Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (4): 1432-1445.doi: 10.11843/j.issn.0366-6964.2024.04.009
• REVIEW • Previous Articles Next Articles
HE Xiaolan1, ZHAO Yankun1,2, MENG Lu1, LIU Huimin1, GAO Jiaojiao2, ZHENG Nan1*
Received:
2023-07-10
Online:
2024-04-23
Published:
2024-04-26
CLC Number:
HE Xiaolan, ZHAO Yankun, MENG Lu, LIU Huimin, GAO Jiaojiao, ZHENG Nan. Research Progress in Heteroresistance of Staphylococcus aureus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1432-1445.
[1] LUKASSEK J, IGNATOV A, FAERBER J, et al. Puerperal mastitis in the past decade:results of a single institution analysis[J]. Arch Gynecol Obstet, 2019, 300(6):1637-1644. [2] BRANCH-ELLIMAN W, GOLEN T H, GOLD H S, et al. Risk factors for Staphylococcus aureus postpartum breast abscess[J]. Clin Infect Dis, 2012, 54(1):71-77. [3] MOORE J, GOODAY C, SOLIMAN R, et al. Reduction in the prevalence of methicillin-resistant Staphylococcus aureus in tissue and wound swab samples taken from outpatients attending a specialist diabetic foot clinic 2005-2021[J]. Diabet Med, 2023, 40(10):e15081. [4] RUSSELL S P, NEARY C, ABD ELWAHAB S, et al. Breast infections-microbiology and treatment in an era of antibiotic resistance[J]. Surgeon, 2020, 18(1):1-7. [5] ENANY S, ALEXANDER L C. The rise of virulence and antibiotic resistance in Staphylococcus aureus[M]. Croatia, InTech; 2016:25-41. [6] KIRMUSAOǦLU S, GAREAYAGHI N, KOCAZEYBEK B S. Antimicrobials, antibiotic resistance, antibiofilm strategies and activity methods[M]. London, Intech, 2019:3-12. [7] SATOLA S W, FARLEY M M, ANDERSON K F, et al. Comparison of detection methods for heteroresistant vancomycin-intermediate Staphylococcus aureus, with the population analysis profile method as the reference method[J]. J Clin Microbiol, 2011, 49(1):177-183. [8] Centers for Disease Control and Prevention (CDC). Interim guidelines for prevention and control of staphylococcal infection associated with reduced susceptibility to vancomycin[R]. MMWR Morb Mortal Wkly Rep, 1997, 46(27):626-628, 635. [9] SAKOULAS G, MOISE-BRODER P A, SCHENTAG J, et al. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia[J]. J Clin Microbiol, 2004, 42(6):2398-2402. [10] BAND V I, WEISS D S. Heteroresistance to beta-lactam antibiotics may often be a stage in the progression to antibiotic resistance[J]. PLoS Biol, 2021, 19(7):e3001346. [11] ANDERSSON D I, NICOLOFF H, HJORT K. Mechanisms and clinical relevance of bacterial heteroresistance[J]. Nat Rev Microbiol, 2019, 17(8):479-496. [12] DEWACHTER L, FAUVART M, MICHIELS J. Bacterial heterogeneity and antibiotic survival:understanding and combatting persistence and heteroresistance[J]. Mol Cell, 2019, 76(2):255-267. [13] SUN L, TALARICO S, YAO L N, et al. Droplet digital PCR-based detection of clarithromycin resistance in Helicobacter pylori isolates reveals frequent heteroresistance[J]. J Clin Microbiol, 2018, 56(9):e00019. [14] DAI Y C, LI C Y, YI J, et al. Plasmonic colloidosome-coupled MALDI-TOF MS for Bacterial heteroresistance study at single-cell level[J]. Anal Chem, 2020, 92(12):8051-8057. [15] RIVERA A, VIÑADO B, BENITO N, et al. Recommendations of the Spanish antibiogram committee (COESANT) for in vitro susceptibility testing of