Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (9): 2833-2844.doi: 10.11843/j.issn.0366-6964.2022.09.002
• REVIEW • Previous Articles Next Articles
ZONG Wencheng1, WANG Ligang1, SONG Chengyi2, WANG Lixian1*, ZHANG Longchao1*
Received:
2022-02-25
Online:
2022-09-23
Published:
2022-09-23
CLC Number:
ZONG Wencheng, WANG Ligang, SONG Chengyi, WANG Lixian, ZHANG Longchao. Advances of Structural Variation in Pig Genome[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2833-2844.
[1] | ROSES A D, AKKARI P A, CHIBA-FALEK O, et al.Structural variants can be more informative for disease diagnostics, prognostics and translation than current SNP mapping and exon sequencing[J].Expert Opin Drug Metab Toxicol, 2016, 12(2):135-147. |
[2] | CHIANG C, SCOTT A J, DAVIS J R, et al.The impact of structural variation on human gene expression[J].Nat Genet, 2017, 49(5):692-699. |
[3] | BICKHART D M, LIU G E.The challenges and importance of structural variation detection in livestock[J].Front Genet, 2014, 5:37. |
[4] | ZHANG F, GU W L, HURLES M E, et al.Copy number variation in human health, disease, and evolution[J].Annu Rev Genomics Hum Genet, 2009, 10:451-481. |
[5] | PETROV D A.Mutational equilibrium model of genome size evolution[J].Theor Popul Biol, 2002, 61(4):531-544. |
[6] | OLSON M V.When less is more:Gene loss as an engine of evolutionary change[J].Am J Hum Genet, 1999, 64(1):18-23. |
[7] | BRIDGES C B. Triploid intersexes in drosophila melanogaster[J]. Science, 1921, 54(1394):252-254. |
[8] | BRIDGES C B. The Bar "gene" a duplication[J]. Science, 1936, 83(2148):210-211. |
[9] | KNUDSEN O.Studies on spermiocytogenesis in the bull[J].Obstet Gynecol Surv, 1959, 14(3):404-405. |
[10] | 经珍珠, 秦盼盼, 陈冰洁, 等.拷贝数变异在畜禽中的研究进展[J].中国畜牧兽医, 2021, 48(7):2512-2522.JING Z Z, QIN P P, CHEN B J, et al.Research progress of copy number variation in livestock and poultry[J].China Animal Husbandry & Veterinary Medicine, 2021, 48(7):2512-2522.(in Chinese) |
[11] | 金美林, 卢增奎, 李 青, 等.畜禽拷贝数变异研究进展[J].农业生物技术学报, 2019, 27(10):1840-1848.JIN M L, LU Z K, LI Q, et al.Research progress on copy number variation of livestock and poultry[J].Journal of Agricultural Biotechnology, 2019, 27(10):1840-1848.(in Chinese) |
[12] | CHEN C, WANG W, WANG X Y, et al.Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs[J]. Mob DNA, 2019, 10:19. |
[13] | CHEN C, D'ALESSANDRO E, MURANI E, et al.SINE jumping contributes to large-scale polymorphisms in the pig genomes[J].Mob DNA, 2021, 12(1):17. |
[14] | ZHOU Z Y, LI A M, OTECKO N O, et al.PigVar:A database of pig variations and positive selection signatures[J]. Database, 2017, 2017:bax048. |
[15] | FEUK L, CARSON A R, SCHERER S W.Structural variation in the human genome[J].Nat Rev Genet, 2006, 7(2):85-97. |
[16] | REDON R, ISHIKAWA S, FITCH K R, et al.Global variation in copy number in the human genome[J]. Nature, 2006, 444(7118):444-454. |
[17] | STANKIEWICZ P, LUPSKI J R.Structural variation in the human genome and its role in disease[J].Annu Rev Med, 2010, 61:437-455. |
[18] | LI J F, KANNAN M, TRIVETT A L, et al.An antisense promoter in mouse L1 retrotransposon open reading frame-1 initiates expression of diverse fusion transcripts and limits retrotransposition[J].Nucleic Acids Res, 2014, 42(7):4546-4562. |
[19] | DING M T, LIU Y H, LIAO X H, et al.Enhancer RNAs (eRNAs):new insights into gene transcription and disease treatment[J].J Cancer, 2018, 9(13):2334-2340. |
[20] | ROMÁN A C, GONZÁLEZ-RICO F J, MOLTÓ E, et al.Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch[J].Genome Res, 2011, 21(3):422-432. |
[21] | MASTRANGELO M F, WEINSTOCK K G, SHAFER B K, et al.Disruption of a silencer domain by a retrotransposon[J]. Genetics, 1992, 131(3):519-529. |
[22] | MOORE R C, PURUGGANAN M D.The early stages of duplicate gene evolution[J].Proc Natl Acad Sci U S A, 2003, 100(26):15682-15687. |
