHEN Fubin, XU Guowei, WANG Lei, LIU Qin, FENG Haipeng, ZHANG Kang, GUO Zhiting, HAN Songwei, LIU Jiahui, GU Xueyan, ZHANG Jingyan, LI Jianxi, HUUB F. J. Savelkoul. Effects of Astragalus Polysaccharides on Transcriptome and Metabolome of HD11 Chicken Macrophages [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1290-1301. |
[5] | GAO Xin, SUN Yipeng. Research Progress of Cell Inflammation Induced by Influenza A Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 481-490. |
[6] | WANG Dong, LIU Kexin, HE Yanjun, DENG Shouxiang, LIU Yun, MA Weiming. Effects of Dietary Sodium Humate Supplementation on Liver Tissue Inflammation and Antioxidant Capacity of Salmonella Typhimurium-Infected Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 629-639. |
[7] | CHEN Xueqing, LI Zhiqiang, WU Yulong, ZHANG Chonghao, ZHANG Yuanshu. Expression of Renin Angiotensin System (RAS) in Jejunum Tissues of Piglets with Clinical Diarrhea and Its Relationship with Intestinal Inflammation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 751-758. |
[8] | LIU Yili, TANG Jiao, MIN Qi, YANG Lu, WANG Zening, HU Lian, ZHAO Di, JIANG Mingfeng. Mining Key Candidate Genes of Development and Metabolism in Yak Abomasum Based on Transcriptome Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 153-168. |
[9] | WU Zhili, YAO Junhu, LEI Xinjian. Research Progress of Rumen-protected Glucose on Nutritional Regulation in Perinatal Dairy Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3173-3182. |
[10] | ZHONG Hua, SONG Shanshan, SHAO Huanting, ZHAO Yu, KANG Jinwen, WU Yao, SU Renwei. Transcriptome Sequencing Analysis on Canine Pyometra Uterine Tissue [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3383-3392. |
[11] | MAO Peng, WANG Zhihao, LI Jianji, CUI Luying, ZHU Guoqiang, MENG Xia, DONG Junsheng, WANG Heng. Research Progress of Ferroptosis in Bacterial Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2280-2287. |
[12] | SHAO Yuexin, ZHANG Xinyu, GE Liyan, SHI Huaiping. Cloning and RNA Interference Analysis of ATF4 Gene in Xinong Saanen Dairy Goat [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2353-2364. |
[13] | ZHU Qian, CHENG Yating, LI Ruixuan, LI Chenjian, LIU Yating, KONG Xiangfeng. Effects of Probiotics and Synbiotics Addition to Sows’ Diet on Fatty Acid Composition and Related Gene Expression in Muscle of Offspring Bama Mini-Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2458-2467. |
[14] | OU Zhengmiao, ZHOU Jiawen, LIU Lili, WU Yun, CHEN Fenfen. Screening and Expression Analysis of Genes Related to Lipid Metabolism in Liver Tissue of Wuliangshan Sooty Chicken Based on RNA-Seq [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 976-988. |
[15] | XU Huihao, LIU Jiangyu, LI Qijuan, ZHENG Xiaobo, LIN Jiahao, JIN Yipeng, LIN Degui. Expression and Prognosis of Hexokinase 2 in Canine Mammary Tumors [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1310-1324. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||