Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (2): 329-338.doi: 10.11843/j.issn.0366-6964.2022.02.001
• REVIEW • Previous Articles Next Articles
WANG Di, YU Ying*
Received:
2021-04-23
Online:
2022-02-23
Published:
2022-03-02
CLC Number:
WANG Di, YU Ying. Research Progress on Transcriptomics and Epigenetics of Bovine S. aureus Mastitis Resistance[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 329-338.
[1] | MIDDLETON J R,SAEMAN A,FOX L K,et al.The national mastitis council:a global organization for mastitis control and milk quality,50 years and beyond[J].J Mammary Gland Biol Neoplasia,2014,19(3-4):241-251. |
[2] | WANG X,WANG X,WANG Y,et al.Antimicrobial resistance and toxin gene profiles of Staphylococcus aureus strains from Holstein milk[J].Lett Appl Microbiol,2014,58(6):527-534. |
[3] | EL-SAYED A,KAMEL M.Bovine mastitis prevention and control in the post-antibiotic era[J].Trop Anim Health Prod,2021,53(2):236. |
[4] | MEREDITH B K,KEARNEY F J,FINLAY E K,et al.Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland[J].BMC Genet,2012,13:21. |
[5] | 王晓,解小莉,王胜,等.中国荷斯坦牛乳房炎易感性及抗性的全基因组关联分析[J].畜牧兽医学报, 2013,44(12):1907-1912.WANG X,XIE X L,WANG S,et al.Genome-wide association study for mastitis susceptibility and resistance in Chinese Holsteins[J].Acta Veterinaria et Zootechnica Sinica,2013,44(12):1907-1912.(in Chinese) |
[6] | WANG X,MA P P,LIU J F,et al.Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility[J].BMC Genet,2015,16:111. |
[7] | 冯文,董易春,王晓,等.TRAPPC9基因对奶牛金葡菌乳房炎抗性性状的遗传效应[J].畜牧兽医学报, 2016, 47(2):276-283.FENG W,DONG Y C,WANG X,et al.The genetic effect of TRAPPC9 on mastitis resistance to S. aureus in dairy cows[J].Acta Veterinaria et Zootechnica Sinica,2016,47(2):276-283.(in Chinese) |
[8] | KIRSANOVA E,HERINGSTAD B,LEWANDOWSKA-SABAT A,et al.Identification of candidate genes affecting chronic subclinical mastitis in Norwegian Red cattle:combining genome-wide association study, topologically associated domains and pathway enrichment analysis[J].Anim Genet,2020,51(1):22-31. |
[9] | RUEGG P L.A 100-Year Review:mastitis detection,management,and prevention[J].J Dairy Sci,2017,100(12):10381-10397. |
[10] | MAGRO G,REBOLINI M,BERETTA D,et al.Methicillin-resistant Staphylococcus aureus CC22-MRSA-IV as an agent of dairy cow intramammary infections[J].Vet Microbiol,2018,227:29-33. |
[11] | ZHOU K X,LI C,CHEN D M,et al.A review on nanosystems as an effective approach against infections of Staphylococcus aureus[J].Int J Nanomedicine,2018,13:7333-7347. |
[12] | FOSTER T J.Immune evasion by Staphylococci[J].Nat Rev Microbiol,2005,3(12):948-958. |
[13] | GRUNDMANN H,AIRES-DE-SOUSA M,BOYCE J,et al.Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat[J].Lancet,2006,368(9538):874-885. |
[14] | ALGHARIB S A,DAWOOD A,XIE S Y.Nanoparticles for treatment of bovine Staphylococcus aureus mastitis[J].Drug Deliv,2020,27(1):292-308. |
[15] | WANG D F,WANG Z C,YAN Z T,et al.Bovine mastitis Staphylococcus aureus:antibiotic susceptibility profile,resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China[J].Infect Genet Evol,2015,31:9-16. |
[16] | SCHERPENZEEL C G M,HOGEVEEN H,MAAS L,et al.Economic optimization of selective dry cow treatment[J].J Dairy Sci,2018,101(2):1530-1539. |
[17] | USMAN T,WANG Y,LIU C,et al.Association study of single nucleotide polymorphisms in JAK2 and STAT5B genes and their differential mRNA expression with mastitis susceptibility in Chinese Holstein cattle[J].Anim Genet,2015,46(4):371-380. |
[18] | USMAN T,YU Y,LIU C,et al.Genetic effects of single nucleotide polymorphisms in JAK2 and STAT5A genes on susceptibility of Chinese Holsteins to mastitis[J].Mol Biol Rep,2014,41(12):8293-8301. |
[19] | OWEN K L,BROCKWELL N K,PARKER B S.JAK-STAT signaling:a double-edged sword of immune regulation and cancer progression[J].Cancers (Basel),2019,11(12):2002. |