[23] | ALKAN C, COE B P, EICHLER E E.Genome structural variation discovery and genotyping[J].Nat Rev Genet, 2011, 12(5):363-376. |
[24] | STANKIEWICZ P, LUPSKI J R.Molecular-evolutionary mechanisms for genomic disorders[J].Curr Opin Genet Dev, 2002, 12(3):312-319. |
[25] | ZHANG F, KHAJAVI M, CONNOLLY A M, et al.The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans[J].Nat Genet, 2009, 41(7):849-853. |
[26] | VAN GENT D C, VAN DER BURG M.Non-homologous end-joining, a sticky affair[J].Oncogene, 2007, 26(56):7731-7740. |
[27] | GU W L, ZHANG F, LUPSKI J R.Mechanisms for human genomic rearrangements[J].Pathogenetics, 2008, 1(1):4. |
[28] | INOUE K, OSAKA H, THURSTON V C, et al.Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females[J].Am J Hum Genet, 2002, 71(4):838-853. |
[29] | SHAW C J, LUPSKI J R.Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms[J]. Hum Genet, 2005, 116(1-2):1-7. |
[30] | LIEBER M R, GU J F, LU H H, et al.Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans[M]//NASHEUER H P.Genome Stability and Human Diseases.Dordrecht:Springer, 2010:279-296. |
[31] | LÖNNIG W E, SAEDLER H.Chromosome rearrangements and transposable elements[J].Annu Rev Genet, 2002, 36:389-410. |
[32] | PLATT II R N, VANDEWEGE M W, RAY D A.Mammalian transposable elements and their impacts on genome evolution[J]. Chromosome Res, 2018, 26(1-2):25-43. |
[33] | QUAN C, LI Y F, LIU X Y, et al.Characterization of structural variation in Tibetans reveals new evidence of high-altitude adaptation and introgression[J].Genome Biol, 2021, 22(1):159. |
[34] | SEDLAZECK F J, LEE H, DARBY C A, et al.Piercing the dark matter:bioinformatics of long-range sequencing and mapping[J]. Nat Rev Genet, 2018, 19(6):329-346. |
[35] | HO S S, URBAN A E, MILLS R E.Structural variation in the sequencing era[J].Nat Rev Genet, 2020, 21(3):171-189. |
[36] | DE COSTER W, VAN BROECKHOVEN C.Newest methods for detecting structural variations[J].Trends Biotechnol, 2019, 37(9):973-982. |
[37] | AUDANO P A, SULOVARI A, GRAVES-LINDSAY T A, et al.Characterizing the major structural variant alleles of the human genome[J].Cell, 2019, 176(3):663-675.e19. |
[38] | CHAISSON M J P, SANDERS A D, ZHAO X F, et al.Multi-platform discovery of haplotype-resolved structural variation in human genomes[J].Nat Commun, 2019, 10(1):1784. |
[39] | SHAO H J, GANESAMOORTHY D, DUARTE T, et al.npInv:accurate detection and genotyping of inversions using long read sub-alignment[J].BMC Bioinformatics, 2018, 19(1):261. |
[40] | HELLER D, VINGRON M.SVIM:structural variant identification using mapped long reads[J].Bioinformatics, 2019, 35(17):2907-2915. |
[41] | PACIFIC BIOSCIENCES.Pbsv.Github, 2018. |
[42] | SEO J S, RHIE A, KIM J, et al.De novo assembly and phasing of a Korean human genome[J].Nature, 2016, 538(7624):243-247. |
[43] | LOW W Y, TEARLE R, LIU R J, et al.Haplotype-resolved genomes provide insights into structural variation and gene content in Angus and Brahman cattle[J].Nat Commun, 2020, 11(1):2071. |
[44] | ZHU F, YIN Z T, WANG Z, et al.Three chromosome-level duck genome assemblies provide insights into genomic variation during domestication[J].Nat Commun, 2021, 12(1):5932. |
[45] | ZHOU R, LI S T, YAO W Y, et al.The Meishan pig genome reveals structural variation-mediated gene expression and phenotypic divergence underlying Asian pig domestication[J].Mol Ecol Resour, 2021, 21(6):2077-2092. |
[46] | ZHANG L, HUANG Y M, WANG M, et al.Development and genome sequencing of a laboratory-inbred miniature pig facilitates study of human diabetic disease[J].iScience, 2019, 19:162-176. |
[47] | GUSTAVSSON I.Chromosomes of the pig[J].Adv Vet Sci Comp Med, 1990, 34:73-107. |