antimicrobial agents by disk diffusion[J]. Enferm Infecc Microbiol Clin (Engl Ed), 2023, 41(9):571-576. [16] MATUSCHEK E, COPSEY-MAWER S, PETERSSON S, et al. The European committee on antimicrobial susceptibility testing disc diffusion susceptibility testing method for frequently isolated anaerobic bacteria[J]. Clin Microbiol Infect, 2023, 29(6):795.e1-795.e7. [17] ZUILL D E, ALMAGUER A L, DONATELLI J, et al. Development and preliminary validation of a modified EUCAST yeast broth microdilution MIC method with Tween 20-supplemented medium for rezafungin[J]. J Antimicrob Chemother, 2023, 78(4):1102-1110. [18] ROISIN S, NONHOFF C, DENIS O, et al. Evaluation of new Vitek 2 card and disk diffusion method for determining susceptibility of Staphylococcus aureus to oxacillin[J]. J Clin Microbiol, 2008, 46(8):2525-2528. [19] SPENCER D, LI Y T, ZHU Y L, et al. Electrical broth micro-dilution for rapid antibiotic resistance testing[J]. ACS Sens, 2023, 8(3):1101-1108. [20] KIM J W, LEE K J. Development of a single-nucleotide polymorphism genotyping assay for the rapid detection of vancomycin-intermediate resistance in Staphylococcus aureus epidemic lineage ST5[J]. Ann Lab Med, 2023, 43(4):355-363. [21] DING Y F, HUANG C X, CHEN M X, et al. Rapid and simultaneous detection of viable S. aureus and its penicillin susceptibility by phage amplification techniques in different food matrices[J]. LWT, 2023, 176:114526. [22] OPERARIO D J, KOEPPEL A F, TURNER S D, et al. Prevalence and extent of heteroresistance by next generation sequencing of multidrug-resistant tuberculosis[J]. PLoS One, 2017, 12(5):e0176522. [23] PRICE C S, KON S E, METZGER S. Rapid antibiotic susceptibility phenotypic characterization of Staphylococcus aureus using automated microscopy of small numbers of cells[J]. J Microbiol Methods, 2014, 98:50-58. [24] GALLOIS E, FIHMAN V, DANJEAN M, et al. QMAC-dRAST for the direct testing of antibiotic susceptibility for Enterobacterales in positive blood-culture broth:a comparison of the performances with the MicroScan system and direct disc diffusion testing methods[J]. J Antimicrob Chemother, 2023, 78(3):684-691. [25] SHIMAMOTO Y, ARAIE H, ITOH K, et al. MALDI-TOFMS-oriented early definitive therapy improves the optimal use of antibiotics for Enterococcus spp. bloodstream infection[J]. J Infect Chemother, 2021, 27(2):393-396. [26] LIU Z Y, XUE Y, YANG C, et al. Rapid identification and drug resistance screening of respiratory pathogens based on single-cell Raman spectroscopy[J]. Front Microbiol, 2023, 14:1065173. [27] HU Y F, FU M X, WANG F X, et al. Molecular typing and homology analysis of heterogeneous vancomycin-intermediate Staphylococcus aureus[J]. Chinese Journal of Antibiotics, 2023, 48(2):222-227. (in Chinese) 胡远芳, 付明霞, 王凤霞, 等. 异质性万古霉素中介金黄色葡萄球菌的分子分型和同源性分析[J]. 中国抗生素杂志, 2023, 48(2):222-227. [28] LIU C L, MING L. The epidemiology of heterogeneous Vancomycin-intermediated Staphylococcus aureus and study on impact of mgrA gene in Staphylococcus aureus on vancomycin resistance[J]. Chinese Journal of Antibiotics, 2020, 45(2):175-180. (in Chinese) 刘彩林, 明亮. 异质性万古霉素中介金黄色葡萄球菌的流行性及mgrA基因对万古霉素耐药性影响的研究[J]. 