[20] | PAWLIK A,SENDER G,KAPERA M,et al.Association between interleukin 8 receptor α gene (CXCR1) and mastitis in dairy cattle[J].Cent Eur J Immunol,2015,40(2):153-158. |
[21] | MAZZILLI M,PICCININI R,SCALI F,et al.Pattern characterization of genes involved in non-specific immune response in Staphylococcus aureus isolates from intramammary infections[J].Res Vet Sci,2015,103:54-59. |
[22] | MCLOUGHLIN K E,NALPAS N C,RUE-ALBRECHT K,et al.RNA-seq transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis[J].Front Immunol,2014,5:396. |
[23] | MOYES K M,SØRENSEN P,BIONAZ M.The impact of intramammary Escherichia coli challenge on liver and mammary transcriptome and cross-talk in dairy cows during early lactation using RNAseq[J].PLoS One,2016, 11(6):e0157480. |
[24] | HEIMES A,BRODHAGEN J,WEIKARD R,et al.Hepatic transcriptome analysis identifies divergent pathogen-specific targeting-strategies to modulate the innate immune system in response to intramammary infection[J].Front Immunol,2020,11:715. |
[25] | BONNEFONT C M D,TOUFEER M,CAUBET C,et al.Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus[J]. BMC Genom,2011,12:208. |
[26] | BRAND B,HARTMANN A,REPSILBER D,et al.Comparative expression profiling of E. coli and S. aureus inoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score[J].Genet Sel Evol,2011,43(1):24. |
[27] | PISONI G,MORONI P,GENINI S,et al.Differentially expressed genes associated with Staphylococcus aureus mastitis in dairy goats[J].Vet Immunol Immunopathol,2010,135:208-217. |
[28] | HE Y H,SONG M Y,ZHANG Y,et al.Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by Staphylococcus aureus[J].BMC Genom,2016,17:565. |
[29] | WANG X G,JU Z H,HOU M H,et al.Deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected with Staphylococcus aureus mastitis[J].PLoS One,2016, 11(7):e0159719. |
[30] | SONG M Y,HE Y H,ZHOU H K,et al.Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis[J].Sci Rep,2016,6:29390. |
[31] | FANG L Z,HOU Y L,AN J,et al.Genome-wide transcriptional and post-transcriptional regulation of innate immune and defense responses of bovine mammary gland to Staphylococcus aureus[J].Front Cell Infect Microbiol, 2016,6:193. |
[32] | RAMOS-LOPEZ O,MILAGRO F I,RIEZU-BOJ J I,et al.Epigenetic signatures underlying inflammation:an interplay of nutrition,physical activity,metabolic diseases,and environmental factors for personalized nutrition[J]. Inflamm Res,2021,70(1):29-49. |
[33] | WANG M Q,IBEAGHA-AWEMU E M.Impacts of epigenetic processes on the health and productivity of livestock[J].Front Genet,2021,11:613636. |
[34] | HALUŠKOVÁ J,HOLEČKOVÁ B,STANIČOVÁ J.DNA methylation studies in cattle[J].J Appl Genet,2021, 62(1):121-136. |
[35] | GREENBERG M V C,BOURC'HIS D.The diverse roles of DNA methylation in mammalian development and disease[J].Nat Rev Mol Cell Biol,2019,20(10):590-607. |
[36] | ENNOUR-IDRISSI K,DRAGIC D,DUROCHER F,et al.Epigenome-wide DNA methylation and risk of breast cancer:a systematic review[J].BMC Cancer,2020,20(1):1048. |
[37] | REID B M,FRIDLEY B L.DNA methylation in ovarian cancer susceptibility[J].Cancers (Basel),2020, 13(1):108. |
[38] | ZHANG B,ZHOU T,WU H J,et al.Difference of IFI44L methylation and serum IFN-a1 level among patients with discoid and systemic lupus erythematosus and healthy individuals[J].J Transl Autoimmun,2021,4:100092. |
[39] | MAHONY C,O'RYAN C.Convergent canonical pathways in autism spectrum disorder from proteomic, transcriptomic and DNA methylation data[J].Int J Mol Sci,2021,22(19):10757. |
[40] | CHANG G J,PETZL W,VANSELOW J,et al.Epigenetic mechanisms contribute to enhanced expression of immune response genes in the liver of cows after experimentally induced Escherichia coli mastitis[J].Vet J,2015, 203(3):339-341. |