[48] | KEEL B N, NONNEMAN D J, LINDHOLM-PERRY A K, et al.A survey of copy number variation in the porcine genome detected from whole-genome sequence[J].Front Genet, 2019, 10:737. |
[49] | WU Q, ZHOU Y, WANG Y, et al.Whole-genome sequencing reveals breed-differential CNVs between Tongcheng and Large White pigs[J].Anim Genet, 2020, 51(6):940-944. |
[50] | DU H, ZHENG X R, ZHAO Q Q, et al.Analysis of structural variants reveal novel selective regions in the genome of Meishan pigs by whole genome sequencing[J].Front Genet, 2021, 12:550676. |
[51] | ZHAO P J, LI J H, KANG H M, et al.Structural variant detection by large-scale sequencing reveals new evolutionary evidence on breed divergence between Chinese and European pigs[J].Sci Rep, 2016, 6:18501. |
[52] | LIU C, RAN X Q, YU C Y, et al.Whole-genome analysis of structural variations between Xiang pigs with larger litter sizes and those with smaller litter sizes[J].Genomics, 2019, 111(3):310-319. |
[53] | RAN X Q, PAN H, HUANG S H, et al.Copy number variations of MTHFSD gene across pig breeds and its association with litter size traits in Chinese indigenous Xiang pig[J].J Anim Physiol Anim Nutr (Berl), 2018, 102(5):1320-1327. |
[54] | LIU C, RAN X Q, NIU X, et al.Insertion of 275-bp SINE into first intron of PDIA4 gene is associated with litter size in Xiang pigs[J].Anim Reprod Sci, 2018, 195:16-23. |
[55] | ZHENG X R, ZHAO P J, YANG K J, et al.CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits[J].J Anim Sci Biotechnol, 2020, 11:42. |
[56] | WANG Y, ZHANG T R, WANG C D.Detection and analysis of genome-wide copy number variation in the pig genome using an 80 K SNP Beadchip[J].J Anim Breed Genet, 2020, 137(2):166-176. |
[57] | WANG L G, XU L Y, LIU X, et al.Copy number variation-based genome wide association study reveals additional variants contributing to meat quality in Swine[J].Sci Rep, 2015, 5:12535. |
[58] | WANG L G, ZHAO L L, ZHANG L C, et al.NTN1 affects porcine intramuscular fat content by affecting the expression of myogenic regulatory factors[J].Animals, 2019, 9(9):609. |
[59] | WANG L G, ZHANG T, LI N, et al. Copy number variations contribute to intramuscular fat content differences by affecting the expression of PELP1 alternative splices in pig[J]. Animals, 2022:12(11):1382. |
[60] | YOSHIDOMI T, TANAKA K, TAKIZAWA T, et al.Copy number variation of amylase alpha 2B gene is associated with feed efficiency traits in Large White pigs[J].Czech J Anim Sci, 2021, 66:495-503. |
[61] | REVILLA M, PUIG-OLIVERAS A, CASTELLÓ A, et al.A global analysis of CNVs in swine using whole genome sequence data and association analysis with fatty acid composition and growth traits[J].PLoS One, 2017, 12(5):e0177014. |
[62] | QIU Y B, DING R R, ZHUANG Z W, et al.Genome-wide detection of CNV regions and their potential association with growth and fatness traits in Duroc pigs[J].BMC Genomics, 2021, 22(1):332. |
[63] | MA H M, JIANG J, HE J, et al.Long-read assembly of the Chinese indigenous Ningxiang pig genome and identification of genetic variations in fat metabolism among different breeds[J].Mol Ecol Resour, 2022, 22(4):1508-1520. |
[64] | SANFORD E.Pigs:A handbook to the breeds of the world[J].Can Vet J, 1994, 35(11):719-720. |
[65] | CHABOT B, STEPHENSON D A, CHAPMAN V M, et al.The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus[J].Nature, 1988, 335(6185):88-89. |
[66] | RUBIN C J, MEGENS H J, BARRIO A M, et al.Strong signatures of selection in the domestic pig genome[J].Proc Natl Acad Sci U S A, 2012, 109(48):19529-19536. |
[67] | GIUFFRA E, TÖRNSTEN A, MARKLUND S, et al.A large duplication associated with dominant white color in pigs originated by homologous recombination between LINE elements flanking KIT[J].Mamm Genome, 2002, 13(10):569-577. |