中国抗生素杂志, 2020, 45(2):175-180. [29] NAM E Y, YANG S J, KIM E S, et al. Emergence of Daptomycin-nonsusceptible Methicillin-resistant Staphylococcus aureus clinical isolates among Daptomycin-naive patients in Korea[J]. Microb Drug Resist, 2018, 24(5):534-541. [30] SREEJISHA M, MULKI S S, SHENOY S, et al. Heterogeneous vancomycin intermediate Staphylococcus aureus infections in diabetic and non-diabetic patients:a hospital-based comparative study[J]. Infect Drug Resist, 2023, 16:9-17. [31] AMBERPET R, SISTLA S, SUGUMAR M, et al. Detection of heterogeneous vancomycin-intermediate Staphylococcus aureus:a preliminary report from south India[J]. Indian J Med Res, 2019, 150(2):194-198. [32] RAMLI S R, NEOH H M, AZIZ M N, et al. Screening and detection of heterogenous vancomycin intermediate Staphylococcus aureus in hospital Kuala Lumpur Malaysia, using the glycopeptide resistance detection Etest and population analysis profiling[J]. Infect Dis Rep, 2012, 4(1):e20. [33] LIANG J, HU Y F, FU M X, et al. Resistance and molecular characteristics of methicillin-resistant Staphylococcus aureus and heterogeneous vancomycin-intermediate Staphylococcus aureus[J]. Infect Drug Resist, 2023, 16:379-388. [34] CAMPANILE F, BORBONE S, PEREZ M, et al. Heteroresistance to glycopeptides in Italian meticillin-resistant Staphylococcus aureus (MRSA) isolates[J]. Int J Antimicrob Agents, 2010, 36(5):415-419. [35] YAMAKAWA J, KUROSAWA H, KANEKO J, et al. Heterogeneously vancomycin-intermediate Staphylococcus aureus (hVISA) emerged before the clinical introduction of vancomycin in Japan:a retrospective study[J]. J Infect Chemother, 2012, 18(3):406-409. [36] TROŚCIAŃCZYK A, NOWAKIEWICZ A, KASELA M, et al. Multi-host pathogen Staphylococcus aureus-epidemiology, drug resistance and occurrence in humans and animals in Poland[J]. Antibiotics (Basel), 2023, 12(7):1137. [37] LIU R S. Effects of sub-inhibitory concentration of oxacillin on biofilm formation ability of OS-MRSA and its regulatory mechanism[D]. Hohhot:Inner Mongolia Medical University, 2022. (in Chinese) 刘柔杉. 亚抑菌浓度苯唑西林对OS-MRSA生物膜形成能力的影响及调控机制[D]. 呼和浩特:内蒙古医科大学, 2022. [38] SARAVOLATZ S N, MARTIN H, PAWLAK J, et al. Ceftaroline-heteroresistant Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2014, 58(6):3133-3136. [39] PARDO L, GIUDICE G, MOTA M I, et al. Phenotypic and genotypic characterization of oxacillin-susceptible and mecA positive Staphylococcus aureus strains isolated in Uruguay[J]. Rev Argent Microbiol, 2022, 54(4):293-298. [40] YU N, ZHANG W, CHEN J K, et al. Investigation of an appropriate screening method for heterogeneity of methicillin-resistant Staphylococcus aureus[J]. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 2013, 25(5):74-76. (in Chinese) 于农, 张伟, 陈建魁, 等. 耐甲氧西林金黄色葡萄球菌异质性耐药株检测方法探讨[J]. 解放军医药杂志, 2013, 25(5):74-76. [41] GUO Z X, LI L Y. Analysis the detection methods of resistant strains of resistant Staphylococcus aureus[J]. Journal of Clinical Medical Literature, 2016, 3(14):2685-2686. (in Chinese) 郭振秀, 李凌云. 耐甲氧西林金黄色葡萄球菌(MRSA)的异质性耐药株的检测方法分析[J]. 