[41] | ZHANG Y,WANG X G,JIANG Q,et al.DNA methylation rather than single nucleotide polymorphisms regulates the production of an aberrant splice variant of IL6R in mastitic cows[J].Cell Stress Chaperones, 2018,23(4):617-628. |
[42] | JU Z H,JIANG Q,WANG J P,et al.Genome-wide methylation and transcriptome of blood neutrophils reveal the roles of DNA methylation in affecting transcription of protein-coding genes and miRNAs in E. coli-infected mastitis cows[J].BMC Genom,2020,21(1):102. |
[43] | HAN L F,WITMER P D,CASEY E,et al.DNA methylation regulates MicroRNA expression[J].Cancer Biol Ther,2007,6(8):1284-1288. |
[44] | LI Z X,ZHANG H L,SONG N,et al.Molecular cloning,characterization and expression of miR-15a-3p and miR-15b-3p in dairy cattle[J].Mol Cell Probes,2014,28(5-6):255-258. |
[45] | LEV MAOR G,YEARIM A,AST G.The alternative role of DNA methylation in splicing regulation[J].Trends Genet,2015,31(5):274-280. |
[46] | DARISIPUDI M N,BRÖKER B M.How S. aureus blinds the inflammasome to escape immune control[J]. EBioMedicine,2021,71:103549. |
[47] | LIAO X Y,HU W C,LIU D H,et al.Stress resistance and pathogenicity of nonthermal-plasma-induced viable-but-nonculturable Staphylococcus aureus through energy suppression,oxidative stress defense,and immune-escape mechanisms[J].Appl Environ Microbiol,2021,87(2):e02380-20. |
[48] | BRADLEY A J.Bovine mastitis:an evolving disease[J].Vet J,2002,164(2):116-128. |
[49] | SCHUKKEN Y H,GVNTHER J,FITZPATRICK J,et al.Host-response patterns of intramammary infections in dairy cows[J].Vet Immunol Immunopathol,2011,144(3-4):270-289. |
[50] | JENSEN K,GVNTHER J,TALBOT R,et al.Escherichia coli- and Staphylococcus aureus-induced mastitis differentially modulate transcriptional responses in neighbouring uninfected bovine mammary gland quarters[J]. BMC Genom,2013,14(1):36. |
[51] | RADOSTITS O M.Herd health:food animal production medicine[M].3rd ed.Philadelphia:W. B. Saunders,2001. |
[52] | JIN W W,IBEAGHA-AWEMU E M,LIANG G X,et al.Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles[J].BMC Genom,2014,15:181. |
[53] | CHEN J B,WU Y J,SUN Y W,et al.Bacterial lipopolysaccharide induced alterations of genome-wide DNA methylation and promoter methylation of lactation-related genes in bovine mammary epithelial cells[J].Toxins (Basel),2019,11(5):298. |
[54] | WU Y J,SUN Y W,DONG X W,et al.The synergism of PGN,LTA and LPS in inducing transcriptome changes,inflammatory responses and a decrease in lactation as well as the associated epigenetic mechanisms in bovine mammary epithelial cells[J].Toxins (Basel),2020,12(6):387. |
[55] | WANG M Q,LIANG Y,IBEAGHA-AWEMU E M,et al.Genome-wide DNA methylation analysis of mammary gland tissues from chinese holstein cows with Staphylococcus aureus induced mastitis[J].Front Genet,2020,11:550515. |
[56] | WANG X S,ZHANG Y,HE Y H,et al.Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows[J].Genet Mol Res,2013,12(4):6228-6239. |
[57] | WANG D,WEI Y Y,SHI L Y,et al.Genome-wide DNA methylation pattern in a mouse model reveals two novel genes associated with Staphylococcus aureus mastitis[J].Asian-Australas J Anim Sci,2020,33(2):203-211. |
[58] | WU Y J,CHEN J B,SUN Y W,et al.PGN and LTA from Staphylococcus aureus induced inflammation and decreased lactation through regulating DNA methylation and histone H3 acetylation in bovine mammary epithelial cells[J].Toxins (Basel),2020,12(4):238. |
[59] | WANG J,YAN X X,NESENGANI L T,et al.LPS-induces IL-6 and IL-8 gene expression in bovine endometrial cells "through DNA methylation"[J].Gene,2018,677:266-272. |
[60] | USMAN T,YU Y,WANG Y.P2001 CD4 promoter hyper methylation is associated with lower gene expression in clinical mastitis cows and vice versa in the healthy controls[J].J Anim Sci,2016,94(S4):38. |
[61] | VANSELOW J,YANG W,HERRMANN J,et al.DNA-remethylation around a STAT5-binding enhancer in the αS1-casein promoter is associated with abrupt shutdown of αS1-casein synthesis during acute mastitis[J].J Mol Endocrinol,2006,37(3):463-477. |