[68] | WU Z P, DENG Z, HUANG M, et al.Whole-genome resequencing identifies KIT new alleles that affect coat color phenotypes in pigs[J].Front Genet, 2019, 10:218. |
[69] | QIN K, LIANG X Y, SUN G J, et al.Highly efficient correction of structural mutations of 450 kb KIT locus in kidney cells of Yorkshire pig by CRISPR/Cas9[J].BMC Mol Cell Biol, 2019, 20(1):4. |
[70] | HUANG M, ZHANG H, WU Z P, et al.Whole-genome resequencing reveals genetic structure and introgression in Pudong White pigs[J].Animal, 2021, 15(10):100354. |
[71] | XU J Y, FU Y H, HU Y, et al.Whole genome variants across 57 pig breeds enable comprehensive identification of genetic signatures that underlie breed features[J].J Anim Sci Biotechnol, 2020, 11(1):115. |
[72] | YANG Y, ADEOLA A C, XIE H B, et al.Genomic and transcriptomic analyses reveal selection of genes for puberty in Bama Xiang pigs[J].Zool Res, 2018, 39(6):424-430. |
[73] | SIRONEN A, UIMARI P, VENHORANTA H, et al.An exonic insertion within Tex14 gene causes spermatogenic arrest in pigs[J]. BMC Genomics, 2011, 12:591. |
[74] | LI W H, CHEN S X, LI H J, et al.A new insertion/deletion fragment polymorphism of inhibin-α gene associated with follicular cysts in Large White sows[J].J Vet Med Sci, 2016, 78(3):473-476. |
[75] | GRAHOFER A, LETKO A, HÄFLIGER I M, et al.Chromosomal imbalance in pigs showing a syndromic form of cleft palate[J]. BMC Genomics, 2019, 20(1):349. |
[76] | FOWLER K E, PONG-WONG R, BAUER J, et al.Genome wide analysis reveals single nucleotide polymorphisms associated with fatness and putative novel copy number variants in three pig breeds[J].BMC Genomics, 2013, 14:784. |
[77] | DONG K, PU Y, YAO N, et al.Copy number variation detection using SNP genotyping arrays in three Chinese pig breeds[J].Anim Genet, 2015, 46(2):101-109. |
[78] | LONG Y, SU Y, AI H S, et al.A genome-wide association study of copy number variations with umbilical hernia in swine[J].Anim Genet, 2016, 47(3):298-305. |
[79] | STACHOWIAK M, SZCZERBAL I, NOWACKA-WOSZUK J, et al.Polymorphisms in the SOX9 region and testicular disorder of sex development (38, XX;SRY-negative) in pigs[J].Livest Sci, 2017, 203:48-53. |
[80] | HAY E H A, CHOI I, XU L Y, et al.CNV analysis of host responses to porcine reproductive and respiratory syndrome virus infection[J].J Genomics, 2017, 5:58-63. |
[81] | WANG X Y, CHEN Z X, MURANI E, et al.A 192 bp ERV fragment insertion in the first intron of porcine TLR6 may act as an enhancer associated with the increased expressions of TLR6 and TLR1[J].Mob DNA, 2021, 12(1):20. |
[82] | NGUYEN D T, LEE K, CHOI H, et al.The complete swine olfactory subgenome:Expansion of the olfactory gene repertoire in the pig genome[J].BMC Genomics, 2012, 13:584. |
[83] | GROENEN M A M, ARCHIBALD A L, UENISHI H, et al.Analyses of pig genomes provide insight into porcine demography and evolution[J].Nature, 2012, 491(7424):393-398. |
[84] | WANG C B, CHEN H, WANG X P, et al.Identification of copy number variations using high density whole-genome single nucleotide polymorphism markers in Chinese Dongxiang spotted pigs[J].Asian-Australas J Anim Sci, 2019, 32(12):1809-1815. |
[85] | ZHANG L, HUANG Y M, SI J L, et al.Comprehensive inbred variation discovery in Bama pigs using de novo assemblies[J]. Gene, 2018, 679:81-89. |
[86] | PAUDEL Y, MADSEN O, MEGENS H J, et al.Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication[J].BMC Genomics, 2013, 14:449. |
[87] | PAUDEL Y, MADSEN O, MEGENS H J, et al.Copy number variation in the speciation of pigs:A possible prominent role for olfactory receptors[J].BMC Genomics, 2015, 16(1):330. |
[88] | CHEN C Y, LIU C L, XIONG X W, et al.Copy number variation in the MSRB3 gene enlarges porcine ear size through a mechanism involving miR-584-5p[J].Genet Sel Evol, 2018, 50(1):72. |