临床医药文献电子杂志, 2016, 3(14):2685-2686. [42] XU Z, CHEN X Y, TAN W, et al. Prevalence and antimicrobial resistance of salmonella and Staphylococcus aureus in fattening pigs in Hubei Province, China[J]. Microb Drug Resist, 2021, 27(11):1594-1602. [43] NWOBI O C, ANYANWU M U, JAJA I F, et al. Staphylococcus aureus in horses in Nigeria:occurrence, antimicrobial, methicillin and heavy metal resistance and virulence potentials[J]. Antibiotics (Basel), 2023, 12(2):242. [44] HUANG J W, ZHANG W G, SUN B Q, et al. Genetic diversity, antibiotic resistance, and virulence characteristics of Staphylococcus aureus from raw milk over 10 years in Shanghai[J]. Int J Food Microbiol, 2023, 401:110273. [45] AMARE A, WORKU T, ASHAGIRIE B, et al. Bacteriological profile, antimicrobial susceptibility patterns of the isolates among street vended foods and hygienic practice of vendors in Gondar town, Northwest Ethiopia:a cross sectional study[J]. BMC Microbiol, 2019, 19(1):120. [46] SATO T, ITO R, KAWAMURA M, et al. The risk of emerging resistance to trimethoprim/sulfamethoxazole in Staphylococcus aureus[J]. Infect Drug Resist, 2022, 15:4779-4784. [47] NURJADI D, CHANTHALANGSY Q, ZIZMANN E, et al. Phenotypic detection of hemin-inducible trimethoprim-sulfamethoxazole heteroresistance in Staphylococcus aureus[J]. Microbiol Spectr, 2021, 9(2):e01510-21. [48] NAKIPOǦLU Y, IǦNAK S, GÜRLER N, et al. Klinik Staphylococcus aureus suşlarında antiseptik direnç genlerinin (qacA/B ve smr) ve antibiyotik maddelere direnç prevalansının araştırılması[J]. Mikrobiyol Bul, 2012, 46(2):180-189. (in Turkish). [49] WANG S F, YU Z N, WANG J, et al. Prevalence, drug resistance, and virulence genes of potential pathogenic bacteria in pasteurized milk of Chinese fresh milk bar[J]. J Food Prot, 2021, 84(11):1863-1867. [50] MUTU E, CHEN G L, LIU R S, et al. High prevalence of heterogeneous mupirocin-resistant Staphylococcus aureus and its molecular characterization[J]. Am J Transl Res, 2022, 14(11):8243-8251. [51] BAI B, LIN Z W, PU Z Y, et al. In vitro activity and heteroresistance of omadacycline against clinical Staphylococcus aureus isolates from China reveal the impact of omadacycline susceptibility by branched-chain amino acid transport system Ⅱ carrier protein, Na/Pi cotransporter family protein, and fibronectin-binding protein[J]. Front Microbiol, 2019, 10:2546. [52] CHEN D K, LAI H Y, YANG D M, et al. Mechanism of hetero-erythromycin resistant Staphylococcus aureus and a comparison of detection methods[J]. National Medical Journal of China, 2013, 93(48):3867-3871. (in Chinese) 陈东科, 赖惠英, 杨冬梅, 等. 红霉素异质性耐药金黄色葡萄球菌耐药机制及检测方法学的比较[J]. 中华医学杂志, 2013, 93(48):3867-3871. [53] ZHANG F, BAI B, XU G J, et al. Eravacycline activity against clinical S. aureus isolates from China:in vitro activity, MLST profiles and heteroresistance[J]. BMC Microbiol, 2018, 18(1):211. [54] HU Q W, PENG H G, RAO X C. Molecular events for promotion of vancomycin resistance in vancomycin intermediate Staphylococcus aureus[J]. Front Microbiol, 2016, 7:1601. [55] HU J X, CHEN L, LI G H, et al. Prevalence and genetic characteristics of fosB-positive Staphylococcus aureus in duck farms in Guangdong, China in 2020[J]. J Antimicrob Chemother, 2023, 78(3):802-809. [56] KATAYAMA Y, MURAKAMI-KURODA H, CUI L Z, et al. Selection of heterogeneous vancomycin-intermediate Staphylococcus aureus by imipenem[J]. Antimicrob Agents Chemother, 2009, 53(8):3190-3196. [57] HOWDEN B P, MCEVOY C R E, ALLEN D L, et al. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR[J]. PLoS Pathog, 2011, 7(11):e1002359. [58] SHU X Q, SHI Y Y, HUANG Y, et al. Transcription tuned by S-nitrosylation underlies a mechanism for Staphylococcus aureus to circumvent vancomycin killing[J]. Nat Commun, 2023, 14(1):2318. [59] TUON F F, SUSS P H, TELLES J P, et al. Antimicrobial treatment of Staphylococcus aureus biofilms[J]. Antibiotics (Basel), 2023, 12(1):87. [60] AKCAM F Z, TINAZ G B, KAYA O, et al. Evaluation of methicillin resistance by cefoxitin disk diffusion and PBP2a latex agglutination test in mecA-positive Staphylococcus aureus, and comparison of mecA with femA, femB, femX positivities[J]. Microbiol Res, 2009, 164(4):400-403. [61] WU S, DE LENCASTRE H, TOMASZ A. Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase:molecular cloning and DNA sequencing[J]. J Bacteriol, 1996, 178(20):6036-6042. [62] FISHER J F, MOBASHERY S. β-Lactams against the fortress of the gram-positive Staphylococcus aureus bacterium[J]. Chem Rev, 2021, 121(6):3412-3463. [63] SASAKI H, ISHIKAWA H, ITOH T, et al. Penicillin-binding proteins and associated protein mutations confer oxacillin/cefoxitin tolerance in borderline oxacillin-resistant Staphylococcus aureus[J]. Microb Drug Resist, 2021, 27(5):590-595. [64] PROULX M K, PALACE S G, GANDRA S, et al. Reversion from methicillin susceptibility to methicillin resistance in Staphylococcus aureus during treatment of bacteremia[J]. J Infect Dis, 2016, 213(6):1041-1048. [65] LIANG B, XIONG Z, LIANG Z, et al. Genomic basis of occurrence of cryptic resistance among oxacillin-and cefoxitin-susceptible mecA-positive Staphylococcus aureus[J]. Microbiol Spectr, 2022, 10(3):e0029122. [66] CLARKE R S, BRUDERER M S, HA K P, et al. RexAB is essential for the mutagenic repair of Staphylococcus aureus DNA damage caused by co-trimoxazole[J]. Antimicrob Agents Chemother, 2019, 63(12):e00944-19. [67] KRIEGESKORTE A, LORÈ N I, BRAGONZI A, et al. Thymidine-dependent Staphylococcus aureus small-colony variants are induced by trimethoprim-sulfamethoxazole (SXT) and have increased fitness during SXT challenge[J]. Antimicrob Agents Chemother, 2015, 59(12):7265-7272. [68] YU P J, PAN Y, SUN L Y, et al. Antibiotic resistance mechanism of heterogeneous linezolid-resistant Staphylococcus aureus[J]. Chinese Journal of Antibiotics, 2013, 38(3):230-234, 238. (in Chinese) 虞培娟, 潘扬, 孙兰云, 等. 异质性利奈唑胺耐药金黄色葡萄球菌耐药机制研究[J]. 中国抗生素杂志, 2013, 38(3):230-234, 238. [69] WANG Z W, LIN Z W, BAI B, et al. Eravacycline susceptibility was impacted by genetic mutation of 30S ribosome subunits, and branched-chain amino acid transport system Ⅱ carrier protein, Na/Pi cotransporter family protein in Staphylococcus aureus[J]. BMC Microbiol, 2020, 20(1):189. [70] STEPHEN J, SALAM F, LEKSHMI M, et al. The major facilitator superfamily and antimicrobial resistance efflux pumps of the ESKAPEE pathogen Staphylococcus aureus[J]. Antibiotics (Basel), 2023, 12(2):343. |
[1] | NIU Jiajia, XU Dan, LIU Yang, ZHAO Xiaoling. Research Progress on Genetic Regulation Mechanism of Barring Feather Trait in Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1883-1892. |
[2] | YU Zuhua, GAO Mengru, QI Zhiying, ZHANG Jingyu, HE Lei, CHEN Jian, DING Ke. Research Progress on the Function of RNA Binding Protein ELAVL1 and Its Regulation of Viral Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1914-1925. |