[1] | CHEN Zhe, QU Xiaolu, GUO Binbin, SUN Xuefeng, YAN Leyan. Study on Candidate Genes for Green Light Affecting Early Development of Goose Embryo Heart Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1978-1988. |
[2] | HE Xiaolan, ZHAO Yankun, MENG Lu, LIU Huimin, GAO Jiaojiao, ZHENG Nan. Research Progress in Heteroresistance of Staphylococcus aureus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1432-1445. |
[3] | XU Junjie, ZHANG Lutong, WANG Jinjie, CHEN Xiaochen, HE Weixian, CAI Chuanjiang, CHU Guiyan, YANG Gongshe. Exploring the Effect of Epimedium on Estrus of Gilts Based on Multiomics and Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1615-1628. |
[4] | WANG Xin, NIE Tong, LI Aqun, MA Jun. Hesperidin Alleviates High-fat-diet Induced Hepatic Oxidative Stress in Mice via Oxidative Phosphorylation Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1302-1313. |
[5] | GAO Yawei, PENG Di, SUN Zhaoyang, YAN Ziyue, CUI Kai, MA Zefang. Mining the Molecular Mechanism of Exogenous Melatonin Affecting the Development of Mink Ovary Based on Transcriptome Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 607-618. |
[6] | WU Zihao, CAI Yilong, TUO Haixin, CHEN Wei. Pathogenicity Analysis of a PVL+ ST22 Staphylococcus aureus Isolated from Equine Raw Milk [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 718-726. |
[7] | ZHUANG Cuicui, HAN Bo. Mechanism of Mitochondrial Damage in Bovine Mammary Epithelial Cells and Mouse Mammary Gland Infected with Escherichia coli Isolated from Bovine Mastitis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 822-833. |
[8] | LIU Yili, TANG Jiao, MIN Qi, YANG Lu, WANG Zening, HU Lian, ZHAO Di, JIANG Mingfeng. Mining Key Candidate Genes of Development and Metabolism in Yak Abomasum Based on Transcriptome Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 153-168. |
[9] | RU Meng, ZENG Wenhui, PENG Jianling, ZENG Qingjie, YIN Chao, CUI Yong, WEI Qing, LIANG Haiping, XIE Xianhua, HUANG Jianzhen. Research Progress on Follicles Development of Hens and Its Epigenetic Regulatory Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3613-3622. |
[10] | HU Ting, ZHANG Yonghong, HOU Xiaolin, YAO Hua, CUI Defeng, PAN Zaozao, ZHANG Lingyu, ZHANG Jiaxi, WU Qiong. The Effects of Bisphenol A on Inflammation and Amino Acid Metabolism Pathways in Porcine Testis Sertoli Cells Based on Transcriptome Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2858-2871. |
[11] | LIU Hang, WANG Huanhuan, GE Ying, ZHANG Lei, ZHANG Weiwu, WEI Yinghui, LI Qinghai, FAN Jinghui, ZHANG Xuedong. Screening of Candidate Genes of Skin Color of Black-Bone Chicken Based on Transcriptome and Proteome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2320-2329. |
[12] | BAI Lu, WANG Mengjie, MA Xiaochun, HE Zhengxiao, KONG Fuli, LIU Dawei, YING Fan, ZHU Dan, ZHAO Guiping, WEN Jie, LIU Ranran. Study of the Alteration of Wooden Breast Histological and Molecular Regulatory Pathways in Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1915-1926. |
[13] | WANG Meihui, ZHONG Zhenyu, BAI Jiade, SHAN Yunfang, CHENG Zhibin, ZHANG Qingxun, MENG Yuping, DONG Yulan, GUO Qingyun. Transcriptomic Analysis of Key Genes and Pathways in Deer Gut Infected by Clostridium perfringens Type C [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2147-2157. |
[14] | JIN Meilin, LI Taotao, SUN Dongxiao, WEI Caihong. Research Progress of Epigenetic Regulation in Fat Deposition Mechanism of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 855-867. |
[15] | SUN Meijie, CAO Liwen, ZHENG Wenjin, SHEN Junshi, ZHU Weiyun. Effect of Dietary Urea Supplementation on Liver Ammonia Metabolism in Fattening Hu Lambs Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1148-1159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||