[89] | LIU X L, HU F B, HUANG S H, et al.Detection of genomic structure variants associated with wrinkled skin in Xiang pig by next generation sequencing[J].Aging, 2021, 13(22):24710-24739. |
[1] | WANG Yaxin, WANG Jing, TIAN Xuekai, YANG Gongshe, YU Taiyong. Application of Multi-omics Technology in the Study of Important Economic Traits of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1842-1853. |
[2] | ZHANG Wei, PAN Zhihao, FANG Fugui. Advances in Epigenetic Regulation of the Onset of Puberty in Female Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1875-1882. |
[3] | KANG Jiawei, HUANG Xuankai, WANG Zhipeng, ZHANG Aizhen, MENG Fangrong, GAI Peng, BAO Junfu, SUN Kexin, SONG Shaokang, SUN Pan, CHEN Yichuan, ZHANG Lei, GAO Shengyue, CHANG Minghang. Estimation of Genetic Parameters for Growth, Reproduction, and Body Measurements Traits in Large White Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1936-1944. |
[4] | CUI Shengdi, WANG Kai, ZHAO Zhenjian, CHEN Dong, SHEN Qi, YU Yang, WANG Junge, CHEN Ziyang, YU Shixin, CHEN Jiamiao, WANG Xiangfeng, TANG Guoqing. Identification of Candidate Genes for Pork Texture Traits Using GWAS Combined with Co-localisation of DNA Methylation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1945-1957. |
[5] | SUN Wenli, WANG Haoqi, ZE Licuo, GAO Yufan, ZHANG Feifan, ZHANG Jian, DUAN Mengqi, SHANG Peng, QIANG Bayangzong. Polymorphism of Pro-Inflammatory Factors (IL-1β, IL-6, TNF-α) in Tibetan Pigs and Its Association Analysis with Immune Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1958-1969. |
[6] | LI Wanjun, XU Jiehuan, HE Mengxian, KONG Yuting, ZHANG Defu, DAI Jianjun. Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1999-2010. |
[7] | LUO Ting, HAN Zhu, XU Yefen, CAI Lin, SUOLANG Sizhu, XU Jinhua, NIU Jiaqiang. Whole Genome Sequencing and Sequence Analysis on T10 of Mycoplasma bovis Strain from Yaks in Xizang [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2154-2167. |
[8] | PENG Peiya, CHEN Yuhan, YANG Long, WANG Ming, ZHAO Ruiting, HE Jun, YIN Yulong, LIU Mei. Research Progress of Copy Number Variation in Livestock [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1356-1369. |
[9] | HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411. |
[10] | LEI Yanru, HU Xiaoyu, XU Chunhong, ZHANG Chenxi, DU Wenping, WANG Yangguang, LI Donghua, SUN Guirong, LI Wenting, KANG Xiangtao. Comparative Analysis of Growth, Carcass and Meat Quality Traits of Five Hybrid Combinations of Houdan Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1521-1535. |
[11] | CAO Yuzhu, XING Yuxin, MA Chenglin, GUAN Hongbo, JIA Qihui, KANG Xiangtao, TIAN Yadong, LI Zhuanjian, LIU Xiaojun, LI Hong. Biological Characterization of Chicken FGF6 Gene and Association of Its Polymorphisms with Economic Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1536-1550. |
[12] | TIAN Rui, XU Sixiang, XIE Feng, LIU Guangjin, WANG Gang, LI Qingxia, DAI Lei, XIE Guoxin, ZHANG Qiongwen, LU Yajing, WANG Guangwen, WANG Jinxiu, ZHANG Wei. Bioinformatics Analysis of the Genome of Clostridium perfringens Isolated from Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1707-1715. |
[13] | XU Donghui, XU Yuhui, LI Ruizhe, CHENG Haijian, MA Zhijie. Research Progress of Genome Copy Number Variations in Yak [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 933-943. |
[14] | SONG Kelin, YAN Zunqiang, WANG Pengfei, CHENG Wenhao, LI Jie, BAI Yaqin, SUN Guohu, GUN Shuangbao. Analysis on Genetic Diversity and Genetic Structure Based on SNP Chips of Huixian Qingni Black Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 995-1006. |
[15] | ZHONG Xin, ZHANG Hui, ZHANG Chong, LIU Xiaohong. Research Progress on Genetic Breeding of Reproductive Performance in Sows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 438-450. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||