[3] | ZHANG Jixian, FAN Dingkun, FU Yuze, JIAO Shuai, MA Tao, BI Yanliang, ZHANG Naifeng. Research Progress on Mechanism and Application of Postbiotics in Regulating Animal Intestinal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1926-1935. |
[4] | DENG Gunan, ZHANG Jiaqi, BAO Zhipeng, CHEN Taoyun, YU Qisheng, DING Lu, ZHU Chenxi, WANG Yi, REN Yupeng, HE Chao, ZHANG Bin. Detection of Feline Herpesvirus Type 1 and Pathogenicity of an Isolated Strain [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2253-2258. |
[5] | HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411. |
[6] | LUO Tongwang, WU Ya, WANG Shujie, SONG Houhui, SHAO Chunyan. Research Progress on the Mechanism of Cadmium Induced Liver Damage and Selenium Antagonizing Cadmium Hepatotoxicity [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1456-1466. |
[7] | WANG Xiao, ZHANG Hao, LUAN Qingjiang, LI Hui, YANG Ding, WANG Tingyue, TIAN Jing, ZHAO Meng, CHEN Lu, TIAN Rugang. A Comprehensive Review of the Impact of Cold and Heat Stress on the Physiological Parameters and Gene Expression in Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 894-904. |
[8] | FU Xuezhen, LI Xincan, QIAN Hongyu, LÜ Hong, WU Chanyu, WANG Xiaohan, WANG Xiaohua, WANG Zhiying, ZHOU Zuoyong. Antibacterial Effect and Mechanism of Bergamot Essential Oil on Corynebacterium pseudotuberculosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1217-1227. |
[9] | WANG Hao, XIAO Jinlong, SHEN Jue, ZHAO Jingang, WANG Shuai, LIU Gen, ZHAO Ru, XIAO Peng, GAO Hong. New Ways of Cell Death—Ferroptosis and Cuproptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 461-470. |
[10] | ZHOU Mengting, SONG Yinjuan, XU Jian, LI Bin, RAN Duoliang, CHU Yuefeng. Advances in Carbohydrate-based Adjuvant Mechanisms of Action [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 491-501. |
[11] | GAO Hui, FANG Min, JIANG Lingling, MA Yaoyu, LIU Qiang, ZHANG Gang, NIU Xiaoxia, WANG Pu, LI Yong, ZHANG Sinong. Meta-analysis of Bluetongue Virus Prevalence in Sheep Flocks in China from 2012—2022 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 706-717. |
[12] | WU Zihao, CAI Yilong, TUO Haixin, CHEN Wei. Pathogenicity Analysis of a PVL+ ST22 Staphylococcus aureus Isolated from Equine Raw Milk [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 718-726. |
[13] | LIU Yuanhong, HU Yuhuan, ZHANG Li, YANG Pingrui, HU Weidong, MA Qi, BI Shicheng. Network Pharmacologic Analysis and Experimental Verification of Atractylodes Macrocephala-Cistanche Deserticola in the Treatment of Constipation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 834-845. |
[14] | WANG Siying, ZOU Hong, SONG Zhenhui. The Role of Na+/H+ Exchanger Isoform 3 in Infectious Diarrhea and Its Activity Regulation Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3230-3241. |
[15] | ZHANG Xumei, WEI Yurong, XU Chenghui, YANG Tong, SHI Huijun, FU Qiang, YANG Li. To Analyze the Mechanism of Berberine in the Treatment of Salmonella Gallinarum Infection Based on Network Pharmacology and Experimental Verification [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3557-3570. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||